

Département de Protection Sanitaire

UNE EVALUATION DE L'IMPACT RADIOLOGIQUE sur les Populations Humaines et sur L'Environnement de L'Immersion entre 1949 et 1982 de Dechets de Frible et Moyenne Activite en Atlantique Nord-Est Profond

Michel CHARTIER et Frédéric MENARD

SERVICE D'ETUDES APPLIQUEES DE PROTECTION SANITAIRE

CEA-Rapport DPS 90-05_SEAPS Décembre 1990 Une évaluation de l'impact radiologique sur les populations humaines et sur l'environnement de l'immersion entre 1949 et 1982 de déchets de faible et moyenne activité en Atlantique Nord-Est profond

Michel CHARTIER et Frédéric MENARD

<u>CEA-</u> Rapport DPS 90-05 SEAPS

Décembre 1990

<u>Résumé</u>

Une évaluation radiologique complète de l'impact de l'immersion entre 1949 et 1982 de déchets de moyenne et faible activité en Atlantique Nord-Est profond est effectuée à l'aide du modèle numérique, compartimental REJMAR. Les calculs comprennent l'évaluation de l'équivalent de dose aux individus d'un groupe critique théorique par un ensemble étendu de voies d'atteinte, et de la dose collective à l'humanité par les voies d'atteinte par ingestion. L'ensemble des immersions effectuées en Atlantique Nord-Est profond est pris en compte. Les hypothèses de court-circuit biologique par des chaines alimentaires marines sont testées. L'ordre de grandeur des doses reçues par les organismes marins vivant près du site d'immersion est évalué.

mots clé :

radioprotection immersion déchet océan modèle

Abstract

A thorough radiological assessment of the impact of the 1949 to 1982 dumping of low- and intermediate- level radioactive waste in the deep North-East Atlantic is performed with the numerical compartmental REJMAR model. The calculations include the assessment of the dose equivalent to the individuals of a theoretical critical group through a large set of pathways, and the collective dose to mankind through the ingestion pathways. The complete dumping performed in the deep North-East Atlantic is taken into account. The assumptions of biological short-circuit through marin food chains are tested. The order of magnitude of the dose delivered to marine organisms living near the dumping site is assessed.

key words :

radioprotection dumping waste ocean model

Introduction

Différents pays européens ont immergé des déchets solides radioactifs dans le bassin Est de L'atlantique Nord de 1949 à 1982, à environ 4000 mètres de profondeur.

Le modèle compartimental REJMAR, développé en France par le CEA, permet d'évaluer les impacts radiologiques de l'immersion de ces déchets.

Les sous-modèles physiques et géochimiques sont décrits en détail dans le rapport DPS 87/04 SEAPS (CHARTIER et al., 1987). Une première évaluation sur l'être humain avait été effectuée (CHARTIER et al., 1989) : elle reposait sur un terme source US/SDP calculé par une équipe américaine (SCOTT et al., 1985).

Nous présentons ici une nouvelle évaluation radiologique plus élargie et qui repose sur un terme source UK/NRPB évalué par une équipe anglaise : c'est le terme source utilisé dans la dernière réévaluation de la validité du site d'immersion par l'Agence pour l'Energie Nucléaire de l'OCDE (NEA, 1985).

Cette évaluation radiologique a été divisée en trois parties. Dans la première, nous calculons l'équivalent de dose efficace aux individus membres d'un groupe critique (simplement mentionné dose individuelle par la suite) et l'équivalent de dose efficace collectif (mentionné dose collective). Ces résultats sont comparés à ceux obtenus par deux autres modèles, le modèle anglais MAFF-NRPB (NEA, 1985) et le modèle américain TASC-SDP (SCOTT et al., 1985) ainsi qu'à la version précédente du modèle REJMAR (CHARTIER et al., 1989).

Dans la deuxième partie, nous envisageons des "court-circuits biologiques" du transport physique des radionucléides dans les masses d'eau car l'existence de telles "voies d'atteinte rapides" ne peut être exclue a priori.

Le premier court-circuit est la consommation d'espèces comestibles qui vivent près du site d'immersion. Nous élaborons ensuite comme autre court-circuit des chaînes alimentaires marines qui constituent une voie d'atteinte jusqu'à l'être humain par transfert biologique des radionucléides depuis les fonds océaniques. La dose individuelle est alors calculée à partir de la consommation des espèces comestibles des différents niveaux trophiques.

Dans la troisième partie, nous tentons d'évaluer l'ordre de grandeur des débits de dose reçus par des <u>organismes marins</u> au niveau du site d'immersion.

.

I – <u>Evaluation radiologique</u> <u>à partir du terme source UK/NRPB</u> <u>et du modèle REJMAR</u>

1. TERME SOURCE UK/NRPB

Les déchets radioactifs solides sont contenus dans une matrice en béton ou en bitume et disposés à l'intérieur de fûts en acier ou en béton. Les anglais et les américains ont développés des modèles d'emballage des déchets qui modélisent la détérioration des fûts et le rejet des radionucléides dans le milieu. On établit alors le terme source, qui fournit la variation dans le temps du taux annuel de libération des radionucléides dans l'océan.

Trente radionucléides constituent le terme source UK/NRPB (MOBBS, communication personnelle) ; il a été utilisé dans la dernière réévaluation de la validité du site d'immersion (NEA, 1985). Ce terme source est plus réaliste que celui des américains (US/SDP), utilisé jusque là par le modèle REJMAR et qui ne prenait en compte que les immersions majeures. En effet, l'inventaire de tous les déchets immergés en Atlantique Nord-Est hors du plateau continental a été reconstitué ; le modèle suppose que les rejets débutent dès 1949.

Le Tableau 2 donne pour chaque radionucléide sa demi-vie, le nombre d'années pendant lequel il sera rejeté dans l'océan et la quantité cumulée d'activité libérée pendant cette période.

2. CHAINES DE RADIONUCLEIDES

Le modèle traite les chaînes simplifiées de radionucléides recommandées par les experts de l'AEN (NEA, 1985) :

²⁴⁴Cm
$$\longrightarrow$$
 ²⁴⁰Pu \longrightarrow ²³⁶U \longrightarrow ²³²Th
²⁴¹Pu \longrightarrow ²⁴¹Am \longrightarrow ²³⁷Np \longrightarrow ²³³U \longrightarrow ²²⁹Th
²³⁹Pu \longrightarrow ²³⁵U \longrightarrow ²³¹Pa \longrightarrow ²²⁷Ac
²³⁸Pu \longrightarrow ²³⁴U \longrightarrow ²³⁰Th \longrightarrow ²²⁶Ra \longrightarrow ²¹⁰Pb \longrightarrow ²¹⁰Po
Tableau 1

Seuls les radionucléides fils à vie longue sont pris en compte explicitement dans les simulations. Les données radiologiques entrées comme paramètre incluent pour les nucléides pères les contributions des nucléides fils à vie courte (i.e. de durée inférieure à la semaine) lorsque nécessaire. Les doses pour un radionucléide sont donc calculées à partir des contributions de toute la chaîne.

3. METHODE DE CALCUL DES DOSES

A partir du terme source, le modèle REJMAR calcule en fonction du temps les concentrations en radionucléides (plus exactement les activités volumiques) dans les 55 compartiments d'océan et sédiments qui couvrent l'océan mondial : il prend en compte l'advection par les courants marins, la diffusion par turbulence du fluide océanique, l'adsorbtion sur les particules en suspension, les transferts par sédimentation et pertes par enfouissement.

Les activités volumiques sont ensuite utilisées pour estimer les doses annuelles délivrées à l'homme.

Pour le calcul de <u>l'équivalent de dose efficace annuel aux individus membres d'un</u> <u>groupe critique</u> (ci-après dénommé "dose individuelle"), le transfert des radionucléides jusqu'à l'homme est supposé s'effectuer par les différentes voies d'atteinte proposées par l'AIEA (IAEA, 1978) ; elles couvrent les trois modes d'exposition : irradiation externe, inhalation et ingestion (Tableau 3). On détermine le compartiment dont l'activité est maximale parmi un ensemble de compartiments susceptibles d'intervenir dans la voie d'atteinte concernée.

La concentration par les organismes vivants est calculée par l'intermédiaire du Facteur de Concentration (rapport de la concentration d'un radionucléide dans un organisme et de sa concentration dans l'eau de mer). Il est considéré constant bien qu'il représente la résultante d'un certain nombre de processus dynamiques (IAEA, 1985) ; ingestion d'eau, de particules, d'aliments. L'utilisation de Facteurs de Concentration prend donc en considération les effets éventuels de la chaîne trophique. Cette simplification est classique dans la plupart des évaluations radiologiques (NEA, 1985; SCOTT et al., 1985; NEA, 1988).

Toutes les données utilisées dans les formules sont tirées de compilations réalisées par l'AIEA et l'AEN et de publications de la CIPR (cf. NEA, 1985). Les taux de consommation, d'inhalation, les facteurs d'occupation et de modification sont présentés dans le Tableau 3.

L'équivalent de dose efficace engagé annuellement H(n) (en $Sv.a^{-1}$) par individu pour les voies d'atteinte par <u>ingestion</u> ou <u>inhalation</u> et pour chaque radionucléide n s'écrit :

$$H(n) = H_{50}(n) \times A^{n,d} \times FC(n) \times P$$

avec :

- $H_{50}(n)$ = équivalent de dose efficace engagé sur 50 ans par incorporation unitaire du radionucléide n ; facteur de dose permettant de passer à la dose à partir de la concentration en radionucléide n, dans les aliments ou les éléments intervenant dans les modes d'exposition par ingestion ou inhalation (en Sv/Bq) ;
- A^{n,d} = activité volumique du nucléide n dans l'eau filtrée (concentration en phase dissoute) du compartiment intervenant dans la voie d'atteinte concernée (en Bq/m³);

 FC(n) = facteur de concentration du radioélément n pour la voie d'atteinte concernée [en m³ (eau)/t (aliment) pour les voies par ingestion et en m³ (eau)/m³ (air) pour les voies par inhalation];

- P = taux de consommation ou d'inhalation pour la voie de transfert concernée (en t/a pour les voies par ingestion, en m³/a pour les voies par inhalation).

L'équivalent de dose efficace annuel H(n) (en $Sv.a^{-1}$) dû à <u>l'irradiation externe</u> est calculé par l'expression :

$$H(n) = 5,76 \times 10^{-13} \times A^{n} \times FC(n) \times E(n) \times P \times FM$$

où :

- A^n = activité volumique du nucléide n dans l'eau pour les voies "navigation" et "natation" ou concentration dans l'eau filtrée (phase dissoute) du nucléide n pour les voies "sédiment de plage" (en Bq/m³);

- FC(n) = facteur de concentration, pour le radionucléide n, de la vase pour la voie "sédiment de plage" (en m³ (eau)/t (vase)) ou égal à 1 pour les voies "natation" et "navigation";
- $E(n) = \text{somme des produits de l'énergie et de l'intensité pour le rayonnement photonique (émission <math>\aleph$) ou électronique (émission β) pour le radionucléide n (en MeV/Bq/s);
- P = facteur d'occupation pour la voie d'exposition concernée (en h/a);
- FM = facteur de modification pour la voie d'exposition concernée.

La "dose individuelle" est la somme de l'équivalent de dose efficace dû à l'irradiation externe pendant une année donnée et de l'équivalent de dose efficace <u>engagé</u> dû à l'irradiation interne pendant la même année.

Le calcul de <u>l'équivalent de dose collective efficace</u> fait intervenir la taille de la population mondiale à travers la somme sur les compartiments des taux de prises, c'està-dire la quantité totale d'aliments contaminés issus des océans et consommés par la population mondiale. Seule la consommation de poissons, crustacés, mollusques, algues et plancton est prise en compte. On suppose que les captures, tirées de l'Annuaire Statistique des Pêches de la FAO pour 1975-1981, seront constantes dans les années futures (CHARTIER et al., 1989). On peut considérer en effet que la prise totale actuelle est pratiquement maximale étant donnés l'effort de pêche et l'estimation des stocks.

Une autre voie d'atteinte considérée dans le calcul de la dose collective est la dispersion globale du ¹⁴C et du ³H, radionucléides très mobiles, contenus dans les réservoirs naturels (océan, atmosphère, continents) et dans les systèmes biologiques. Des modèles utilisant une taille de population deux fois supérieure à l'actuelle ont été mis au point pour simuler ces phénomènes. REJMAR utilise leurs résultats en terme de dose collective engagée par unité de taux de libération dans le milieu (NEA, 1985).

L'équivalent de dose collective engagée annuellement H(t) tronqué au temps t (en Homme.Sv) est calculé par l'expression :

$$H(t) = \sum_{\text{compartiment } k} \left[\sum_{\text{radioéléments } n} \left(\sum_{\substack{\text{aliment } j \\ \text{H}_{50}(n) \times TP(k, j) \times \dots}} \int_{0}^{t} A^{n, d}(\tau) d\tau \right) \right] + S(t)$$

- H₅₀(n) = équivalent de dose efficace engagé par ingestion unitaire ("facteur de dose" en Sv/Bq);
- TP(k,j) = taux de prise de l'aliment j dans le compartiment k (en t/a);
- Fi(j) = fraction ingérée de l'aliment j ;
- FC(n) = facteur de concentration de l'élément n pour la voie d'atteinte concernée (en m³ (eau)/t (aliment));
- $AT(k,n) = \int_{0}^{\infty} A(k,n) dt$ somme de la concentration de l'élément n dans le compartiment k sur la période de temps t (en Bq/a/m³);

$$-S(t) = \int_{0}^{t} S_{g}(t) dt;$$

où :

avec S_g : taux d'équivalent de dose collectif efficace annuel obtenu pour ³H et ¹⁴C à partir de la dispersion globale.

4. RESULTATS

4.1 Doses individuelles

La dose individuelle annuelle calculée à partir de tous les radionucléides et des voies d'atteinte hypothétiques et réelles, passe par un maximum après 200 ans environ de rejet (Figure 1). Ce maximum de 3,6.10⁻⁷ Sv.a⁻¹ est très inférieur à la limite de 10⁻³ Sv.a⁻¹ recommandée par la CIPR. Les doses calculées qui dépassent 10⁻⁷ Sv.a⁻¹ apparaissent entre 100 et 800 ans après le début des immersions. Les contributions des principaux radionucléides sont représentées sur la Figure 1. Pendant les mille premières années, l'influence de ²⁴¹Pu et de ²⁴¹Am est prépondérante. Le

principal acteur est ensuite le ²³⁹Pu et, dans une moindre mesure, le ²⁴⁰Pu. La voie d'atteinte principale est la consommation de mollusques capturés près des côtes d'Europe du Nord et contaminés par les radionucléides transportés par des processus physiques d'advection et de diffusion. A partir de 100 000 ans de rejet, le ²³⁵U devient seul responsable de la dose totale, essentiellement par voie d'irradiation externe due aux sédiments de plage. Le Tableau 3 résume les doses maximales pour toutes les voies d'atteinte et pour les principaux nucléides contribuant à la dose totale. Les voies d'atteinte critiques et le délai depuis le début des rejets sont précisés.

Le ²⁴¹Pu d'une part, et le ²⁴¹Am qui apparaît à la fois comme produit relargué et produit de filiation du ²⁴¹Pu d'autre part, sont les seuls radionucléides à conduire à une dose dépassant 10^{-7} Sv.a⁻¹. Les voies d'atteinte critiques sont :

- l'ingestion d'aliments marins issus des compartiments côtiers d'Europe du Nord :
 - . consommation de mollusques intervenant pour 50 % de la dose totale calculée pour chacun des deux radionucléides ;
 - . consommation d'algues (alginates, carragénates) pour 20 % environ ;
 - . consommation de plancton (regroupant les crustacés pélagiques) pour 15 % ;
- l'irradiation externe due aux sédiments de plage pour 10 % environ.

La Figure 2 présente les résultats des doses estimées pour tous les nucléides et pour les voies d'atteinte qui contribuent le plus à la dose totale. L'ingestion de mollusques reste pour la plupart des radionucléides la voie d'atteinte réelle critique. Ce sont des organismes filtreurs dont les valeurs du Facteur de Concentration sont élevées.

4.2 Doses collectives

L'équivalent de dose collective annuel atteint un palier de 4,9.10⁴ Homme.Sv.a⁻¹ au bout de 100 000 ans de rejet. Le Tableau 4 présente les principaux nucléides contribuant à ce résultat. Le ¹⁴C est l'acteur dominant de cette dose : il intervient dans une proportion de 55 %. Il est important de noter que sa contribution a été calculée indépendamment de REJMAR, au moyen de modèles de dispersion globale (NEA, 1985) et du terme source anglais. En effet, REJMAR n'est pas un modèle adapté au calcul de la dispersion globale du ¹⁴C et ³H.

Seuls les isotopes du plutonium, ²³⁹Pu, ²⁴⁰Pu et ²⁴¹Pu ont une influence non négligeable sur la dose collective : ils totalisent à 100 000 ans, 43 % de la dose totale. On rappelle que, dans ce calcul, les taux de prises de pêche, les distributions géographiques des organismes et lcs habitudes alimentaires humaines sont gardés constants durant toute cette période.

5. DISCUSSION

Le Tableau 5 résume les résultats obtenus par les modèles américains (SDP), anglais (NRPB) et les deux versions de REJMAR pour les doses individuelles. Celles que nous obtenons avec le terme source anglais sont légèrement supérieures aux doses estimées à partir de la version précédente de REJMAR qui utilisait le terme source américain $(3,6.10^{-7} \text{ Sv.a}^{-1} \text{ au})$ lieu de $3.10^{-7} \text{ Sv.a}^{-1}$). Le terme source américain supposait que l'activité des déchets solides était entièrement libérée au bout de 24 ans d'immersion. Dans celui des anglais, la libération de certains radionucléides (cf. Tableau 2) se prolonge pendant 100 000 ans ou plus. Le terme source n'altère pourtant pas fortement les résultats des deux versions de REJMAR : le rôle prépondérant est toujours joué par ²⁴¹Pu, ²⁴¹Am, ²³⁹Pu et ²⁴⁰Pu à travers la voie d'atteinte d'ingestion de mollusques ; la dose maximale intervient dans les deux cas 200 ans après le début des immersions.

Entre les modèles anglais et français, les résultats en terme de dose individuelle sont cohérents mais non strictement égaux. L'utilisation du même terme source montre que les différences semblent provenir des processus de transfert envisagés et des modèles eux-mêmes. REJMAR et le modèle anglais se distinguent par leur configuration spatiale, par la paramétrisation des interactions eau-sédiment et par certaines valeurs de paramètres du milieu (porosité du sédiment, masse volumique du sédiment, etc...). La dose maximale calculée par le modèle américain est entièrement due à une voie d'atteinte par chaîne alimentaire d'origine les environs du site. Elle intervient 17 ans après le début des rejets. Différentes études (MOBBS et al., 1985; CHARTIER et al., 1989) ont montré que les temps de transport verticaux sont très sous-estimés dans le modèle américain par rapport aux modèles français et anglais. Le Tableau 5 présente les doses collectives calculées par les modèles et celle estimée pour la radioactivité naturelle (UNSCEAR, 1984). Les doses calculées à partir des déchets immergés deviennent toutes constantes 100 000 ans après le début des rejets. Les résultats de tous les modèles sont du même ordre de grandeur et restent très inférieurs à la dose collective engendrée par la radioactivité naturelle.

.

.

II - <u>Court-circuits du transport physique</u> <u>des radionucléides</u>

1. INTRODUCTION

Nous envisageons ici deux nouvelles voies d'atteinte jusqu'à l'être humain, susceptibles de court-circuiter le transport physique des radionucléides dans les masses océaniques.

La première correspond à la consommation d'aliments marins (poissons ou céphalopodes) capturés près du site de l'AEN, là où les activités volumiques calculées par le modèle sont les plus élevées. Cette voie d'atteinte représente un court-circuit direct des eaux profondes de l'Atlantique Nord-Est jusqu'à l'être humain. Cette hypothèse est actuellement pessimiste. En effet, les espèces marines comestibles ne sont aujourd'hui jamais pêchées à des profondeurs dépassant 1800 mètres et nos connaissances de l'écologie de l'océan montrent que les espèces abyssales n'effectuent guère de migrations verticales actives vers les eaux de surface.

Il est plus réaliste de considérer que les voies d'atteinte par ingestion sont le fait de la consommation d'espèces pêchées dans les eaux peu profondes. C'est ce point que nous aborderons ensuite sous un nouvel aspect, en considérant que les organismes comestibles sont contaminés à travers des chaînes alimentaires dont l'origine se situe dans les sédiments du site de l'AEN et dont les niveaux trophiques supérieures atteignent les zones de pêches économiques.

2. CONSOMMATION D'ALIMENTS MARINS CAPTURES PRES DU SITE DE L'AEN

2.1 Méthode

La nouvelle voie d'atteinte jusqu'à l'être humain que l'on envisage ici est la consommation de poissons ou céphalopodes capturés dans les compartiments 19, 17 et 14 du modèle (Figure 3). Ces derniers couvrent la Couche Limite Benthique du bassin Nord-Est de l'Atlantique. La dose individuelle est calculée à partir d'un taux de consommation de 60 g.jour⁻¹, soit 10 fois plus faible que le taux de consommation des poissons de surface.

2.2 <u>Résultats</u>

Les doses maximales obtenues pour l'ensemble des radionucléides sont présertées dans le Tableau 6. Dans la boîte 19, la boîte site, la dose individuelle maximale de $2,2.10^{-5}$ Sv.a⁻¹ apparaît 40 ans après le début des immersions. Dans la boîte 17, elle est de $1,6.10^{-5}$ Sv.a⁻¹ et intervient au bout de 50 ans. Dans ces deux cas, seuls les isotopes du plutonium, le ²⁴¹Am, le ¹⁴C, le ¹³⁷Cs et le ⁶⁰Co participent à la dose.

Les organismes capturés dans la boîte 17 qui couvre la quasi-totalité de la Couche Limite Benthique de l'Atlantique Nord-Est, conduisent à une dose de $1,2.10^{-8}$ Sv.a⁻¹, soit plus de 1000 fois inférieure à celles des boîtes 19 et 14. Elle apparaît plus tardivement, au bout de 100 ans après le début des rejets. Le ⁶⁰Co n'intervient alors plus en raison de sa faible demie-vie. Les principaux contribuants sont le ²⁴¹Pu, le ²⁴¹Am et le ²³⁹Pu.

2.3 Discussion

Les résultats montrent que si une telle voie d'atteinte existait, les doses reçues par l'être humain resteraient largement en dessous de la limite de 1 mSv recommandée par la CIPR : dans le cas de la boîte site, la dose calculée représente 2,2 % de la limite.

On notera que ces résultats sont plus dépendants des hypothèses et paramétrisations utilisées dans la modélisation des rejets des radionucléides de leurs fûts que dans le cas des doses dues à la consommation de poissons de surface. Les hypothèses et paramètres utilisés dans notre calcul sont largement pessimistes et donc conduisent à fortement surestimer la valeur de la dose par consommation de poissons ou céphalopodes capturés près du site : un tel degré de majoration est en fait une utilisation à la limite de validité d'un modèle déterministe. Pour obtenir des informations correctement interprétables en allant plus loin dans l'étude des hypothèses moins probables mais plus graves, il serait nécessaire de développer une approche <u>stochastique</u> et de revoir totalement le modèle.

3. CHAINES ALIMENTAIRES THEORIQUES

3.1 Principe

Les espèces marines qui participent aux voies d'atteinte envisagées dans les évaluations de la partie I sont capturées dans les eaux de surface et côtières. Ces organismes sont contaminés par les radionucléides transportés par les processus physiques d'advection et de diffusion. Nous nous intéressons dans cette partie à une contamination possible à travers des chaînes alimentaires dont l'origine se situe dans les sédiments du site de l'AEN. On rappelle qu'aucune donnée n'est disponible pour étudier à la fois la contamination due au réseau trophique et au milieu ambiant.

Nous envisageons une succession de migrations verticales effectuées par des prédateurs, se nourrissant de proies capturées dans les eaux plus profondes. Le ou les derniers maillons de la chaîne sont ensuite consommés par l'homme. L'ensemble constitue une voie de transfert biologique prenant naissance aux environs du site et aboutissant dans des régions de pêche économique. Il ne s'agit plus de prendre en considération les effets éventuels de la chaîne trophique à l'intérieur d'un compartiment d'eau, comme le fait le Facteur de Concentration, mais d'envisager <u>un transfert par voie biologique</u> permettant une migration verticale d'environ 2000 mètres.

La reconcentration ou déconcentration d'un radionucléide à chaque niveau trophique peut se caractériser par un Facteur de Transfert (TF), défini comme le rapport de la concentration dans le prédateur à celle de sa proie ou de son substrat (cas des détritivores benthiques se nourrissant de sédiments). PENTREATH (1983) puis BELOT (1986) ont proposé deux modèles permettant d'obtenir le Facteur de Transfert.

3.2 Modèle de PENTREATH

a) Méthode

D'après PENTREATH (1983), le Facteur de Transfert d'un radionucléide à partir d'un niveau trophique vers un autre peut s'exprimer par la formule suivante :

$$TF = \frac{r'f}{k+\lambda}$$

- avec r': le taux représentant la masse de nourriture absorbée par unité de masse de prédateur (kg.kg⁻¹.jour⁻¹);
 - f : le rapport radionucléides absorbés sur radionucléides assimilés ;
 - k : la constante de décroissance biologique (jour⁻¹), $k = \frac{\log 2}{t_{o,s}}$ et $t_{0,5}$ la période biologique du radionucléide en jours ;
 - λ : la constante de décroissance radioactive (jour⁻¹).

Cet auteur suppose pour cela que l'incorporation se fait <u>uniquement</u> par alimentation ; on ne tient pas compte de l'apport par l'eau aux divers maillons de la chaîne. D'autre part, la voie de transfert suit une chaîne alimentaire <u>linéaire</u> qui permet de remonter jusqu'au premier maillon : un prédateur d'un niveau trophique quelconque est supposé se nourrir exclusivement de la proie du niveau inférieur ; en d'autres termes, on suppose que les prédateurs de surface ne se maintiennent que par l'intermédiaire d'une chaîne alimentaire prenant origine dans les profondeurs abyssales. Une telle hypothèse est en contradiction avec nos connaissances de l'écologie abyssale. Néanmoins, il est possible qu'un prédateur puissent se nourrir en partie d'une proie contaminée appartenant au réseau envisagé. PENTREATH propose donc de lier la concentration moyenne dans une espèce (C) située à un niveau quelconque de la chaîne, à un facteur de transfert et à une probabilité (p) de consommer une proie contaminée. Par conséquent, la concentration moyenne au niveau trophique n sera évaluée par l'équation :

$$C_n = C_0 (TF_1p_1, TF_2p_2, ..., TF_np_n)$$

avec C₀, la concentration (en Bq.kg⁻¹) dans le substrat qui se trouve à la base de la chaîne.

La Figure 4 présente les différents niveaux trophiques d'une chaîne alimentaire envisagée par les chercheurs anglais dans la dernière réévaluation du site (NEA, 1985) et que nous étudions dans le contexte du modèle REJMAR. Les régimes alimentaires des organismes sont tirés des connaissances actuelles de la faune abyssale (WHEELER, 1978). Les espèces comestibles sont les calmars, les thons, les espadons et les requins. Les données disponibles nécessaires au calcul des Facteurs de Transfert sont extraites de NEA, 1985. Elles concernent les nucléides ⁶⁰Co, ¹³⁷Cs, ²³⁹Pu, ²⁴¹Pu et ²⁴¹Am.

- Le taux r', en terme de pourcentage du poids du corps par jour, a été pris constant :

. annélide	0,5	%	;	amphipode	0,5	%;
. calmar	7,5	%	;	grenadier	5	%;
. requin	5	%	;	thon	7,5	%;

. espadon 3,75 % pour chacune des deux proies, le calmar et le grenadier.

- Les valeurs des paramètres f et k sont celles des estimations du NEA (1985). Il faut noter qu'il y a plus d'informations sur les poissons que sur les autres organismes et que les meilleures données biologiques concernent le Césium.

Pour la fraction absorbée f :

<u>ORGANISME</u>	<u>Co 60</u>	<u>Cs 137</u>	<u>Pu 239</u>	<u>Pu 241</u>	<u>Am 241</u>
Annelide	0,01	0,1	0,0005	0,0005	0,0005
Amphipode	0,01	0,2	0,1	0,1	0,1
Calmar	0,1	0,3	0,2	0,2	0,2
Grenadier	0,05	0,2	0,001	0,001	0,01
Requin	0,1	0,3	0,005	0,005	0,01
Thon	0,05	0,2	0,001	0,001	0,01
Espadon	0,05	0,2	0,001	0,001	0,01

Pour la période biologique $t_{0,5}$ (en jours) :

.

ORGANISME	<u>Co 60</u>	<u>Cs 137</u>	<u>Pu 239</u>	<u>Pu 241</u>	<u>Am 241</u>
Annelide	1000	365	1000	1000	1000
Amphipode	1000	365	1000	1000	1000
Calmar	50	50	50	50	50
Grenadier	365	300	365	365	365
Requin	365	200	365	365	365
Thon	365	100	365	365	365
Espadon	365	100	365	365	365

Le tableau 7 présente les facteurs de transfert calculés à partir de ces données.

Les probabilités que les prédateurs consomment des proies contaminées correspondent au scénario suivant (Figure 4) : plus on se rapproche de la surface, plus les probabilités sont faibles. Cette conception doit représenter l'augmentation de la diversité alimentaire qui règne lorsqu'on progresse vers les eaux de surface.

La dose individuelle H(i) (Sv.a⁻¹) est calculée pour chaque radionucléide i et pour chaque espèce comestible à partir de la formule suivante :

$$H(i) = H_{50}(i) \times C_0 (TF_1p_1 \dots TF_np_n) \times P$$

avec H_{50} : le facteur de dose (Sv.Bq⁻¹);

- C₀ : la concentration totale (Bq.kg⁻¹ humide) en radionucléide i dans la boîte sédiment du site AEN (boîte 20);
- P : le taux de consommation (kg.a⁻¹) de l'espèce comestible considérée ; dans tous les cas, P a été choisi égal à 600 g.jour⁻¹, soit la valeur du taux de consommation des poissons de surface (219 kg.a⁻¹).

b) Résultats

Les résultats obtenus en terme de dose individuelle maximale annuelle sont présentés dans le Tableau 9. Dans aucun des cas, la dose due à la consommation d'un organisme comestible de la chaîne alimentaire n'atteint 10⁻⁸ Sv.a⁻¹. Nous restons très loin de la limite de 1 mSv recommandée par la CIPR. D'autre part, une telle voie d'atteinte par transport biologique ne court-circuite pas de manière prépondérante celles issues du transport physique des radionucléides modélisé par REJMAR. Nous avons étudié l'effet produit sur la dose lorsque certains paramètres biologiques sont modifiés dans le cas de ¹³⁷Cs et de ²⁴¹Am. En supposant que la période biologique de ¹³⁷Cs est de 1000 jours pour l'amphipode, au lieu de 365 jours précédemment, et de 365 jours pour le calmar, au lieu de 50 jours, la dose individuelle due à la consommation de calmars devient 6.10⁻⁸ Sv.a⁻¹. Pour les autres organismes comestibles, on obtient 3,2.10⁻¹¹ Sv.a⁻¹ par consommation de requins, 1,3.10⁻¹⁰ Sv.a⁻¹ par consommation de thons et 7,5,10⁻¹¹ Sv.a⁻¹ par consommation d'espadons. Dans le cas de ²⁴¹Am, en supposant que la période biologique est de 365 jours chez le calmar (au lieu de 50) et de 1000 jours pour les poissons et le requin (au lieu de 365), les doses individuelles deviennent 1,3.10⁻⁸ Sv.a⁻¹ par consommation de calmars, 2,1.10⁻¹³ Sv.a⁻¹ par

consommation de requins, $1,4.10^{-11}$ Sv.an⁻¹ par consommation de thons et $7,3.10^{-12}$ Sv.a⁻¹ par consommation d'espadons.

D'autre part, si nous modifions les taux journaliers r' représentant la masse de nourriture absorbée par unité de poids de prédateur pour les annélides et amphipodes (5 % au lieu de 0,5 % pour les deux cas), les doses individuelles maximales sont alors toutes multipliées par 100. Dans le pire des cas, on atteint 6.10^{-6} Sv.a⁻¹ par consommation de calmars contaminés par le ¹³⁷Cs et, rappelons le, un taux de consommation par l'homme de 600 g.jour⁻¹.

3.3 Modèle de BELOT

a) Méthode

BELOT (1986) a développé un modèle de type exponentiel qui calcule les Facteurs de Transfert à partir de résultats expérimentaux obtenus par différents auteurs et dont il a fait une synthèse. Seule l'incorporation par alimentation est prise en compte. Il utilise un taux journalier de nourriture absorbée par unité de poids de prédateur de 5 %. BELOT donne aussi des valeurs du Facteur de Transfert des sédiments à des organismes marins, obtenues dans le milieu naturel.

Ces résultats nous permettent d'envisager, sous certaines conditions, une autre chaîne alimentaire inspirée de la précédente, pour les radionucléides ²³⁹Pu et ²⁴¹Am. Un schéma synthétique est présenté Figure 5. Il montre les approximations faites pour conserver le principe d'une migration verticale à partir des sédiments du site de l'AEN. Les Facteurs de Transfert sont présentés dans les tableaux 8. La dose individuelle est calculée suivant le même principe que précédemment.

b) Résultats

Les doses individuelles annuelles maximales obtenues sont présentées dans le Tableau 9. Elles sont toujours inférieures à 10⁻⁸ Sv.a⁻¹. Comparativement aux résultats précédents, la consommation de céphalopodes conduit à la même dose pour ²³⁹Pu et ²⁴¹Am. En revanche, la dose due aux poissons consommés est ici près de 10 000 fois plus élevée que dans la chaîne alimentaire précédente. Cet écart s'explique par le nombre de niveaux trophiques envisagé dans les 2 cas : 4 pour la chaîne du modèle de PENTREATH avec le thon et seulement 3 dans celle-ci. En effet, avec les

données dont nous disposons, nous avons considéré ici que le poisson se nourrissait directement de crustacés pélagiques contaminés avec une probabilité de 0,1. Dans le cas du modèle de PENTREATH, le calmar occupait un niveau trophique intermédiaire et était consommé par les poissons avec une probabilité de 0,001. En appliquant cette probabilité, les doses deviendraient 3.10⁻¹¹ Sv.a⁻¹ pour ²⁴¹Am et 8.10⁻¹² Sv.a⁻¹ pour ²³⁹Pu. En éliminant l'intermédiaire "calmar" dans la chaîne précédente et en considérant que le thon consomme les amphipodes avec un taux r' de 5 %, on obtiendrait 4,4.10⁻¹² Sv.a⁻¹ pour ²⁴¹Am et 2,2.10⁻¹³ Sv.a⁻¹ pour ²³⁹Pu.

3.4 Discussion

A partir du modèle de PENTREATH, les Facteurs de Transfert calculés ne sont supérieurs à 1 que pour le calmar (sauf pour ⁶⁰Co) et pour les poissons et le requin pour ⁶⁰Co et ¹³⁷Cs (Tableau 7). Dans tous les autres cas, le passage d'un niveau trophique à un autre, sans considérer de probabilité, s'accompagne d'une baisse de la concentration en radionucléide. Les valeurs que nous avons extraites des travaux de BELOT sont, elles, toujours inférieures à 1 (Tableau 8). Ces observations montrent qu'une reconcentration le long de chaînes alimentaires n'apparaît qu'exceptionnellement. De plus, nos modèles de chaînes alimentaires ont abouti à des doses individuelles encore très faibles devant la limite recommandée par la CIPR. Le transfert biologique envisagé à l'aide du Facteur de Transfert et du jeu de probabilités ne semble pas, dans le cadre du modèle REJMAR, jouer un rôle majeur dans les voies d'atteinte jusqu'à l'être humain. Dans la dernière réévaluation du site (NEA, 1985), la chaîne alimentaire du modèle de PENTREATH avec le même jeu de données avait été étudiée par les scientifiques anglais. Les résultats sont présentés dans le Tableau 9. Les différences constatées proviennent des concentrations en radionucléides dans la boîte sédiment : le modèle anglais donne des concentrations dans le sédiment très supérieures à celles de REJMAR.

Cette conclusion montre l'importance de la paramétrisation des interactions eausédiment dans les modèles et l'utilité d'évaluer les scénarios de transfert de radionucléide par chaîne alimentaire. Toutefois, les résultats obtenus sont entachés d'une forte incertitude qu'il est difficile d'estimer. Le Facteur de Transfert est un concept très pratique qui ne nécessite que peu de données biologiques comparativement à certains modèles réalisés auparavant (DOI et al., 1980). La méthode développée par BELOT nous semble plus réaliste que celle de PENTREATH car elle utilise directement les résultats d'expérimentations. Mais les études sont encore trop peu nombreuses, notamment entre une proie vertébrée et un prédateur vertébré. D'autre part, il faut rappeler que les organismes utilises dans les conditions expérimentales ne se nourrissent pas de la même façon que dans les conditions réelles de l'environnement. Des différences importantes peuvent donc apparaître entre des valeurs expérimentales et <u>in situ</u> (BELOT, 1986).

III - <u>Débits de dose aux organismes marins</u> <u>consécutifs aux immersions</u> <u>de déchets radioactifs</u>

1. INTRODUCTION

Nous abordons maintenant le problème de l'impact des déchets radioactifs sur les organismes et l'écosystème marins. Jusqu'à présent, le niveau de protection de l'environnement marin a généralement été jugé adéquat lorsque les doses à l'être humain restaient en dessous des limites fixées par la CIPR. C'est un postulat qui est aujourd'hui remis en cause par des associations gouvernementales ou non de protection de la nature (GREENPEACE ; Nature Conservancy Council) et par des scientifiques (STEELE, 1986 ; THOMPSON, 1988). Dans la plupart des options d'évacuation des déchets radioactifs, les lieux de stockage se situent dans des secteurs de l'environnement occupés par des populations humaines ou proches de leurs activités. Si l'homme est protégé de manière adéquate, il est alors probable que les autres être vivants sont également suffisamment protégés. Mais dans le cas du site de l'AEN situé géographiquement loin des activités humaines, il apparaît possible que des organismes marins puissent recevoir une exposition relativement élevée localement alors que les doses à l'être humain restent à des niveaux très acceptables, grâce à la dilution dans les masses océaniques. Malgré le manque de données, nous tenterons d'évaluer l'ordre de grandeur des débits de doses reçus par des organismes marins au niveau du site de l'AEN.

Les bases scientifiques des critères de radioprotection humaine reposent sur une énorme quantité de données. Autant d'informations ne sont disponibles pour aucune autre espèce vivante. Néanmoins, nous utilisons des méthodes qui ont été développées à partir d'hypothèses simplificatrices et de modèles dosimétriques (WOODHEAD, 1979 ; IAEA, 1988 ; PENTREATH et WOODHEAD, 1988). Elles permettent d'estimer plus ou moins grossièrement les doses reçues par une variété d'organismes marins et de calculer un ordre de grandeur de l'exposition aux rayonnements due aux déchets radioactifs du site de l'AEN.

2. METHODES

2.1 Hypothèses

Le métabolisme des éléments dans les organismes abyssaux est trop mal connu pour prédire la distribution interne des radionucléides. Les Facteurs de Concentration, calculés pour des organismes côtiers ou de surface, semblent pourtant suffisants pour fournir une approximation de la quantité contenue dans la totalité du corps. On suppose alors que la distribution des radionucléides est <u>uniforme</u>.

Les organismes que nous considérons sont des poissons, des crustacés et des mollusques, pour lesquels des valeurs de Facteur de Concentration sont disponibles (IAEA, 1985). Dans chaque cas, la forme géométrique du corps est approchée par une <u>ellipsoïde</u> de densité <u>unitaire</u> (Tableau 10). Elle permet de représenter approximativement la majeure partie du corps (excepté les appendices) d'une grande variété d'organismes. De plus, on dispose de données radiologiques dans la littérature pour de telles géométries.

Pour une même dose absorbée (exprimée en grays), nous tenons compte des réponses différentes de l'organisme en fonction du type de radiations (\ll , β ou &) auquel il est exposé, en reprenant les valeurs du facteur de qualité Q qui n'est strictement défini que dans le cadre de la radioprotection humaine. Une telle hypothèse apparaît raisonnable à différents auteurs (IAEA, 1988; PENTREATH et WOODHEAD, 1988) : en effet, la composition des tissus mous de l'homme et des autres organismes sont globalement similaires en terme de contenu en eau et de structure des cellules. Ainsi nous calculons l'"équivalent" de dose individuelle pour un organisme marin par :

> D = Dabs x Q dose en sieverts dose absorbée en grays

avec Q = 20 pour les particules α ; Q = 1 pour les rayons X, β et δ .

2.2 Modèles dosimétriques

Les módèles dosimétriques que nous utilisons prennent en compte l'irradiation <u>interne</u> de l'organisme en supposant une distribution uniforme des radionucléides et l'irradiation <u>externe</u> due aux radionucléides présents dans l'eau et le sédiment. a) Rayonnement & constitué de photons gamma, il est de nature électromagnétique.

Irradiation interne :

Le débit de dose moyen pour un radionucléide et pour un organisme est calculé à partir de la formule (PENTREATH et WOODHEAD, 1988).

$$D_{s} = 5,76.10^{-7} \text{ x } E_{s} n_{s} \text{ FC } C_{w}^{\vee} \phi$$
 (mSv.h⁻¹)

avec E_y , l'énergie de rayonnement δ par désintégration en MeV;

 n_{x} , la fraction de rayonnement δ par désintégration ;

FC, le facteur de concentration $(m^3.kg^{-1})$;

- C_{w}^{v} la concentration volumique dans l'eau filtrée (Bq.m⁻³);

E et n sont extraits de ICRP, 1983.

 ϕ est obtenue dans la littérature (BROWNELL et al., 1968 ; ELLET et HUMES, 1971) ou extrapolée à partir de ces données.

Irradiation externe :

Pour un organisme <u>pélagique</u>, le débit de dose dû aux radionucléides présents dans l'eau est :

$$D_{\xi} = 5,76.10^{-7} \times E_{\xi} n_{\xi} C_{w}^{m} (1 - \phi) (mSv.h^{-1})$$

avec C_w^m la concentration massique dans l'eau brute (Bq.kg⁻¹).

Pour un organisme <u>benthique</u>, vivant à l'interface eau-sédiment, les débits de doses dus aux radionucléides présents dans l'eau et le sédiment sont :

$$D_{\chi} = 2,88.10^{-7} E_{\chi} n_{\chi} [C] (1 - \phi) (mSv.h^{-1})$$

avec [C] la concentration massique dans l'eau brute C_w^n (Bq.kg⁻¹) et la concentration massique dans le sédiment C_s (Bq.kg⁻¹ de sédiment humíde), respectivement.

b) Rayonnement 3. Emission d'électrons rapides.

Irradiation interne :

Le débit de dose moyen pour un radionucléide et pour un organisme est calculé à partir de la formule :

$$D_{\beta} = 5,76.10^{-7} \overline{E}_{\beta} n_{\beta} FC C_{w}^{\vee} \Psi (mSv.h^{-1})$$

avec

 \overline{E}_{A} , l'énergie moyenne d'une transition donnée de rayons β en MeV ;

- n_{β} , la fraction de transitions d'énergie moyenne \overline{E}_{β} par désintégration ;
- Ψ , la fraction, pour la géométrie considérée, du débit de dose absorbée au centre d'une ellipsoïde infinie.

 \overline{E}_{A} et n_A sont extraits de ICRP, 1983.

 ψ est obtenue pour les géométries considérées dans IAEA, 1988.

Irradiation externe :

Pour un organisme <u>pélagique</u>, le débit de dose dû aux radionucléides présents dans l'eau est :

$$D_{\beta} = 5,76.10^{-7} \tilde{E}_{\beta} n_{\beta} C_{w}^{m} (1 - \Psi) (mSv.h^{-1})$$

Pour un organisme <u>benthique</u>, vivant à l'interface, les débits de dose dus aux radionucléides présents dans l'eau et le sédiment sont des D_A où :

$$D_{\beta} = 2,88.10^{-7} \overline{E}_{\beta} n_{\beta} [C] (1 - \Psi) (mSv.h^{-1})$$

avec [C] la concentration massique dans l'eau brute C_w^m (Bq.kg⁻¹) et la concentration massique du sédiment C_s (Bq.kg⁻¹ de sédiment humide), respectivement.

c) Rayonnement a. Emission de noyaux d'hélium chargés électriquement.

Seule l'irradiation interne intervient :

Le débit de dose pour un radionucléide et pour un organisme est calculé à partir de la formule :

$$D_{ex} = 1,15.10^{-5} E_{ex} n_{ex} FC C_{w}^{\vee} (mSv.h^{-1})$$

avec E_{α} , l'énergie d'une transition d'une particule α en MeV;

 n_{μ} , la fraction de transitions d'énergie E_{μ} par désintégration ;

E et n sont extraits de ICRP, 1983.

Pour chaque radionucléide, le débit de dose total est obtenu en sommant tous les types de rayonnement.

2.3 Application aux organismes marins considérés

Nous avons établi une base de données pour les radionucléides suivants : ¹⁴C, ⁶⁰Co, ¹³⁷Cs, ²³⁸Pu, ²³⁹Pu, ²⁴¹Pu, ²⁴¹Am.

Les critères de sélection sont la quantité d'activité libérée dans l'océan (Tableau 2), les valeurs de leur Facteur de Concentration (Tableau 11 et le type (α, β, δ) d'énergie par désintégration.

Le Tableau 10 précédent présente les organismes envisagés. Le premier poisson (4 kg) est considéré comme bathypélagique uniquement ; ce cas s'applique bien au grenadier adulte. Le petit mollusque (1 g) est un organisme benthique vivant à l'interface eausédiment. Le grand mollusque (4 kg) représente un calmar bathypélagique. Tous les autres organismes, petit poisson, petit et grand cruştacés, sont considérés comme bathypélagiques puis benthiques (vivant à l'interface eau-sédiment).

Pour chaque organisme marin et pour chaque radionucléide, nous calculons trois débits de dose par unité de concentration volumique et massique dans l'eau et dans le sédiment, en fonction du mode d'irradiation et en fonction du caractère pélagique ou benthique de l'organisme.

a) Irradiation interne

On calcule, en posant $C_w^{\vee} = 1$ Bq.m⁻³, le débit de dose par unité de concentration volumique dans l'eau filtrée D_1 (en mSv.h⁻¹/Bq.m⁻³) par :

$$D_{\alpha} = 1,15.10^{-5} E_{\alpha} n_{\alpha} FC$$

$$D_{\beta} = 5,76.10^{-7} \widetilde{E}_{\beta} n_{\beta} FC \Psi$$

$$D_{\delta} = 5,76.10^{-7} E_{\delta} n_{\delta} FC \Phi$$

$$D_{1} = D_{\alpha} + D_{\beta} + D_{\delta}$$

b) Irradiation externe par l'eau

On calcule, en posant $C_w^m = 1$ Bq.kg⁻¹, le débit de dose par unité de concentration massique dans l'eau brute D_2 (en mSv.h⁻¹/Bq.kg⁻¹) par :

Organisme pélagique

$$D_{\beta} = 5,76.10^{-7} \ \overline{E}_{\beta} \ n_{\beta} \ (1 - \Psi)$$
$$D_{\gamma} = 5,76.10^{-7} \ E_{\gamma} \ n_{\gamma} \ (1 - \Psi)$$
$$D_{2} = D_{\beta} + D_{\gamma}$$

Organisme benthique

c) Irradiation externe par le sédiment

On calcule, en posant $C_s = 1$ Bq.kg⁻¹, le débit de dose par unité de concentration massique dans le sédiment D_3 (en mSv.h⁻¹/Bq.kg⁻¹ humide) pour les organismes benthiques seulement par :

$$D_{\beta} = 2,88.10^{-7} \ \overline{E}_{\beta} \ n_{\beta} (1 - \psi)$$

$$D_{\gamma} = 2,88.10^{-7} \ E_{\gamma} \ n_{\gamma} (1 - \psi)$$

$$D_{3} = D_{\beta} + D_{\gamma}$$

Pour chaque organisme envisagé, le débit de dose résultant de l'immersion des déchets radioactifs est obtenu en sommant les débits de dose sur toutes les voies d'irradiation, à partir des concentrations prédites par le modèle REJMAR dans le compartiment océan choisi et le compartiment sédiment sous-jacent.

L'ensemble des données est présenté dans le Tableau 12.

3. RESULTATS

La Figure 6 présente l'évolution du débit de dose pendant les 100 premières années depuis le début des immersions pour la boîte océan 19 et la boîte sédiment 20 du site de l'AEN. Les doses maximales apparaissent très tôt, au bout d'une quarantaine d'années. Elles sont de 1,8.10⁻² mSv.h⁻¹ pour les mollusques, 6.6.10⁻⁴ mSv.h⁻¹ pour les crustacés et 7,8.10⁻⁵ mSv.h⁻¹ pour les poissons. Les différentes formes géométriques envisagées et le caractère pélagique ou benthique des organismes interviennent très peu. En effet, le Tableau 13 montre que les radionucléides qui contribuent le plus au débit de dose total sont des émetteurs pour lesquels seule compte une irradiation interne, indépendante de la forme géométrique : il s'agit de ²⁴¹Pu, ²⁴¹Am, ²³⁹Pu, ²⁴⁰Pu, ²³⁸Pu. Dans le cas des doses aux poissons, le ¹⁴C émetteur et dans une moindre mesure le ⁶⁰Co et le ¹³⁷Cs émetteurs β / 8 participent au maximum à 6 % de la dose au bout de 30 ans de rejet. Même pour ces émetteurs β / δ , l'irradiation interne intervient pour plus de 99 % du débit total. L'irradiation externe ne joue pas un rôle important en raison des fortes valeurs des Facteurs de Concentration pour les radionucléides considérés et des concentrations relativement faibles dans le sédiment calculées par REJMAR.

Le Tableau 14 résume les doses maximales obtenues dans les boîtes du site, et aux alentours, dans le bassin Nord-Est de l'Atlantique. Les doses maximales interviennent toujours chez les mollusques qui sont les organismes les plus sensibles à l'irradiation interne en raison de leur Facteur de Concentration élevé. Le rôle dominant est joué par ²⁴¹Am, radionucléide rejeté par les fûts et issu par filiation de ²⁴¹Pu.

4. DISCUSSION

Les modèles dosimétriques décrits précédemment ont été combinés avec des informations concernant la répartition des radionucléides naturels dans l'océan profond (WOODHEAD et PENTREATH, 1983). On a pu ainsi obtenir un ordre de grandeur de l'exposition aux rayonnements naturels de sept des organismes que nous avons considérés (NEA, 1985). Les résultats sont présentés dans le Tableau 14, en parallèle avec les notres résultant de l'immersion des déchets. Dans le cas du site de l'AEN (boîtes 19 et 20) et de ses alentours proches (boîtes 17 et 18, boîte 16), les doses que nous avons calculées, tendent vers la limite inférieure due au rayonnement naturel pour les poissons et les grands crustacés. Chez les petits crustacés, elle est dépassée. Quant aux mollusques, nous estimons qu'ils reçoivent un débit de dose maximale 5,3 fois plus élevé que la limite supérieure due au rayonnement naturel. Dans la dernière réévaluation du site de l'AEN (NEA, 1985), les résultats (Tableau 9) obtenus par les scientifiques anglais pour les sept organismes précédents montraient que les animaux benthiques étaient légèrement plus exposés que les pélagiques et que les petits crustacés recevaient une dose plus élevée que les grands crustacés. La dose maximale apparaissait aussi chez le mollusque benthique ; elle était 2,3 fois plus élevée que la limite supérieure due au rayonnement naturel.

Ces différences, au demeurant plutôt faibles, avec nos résultats s'expliquent par l'approche différente de la modélisation des interactions eau-sédiment dans les deux modèles : les concentrations dans les boîtes sédiments calculées par REJMAR sont inférieures à celles du modèle anglais et inversement pour les concentrations dans les boîtes océan. L'irradiation externe due au sédiment joue donc un rôle dans les estimations anglaises alors que le poids de l'irradiation interne est accentué dans le modèle REJMAR.

L'AIEA (IAEA, 1988) considère qu'entre 1 mSv.h⁻¹ et la limite supérieure due au rayonnement naturel, il peut résulter des effets somatiques mais que les individus touchés sont éliminés par la sélection naturelle et affectent donc peu la population même localement. Il faut préciser de plus que la plupart des espèces abyssales ont une large répartition géographique. Nos ordres de grandeur de l'exposition aux rayonnements consécutive de l'immersion des déchets radioactifs montrent que les effets sur les organismes marins devraient être faibles et en tout cas très proches de ceux dus au rayonnement naturel. Les mollusques apparaissent comme le groupe zoologique le plus sensible parmi ceux étudiés. Il serait utile d'élargir de telles évaluations à d'autres groupes, comme les échinodermes ou encore comme les annélides. En effet, ces deux groupes jouent un rôle important dans la structure des peuplements benthiques en milieu sédimentaire abyssal (SIBUET, 1987). Ce sont pour la plupart des détritivores qui recyclent la matière organique à l'interface eausédiment. Malheureusement, il n'existe pas de données concernant le Facteur de Concentration pour ces groupes.

Le facteur limitant pour obtenir des estimations précises des débits de dose est le manque d'information concernant la distribution des radionucléides dans le corps des organismes (tissus ou organes cibles).

IV - Conclusions

Ce travail nous permet de tirer les conclusions suivantes.

L'évaluation radiologique avec le modèle REJMAR et le terme source anglais UK/NRPB confirme les résultats obtenus dans les précédentes évaluations (NEA, 1985 ; CHARTIER et al., 1989) : le niveau de sûreté du site d'immersion pour l'être humain semble élevé. La dose individuelle estimée ne dépasse pas 4.10⁻⁷ Sv.a⁻¹, valeur qui correspond à 0,04 % de la limite de 1 mSv.a⁻¹ recommandée par la CIPR. Seule la consommation d'organismes marins capturés près du site, à 4 000 mètres de profondeur, conduirait à une dose représentant 2,2 % de la limite : mais cette voie d'atteinte hypothétique n'a que très peu de probabilité de se concrétiser dans l'avenir.

Concernant l'impact des déchets radioactifs sur les organismes marins, nous avons pu montrer que certains groupes zoologiques (les mollusques) pouvaient recevoir au niveau du site une dose dépassant les débits dus au rayonnement naturel. Ce dépassement devrait toutefois rester limité et ne pas générer d'effets nocifs significatifs au niveau des populations.

Nous avons de plus mis en évidence et expliqué un certain nombre de différences entre les résultats de plusieurs modèles compartimentaux utilisés dans les évaluations radiologiques. A cet égard, les paramétrisation des interactions eau-sédiment semblent particulièrement sensibles. Il serait utile de compléter ce travail par des études de sensibilité plus fines et des analyses d'incertitude sur le modèle REJMAR pour mieux appréhender l'ordre de grandeur des barres d'erreur sur les résultats.

BIBLIOGRAPHIE

AGENCE POUR L'ENERGIE NUCLEAIRE, 1980. Réévaluation de la validité du site d'immersion de déchets radioactifs dans la région Nord-Est de l'Atlantique. NEA/OCDE, 102 pp.

BELOT Y., 1986. Transfer of Long-Lived Radionuclides Through Marine Food Chains : A Review of Transfer Data. J. Environ. Radioactivity 4, 83-90.

BROWNELL G.L., ELLETT W.H., REDDY A.R., 1968. Absorbed fractions for photon dosimetry. J. Nucl. Med. 9, Suppl. 1, 27-39.

CHARTIER M., DURRIEU DE MADRON X., POULIN M., 1987. A Model for Assessing the Radiological Impacts of Deep Sea Disposal of Radioactive Wastes : Development of the Model and Preliminary Results. Rapport DPS 87/04 SEAPS, CEA/IPSN, 34 pp.

CHARTIER M., DURRIEU DE MADRON X., POULIN M., 1989. A Model for Assessing the Radiological Impacts of Deep Sea Disposal of Radioactive Waste. <u>Part 1</u>: Description of the Model. <u>in</u>: Interim oceanographic description of the N.E. Atlantic Site for the disposal of low-level radioactive wastes, Vol. 3, NEA/OCDE, PARIS (à paraître).

DOI T., KIDACHI T., HONJO K., MATSUSHITA Y., NEMOTO T., SHIMIZU M., SUDO H., TSURUGA H., 1980. A Preliminary Assessment of Biological Transport of Radionuclides Dumped at Deep Sea Bottom. <u>in</u> : Marine Radioecology, Proc. 3rd NEA Seminar. NEA/OCDE 95-109.

ELLET W.H., HUMES R.M., 1971. Absorbed fractions for small volumes containing photon-emitting radioactivy. J. Nucl. Med. 12, Suppl. 5, 25-32.

GESAMP, 1983. IMO/FAO/UNESCO/WMO/WHO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Pollution. An Oceanographic Model for the Dispersion of Wastes Disposed of in the Deep Sea. Reports and Studies n° 19. International Atomic Energy Agency, VIENNA.

INTERNATIONAL ATOMIC ENERGY AGENCY, 1985. Sediment K_{ds} and Concentration Factors for Radionuclides in the Marine Environment. Technical Reports Series n^o 247. IAEA, VIENNA, 73 pp.

INTERNATIONAL ATOMIC ENERGY AGENCY, 1988. Assessing the Impact of Deep Sea Disposal of Low-Level Radioactive Waste on Living Marine Resources. Technical Reports Series n° 288. IAEA, VIENNA, 177 pp.

INTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION, 1977. Recommendations of the International Commission on Radiological Protection, ICRP Publication 26, Pergamon Press, OXFORD and NEW-YORK.

MOBBS S.F., HILL M.D., KOPLIK C., DEMUTH C., 1986. A Preliminary Comparison of Models for the Dispersion of Radionuclides Released into the Deep Ocean. NRPB-R194. National Radiological Protection Board. CHILTON, DIDCOT, OXON OX11 ORQ, 59 pp. NUCLEAR ENERGY AGENCY, 1985. Review of the continued suitability of the dumping site for radioactive waste in the North-East Atlantic. NEA/OCDE, 447 pp.

NUCLEAR ENERGY AGENCY, 1987. Uncertainty Analysis for Performance Assessments of Radioactive Waste Disposal Systems. NEA/OCDE, PARIS, 258 pp.

PENTREATH R.J., 1983. Biological Studies, Chap. 12. <u>in</u>: Interim oceanographic description of the N.E. Atlantic site for the disposal of low-level radioactive waste. NEA/OCDE, PARIS.

PENTREATH R.J., WOODHEAD D.S., 1988. Towards the development of criteria for the protection of marine fauna in relation to the disposal of radioactive wastes into the sea. <u>in</u>: Radiation Protection in Nuclear Energy. Proc. ICRP, IAEA. IAEA, VIENNA, 213-243.

SCOTT J.I., ESMINGER D.A., KOPLIK C., 1985. Preliminary NEA Dump Site Safety Analysis. Sandia Report SAND85-7157, 89 pp.

SIBUET M., 1987. Structure des peuplements benthiques en relation avec les conditions trophiques en milieu abyssal dans l'Océan Atlantique. Cas particulier des Echinodermes. Thèse de Doct. d'Etat ès Sc. Nat. Université P.M. Curie, 2 volumes, PARIS.

STEELE J.H., 1986. Natural Variability and Waste Disposal Options. in : The Role of the Oceans as a Waste Disposal Option, G. Kullenberg (ed.). D. Reidel Publishing Company, 27-38.

THOMPSON P.M., 1988. Environmental Monotoring for Radionuclides in Marine Ecosystems ; Are Species other than Man Protected Adequately ? J. Environ. Radioactivity 7, 275-283.

UNITED NATIONS SCIENTIFIC COMMITTEE ON THE EFFECTS OF ATOMIC RADIATION (UNSCEAR), 1984. Exposures from natural sources of radiation, VIENNA.

WHEELER A., 1978. Key to the Fishes of Northern Europe. F. Warne & Co., LONDON.

WOODHEAD D.S., 1979. Methods of dosimetry for aquatic organisms. <u>in</u>: Methodology for Assessing Impacts of Radioactivity on Aquatic Ecosystems. Technical Reports n° 190, IAEA, VIENNA, 43-96.

WOODHEAD D.S., PENTREATH R.J., 1983. A provisional assessment of radiation regimes in deep ocean environments. <u>in</u>: Wastes in the Ocean, Vol. 3 (PARK P.K., DUEDALL I.W., KETCHUM B.H. Eds), Wiley-Interscience, NEW-YORK, 133-152.

Description du terme source anglais.

RAD NUCL	IO- EIDE	DEMI-VIE (AN)	NOMBRE D'ANNEES DE REJET	QUANTITE CUMULEE (BQ)
н	3	1 1,235.10	199_	16 1,3.10
с	14	3 5,73,10	10	2,3.10
s	35	-1	38	9 5,9.10 9
MN	54	8,558.10	65	1, 10
٢E	55	2,7	67	1.7.10
сo	58	1,9384.10	35	2,4.10
сo	60	5,271	99	2,3.10
SR	90	2.912.10	499	6.10
I	125	-1 1,6495.10	44	2,4.10
cs	134	2.062	82	7,3.10
C5	137	3.10	499	9,2.10
PU	238	1 8,774.10	999	13
υ	234	5 2,445.10	10 5	9 1,9.10
TH	230	4 7,7.10	5 10	8 2,6.10
RA	226	3 1,6.10	5 10	в 3,5.10
РB	210	1 2,23.10	5 10_	8 3,5.10
FO	210	-1 3,7886.10	5 10	8 3,5.10
P,U	239	4 2,4065.10	5 10	14 2,4.10
บ	235	8 7,038.10	5 10	12 4,9.10
PA	231	4 3,276,10	5 10	· 10 1.7.10
٨C	227	1 2, 1773. 10	5 10	10
		1		16
PU	241	1,44.10	299	1, 1, 10
۸M	241	4,322.10 G	1500 5	2,8.10 11
NP	237	2.14.10 5	10 5	5,7.10
U	233	1.585.10	10 5	1,5.10
TH	229	7,34.10	10	1,3,10
CM	244	1.811.10	299	8,7.10
PU	240	6,537.10	10	1,4.10
U	236	2,3415.10	10	1,1.10
тн	232	10 1,405,10	5 2,10	1,3.10

Variation de la dose individuelle en fonction du temps pour toutes les voies d'atteinte, l'ensemble des radionucléides et les principaux radionucléides (échelle log-log).

	Symbole	Mode d'exposition	Voles de transfert	Valeurs	Autro	es paramèt	res
Votes de transfert			Taux d'ingestion		-		
Consommation de poissons de surface	POIS-S		P015 (S,M)*	600 g j-1			
Consommation de poissons de moyenne	PO1S-M		CRUST	100 g j-1			
Concernation de cructurás	CDIIST		MOLL	100 g j-1			
	KOLL	1	ALG	100 g j-1			
		Ingestion	DESAL	2000 g j−1			
	511		SEL	3 g j-1			
	UESEL		PLANC	3 g j-1			
t'atmosphère	sco	Inhalation	P015-P	60 g j-1			
Aérasols marins	EVAP		<u>laux d'inhalation</u>		Conc	<u>entrations</u>	Ł
Navigation	NAVI		SED	23 m3 j-1	10 µ	ıgm-3+	
Nalation	NATA	Irradiation externe	f VAP	23 m3 j-1	10 gi	6 - ₆₁	
Sédiments de playe	PLAGE		Facteurs d'occupation		Fact	<u>eurs de mo</u>	<u>odification</u>
						Y	ħ
<u>Votes de transfert hypothétique</u>			NAVI	5000 h a-1		0.2	0
Consemmation de poissons de grande profondeur	P015_P	Incertion	ATA	300 h a-1		١	0.5
Conservation de plancton	PLANC	119625100	PLAGE	2000 h a-1		0.5	0.5

Voies d'exposition et données relatives (NEA, 1985)

* Ramener à 300 g j-1 en effectuant la sommation des doses sur les voies de transfert effectives, de telle sorte que l'apport total en aliments marins soit de 600 g j-1 (300 g de poisson, 100 g de crustacés, 100 g de mollusques et 100 g d'algues).

 Constitué de 0.25 µgm⁻³ de particules fines de sédiments côtier, de 3,3 µgm⁻³ de particules de sels marins déshydratés et de 6.6 µgm⁻³ d'eau associée aux particules.

<u>Tableau 4</u>

٠

.

Résultats de l'évaluation radiologique. Voies d'atteinte principale, valeur et temps d'apparition de la dose individuelle maximale annuelle pour les radionucléides dominants. Dose collective et contribution des principaux radionucléides au bout de 100.000 ans.

RADIO- NUCLEIDE	VOIE D'ATTEINTE CRITIQUE	DOSE IND. SOMMEE SUR TOUTES LES VOIES (EN SV.A ⁻¹)	TEMPS ECOULE DEPUIS 1949 (EN ANS)	RADIONUCLEIDE	DOSE COLLECTIVE (HOMME.SV)	CONTRIBUTION RELATIVE
PU 241	MOLLUSQUES> 48 %	-7 1,75.10	200	C 14	4 2,7.10	55 %
	PLANCTON> 14 % PLAGE> 11 % SEDIMENT> 2.5 %			PU 239	4 1,5.10	31 %
	CRUSTACES> 1.2 %			PU 240	3 5,2.10	10,6 %
AM 241	MOLLUSQUES> 51 % ALGUES> 20 %	-7 1,20.10	200	PU 241	2 7.8.10	1,6 %
	PLAGE> 11 %			AM 241	2 5,7.10	1,1 %
PU 239	-8 239 MOLLUSQUES> 34 % 4,60.10 400 PLANCTON> 34 %	400	U 235	2 2,8,10	0,6 %	
	CRUSTACES> 3,4 % POISSON-S> 2,7 % POISSON-M> 2,7 %			POUR TOUS LES RADIO-	4 4,9.10	
PU 240	MOLLUSQUES> 33.4 % PLANCTON> 33.4 % ALGUES> 22.3 % CRUSTACES> 3.3 % POISSON-S> 2.7 %	-8 2,70.10	400	NUCLEIDES		·····
U 235	PLAGE> 62 % SEDIMENT> 13 % MOLLUSQUES> 5.6 % ALGUES> 4.6 % CRUSTACES> 4.4 % POISSON-S> 3 % POISSON-M> 3 %	-10 8,40.10	100000			

<u>Tableau</u> 5

Résultats des modèles REJMAR avec le terme source anglais (terme source NRPB), REJMAR avec le terme source américain (terme source SDP), du modèle anglais (NRPB) et du modèle américain (SDP). Estimation du débit de dose collective annuel sur la population mondiale à partir de la radioactivité naturelle dans le milieu marin.

Figure 3 Structure verticale autour du site de l'AEN

•

	BOITE 19	BOITE 17	BOITE 14
DOSES INDIV. Maximales (sv.a ⁻¹)	-5 2,2.10	-5 1,6.10	-8 1,2.10
TEMPS ECOULE Depuis 1949	40 ANS	50 ANS	100 ANS
PRINCIPAUX RADIONUCLEIDES ET LEURS CONTRIBUTIONS	AM 241 28 % PU 241 24 % PU 239 18.5 % PU 240 11 % C 14 5.5 % PU 238 4.5 % CS 137 4 % CO 60 2.5 %	PU 241 28 % AM 241 27 % PU 239 19 % C 14 5 % PU 238 4 % CS 137 3,5 % CO 60 2 %	PU 241 34 % AM 241 25 % PU 239 19 % PU 240 11.5 % C 14 5.5 % PU 238 3 % CS 137 1.5 %

<u>Tableau_6</u>

Dose individuelle maximale par consommation d'aliments marins capturés dans les compartiments 19 (boîte site), 17 (alentours du site) et 14, qui couvrent la Couche Limite Benthique du bassin N.E. de l'Atlantique.

.

.

.

.

Figure 4

Chaîne alimentaire théorique envisagée par les scientifiques anglais (NEA, 1985). Les radionucléides piégés dans le sédiment sont transférés à des annélides détritivores qui sont mangés par des crustacés pélagiques, eux-mêmes mangés par des calmars qui à leur tour sont consommés par des poissons (grenadiers, thons, espadons). Les grenadiers peuvent être mangés par des requins ou par des espadons. Jeu de probabilités qu'un prédateur consomme une proie contaminée.

Tableau 7

.

•

Facteurs de transfert calculés à partir du modèle de PENTREATH et de la chaine alimentaire de la figure 4.

ORGAN1 SME	CO 60	CS 137	PU 239	PU 241	AM 241	_
ANNELIDE	0,05	0,26	0,004	0,003	0.004	-
AMPHIPODE	0,05	0,51	0.73	0,61	0.72	
CALMAR	0.52	1,6	1.1	1,1	1.07	
GRENADIER	1,1	4.2	0.03	0.025	0,263	
REQUIN	2,2	4,2	0,13	0,12	0,263	
THON	1.7	2,2	0,02	0,02	0,2	
ESPADON	0,83	1,1	0,04	0,04	0,394	

Figure 5

Chaîne alimentaire dérivée du modèle de BELOT (1986) et jeu de probabilités qu'un prédateur consomme une proie contaminée.

Tableau 8

<u>Facteurs de Transfert d'après BELOT (1986)</u> <u>et estimations des doses individuelles</u>

1. VALEURS IN SITU DES FACTEURS DE TRANSFERT DES SEDIMENTS AUX ANNELIDES

ESPECES	239 _{Pu}	241 _{Pu}	SEDIMENT
Nereis diversicolor	0,03	0,09	Manche
Arenicola marina	0,05	0,08	Manche

2. FACTEURS DE TRANSFERT D'UNE PROIE A UN PREDATEUR EN SUPPOSANT UN TAUX DE NOURRITURE DE 5 % DU POIDS DU CORPS PAR JOUR

ESPECES	NOURRITURE	TF
Invertébrés		
Carcinus maenas	Pu-vers	0,20
Octopus vulgaris	Am-crabe	0,20
Mytilus edulis	Am-algues	0,24
Poissons		
Pleuronectes platessa	Pu-vers	0,10
Raja clavata	Pu-crabe	0,25

		CD 60	CS 137	PU 239	PU 241	AM 241
Γ	TEMPS	40 ANS	60 ANS	400 ANS	50 ANS	200 ANS
	CALMAR	-13 2,3.10	-9 1,3.10	-10 9.10	-11 7,6.10	-9 1,8.10
I	REQUIN	-17 1.7.10	-13 6,7.10	-17 9,4.10	-18 6.9.10	-15 3,8.10
	THON	-16 3,8.10	-12 2,7.10	-14 3,5.10	-15 2,8.10	-13 7,1.10
	ESPADON	-16 2.10	-12 1,5.10	-14 1,8.10	-15 1,4.10	-13 3,6.10
	TEMPS			400 ANS		200 ANS
11	CEPHALOPODE			-10 6,4.10		-9 2,3.10
	POISSON			-10 8.10		-9 3.10
	CALMAR	-9 2.10	-9 6.10	-8 6.10	-8 2.10	-7 9.10
	REQUIN	-13 1.10	-12 3.10	-15 6.10	-15 2.10	-12 2.10
	THON	-12 3.10	-11 1.10	-12 2.10	-13 9.10	- 10 4 . 10
	ESPADDN	- 12 1 . 10	-12 8.10	-12 1.10	-13 4.10	-10 2.10

<u>Tableau 9</u>

.

Doses individuelles maximales (Sv.a⁻¹) à partir des différentes chaînes alimentaires :

- I d'après le modèle de PENTREATH;
- d'après le modèle de BELOT ; résultats anglais (NEA, 1985). II
- III

ORGAN1 SME	MASSE	LONGUEURS DES AXES PRINCIPAUX DE L'ELLIPSOIDE (CM)
GRAND POISSON	4 KG	71 * 14 * 7.7
PETIT POISSON	t KG	45 * 8,7 * 4,9
GRAND MOLLUSQUE	4 KG	71 * 14 * 7,7
PETIT MOLLUSQUE	1 G	2,5 * 1,2 * 0,62
GRAND CRUSTACE	2 G	3,1 * 1,6 * 0,78
PETIT CRUSTACE	0,016 G	0,62 * 0,31 * 0,61

•

.

.

<u>Tableau 1</u>0

Choix d'organismes abyssaux. Géométrie des ellipsoïdes pour la modélisation radiologique de ces organismes.

•

<u>Tableau 11</u>

.

.

Facteurs de concentration des éléments considérés dans la base de données.

•

	с	CO	cs	PU	AM	СМ	
POISSON	20 000	1000	100	40	50	50	•
MOLLUSQUE	20 000	5000	30	3000	20 000	30 000	•
CRUSTACE	20 000	500	30	300	500	500	•

Tableau 12

Ensemble des données pour le calcul des débits de dose aux organismes marins considérés.

FACTEURS DE DOSE EN MILLISV/H PAR UNITE D'EAU FILTREE(FAC1,INTERNE). PAR UNITE DE CONCENTRATION EN EAU (FAC2,EXTERNE). PAR UNITE DE CONCEN-TRATION EN SEDIMENT (FAC3,EXTERNE).

NUCLEIDE	FAC1 : MILLISV/H PAR PDISSON 1 1	BO/METRE CUBE-** MOLLUSO 1	••••••
	PEL. / BENIH.	BENIH.	
002 C 14	5.76D-07 5.76D-07	5.76D-07	
072 CS+137	1.800-08 1.800-08	4.400-09	
144 PU 238	2.570-06 2.570-06	1.93D-04	
145 PU 239	2.410-06 2.410-06	1.800-04	
147 PU 241	1.770-10 1.770-10	1.330-08	
150 AM 241	3.200-06 3.200-06	1.280-03	
	3.330-06 3.330-08	*******************	
NUCLEIDE	GRAND CRUSTACE	PETIT CRUSTACE	POISSON 2 MOLLUSO 2
	PEL. / BENTH.	PEL. / BENTH.	PEL. PEL.
002 C 14	5.760-07 5.760-07	5 760-07 5 760-07	5.760-07 5.760-07
017 CD 60	3.430-07 3.430-07	2.920-07 2.920-07	2.33D-07 1.16D-06
072 C5+137	4.430-09 4.430-09 3	3.760-09 3.760-09	1.930-08 5.78D-09
145 PU 239	1.800-05 1.800-05 1	1.800-05 1.800-05	2.410-06 1.800-04
146 PU 240	1.810-05 1.810-05	1.81D-05 1.81D-05	2.410-06 1.810-04
147 PU 241 150 AN 241	3.200-05 3.200-05 3	1.330-09 1.330-09 3.200-05 3.200-05	3.200-06 1.28D-03
156 CM 244	3.390-05 3.390-05 3	3.390-05 3.390-05	3.390-06 2.030-03
F	AC2 : NILLISV/H PAR	80/KG	
NUCLEIDE	PDISSON 1 N	NULLUSQ 1	
	PEL. / BENTH.	BENTH.	
002 C 14	0.00 0.00	0.00	
017 CO 60	1.320-06 6.600-07 1	7.150-07	
072 CS+137	2.88D-07 1.44D-07 1	1.610-07	
145 PU 239	0.00 0.00	0.00	
146 PU 240	0.00 0.00	0.00	
147 PU 241 150 AM 241	0.00 0.00	0.D0	
156 CM 244	0.DO 0.DO	0.D0	
156 CM 244	O.DO O.DO GRAND CRUSTACE	0.DO	PDISSON 2 MOLLUSO 2
156 CM 244 NUCLEIDE	0.DO 0.DO GRAND CRUSTACE	0.DO PETIT CRUSTACE	PDISSON 2 MOLLUSQ 2
156 CM 244 NUCLEIDE	O.DO O.DO GRAND CRUSTACE PEL. / BENTH.	0.DO PETIT CRUSTACE PEL. / BENTH.	PDISSON 2 MOLLUSQ 2 PEL, PEL.
156 CM 244 MUCLEIDE 002 C 14	0.D0 0.D0 GRAND CRUSTACE PEL. / BENTH. 0.D0 0.D0 1.420-07	0.D0 PETIT CRUSTACE PEL. / BENTH. 0.D0 0.D0	PDISSON 2 MOLLUSQ 2 PEL. PEL. 0.DO 0.DO
156 CM 244 NUCLEIDE 002 C 14 017 C0 60 072 CS+137	0.D0 0.D0 GRAND CRUSTACE PEL. / BENTH. 0.D0 0.D0 1.43D-06 7.140-07 1 3.21D-07 1.610-07 3	0.D0 PETIT CRUSTACE PEL. / BENTH. 0.D0 0.D0 .44D-06 7.19D-07 .42D-07 1.71D-07	PDISSON 2 MOLLUSO 2 PEL. PEL. 0.DO 0.DO 1.260-06 1.260-06 2.750-07 2.750-07
156 CM 244 NUCLEIDE 002 C 14 017 C0 60 072 C\$+137 144 PU 238	0.D0 0.D0 GRAND CRUSTACE PEL. / BENTH. 0.D0 0.D0 1.430-06 7.140-07 1 3.210-07 1.610-07 3 0.D0 0.D0	0.D0 PETIT CRUSTACE PEL. / BENTH. 0.D0 0.D0 .44D-06 7.19D-07 0.42D-07 1.71D-07 0.00 0.D0	PDISSON 2 MOLLUSO 2 PEL. PEL. 0.D0 0.D0 1.26D-06 1.26D-06 2.75D-07 2.75D-07 0.D0 0.D0
156 CM 244 MUCLEIDE 002 C 14 017 CO 60 072 CS+137 144 PU 238 145 PU 239 146 PU 230	0.D0 0.D0 GRAND CRUSTACE PEL. / BENTH. 0.D0 0.D0 1.43D-06 7.14D-07 1 3.21D-07 1.61D-07 3 0.D0 0.D0 0.D0 0.D0	0.D0 PETIT CRUSTACE PEL. / BENTH. 0.D0 0.D0 .44D-05 7.19D-07 .42D-07 1.71D-07 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0	PDISSON 2 MOLLUSO 2 PEL. PEL. 0.00 0.00 1.260-06 1.260-06 2.750-07 2.750-07 0.00 0.00 0.00 0.00
156 CM 244 MUCLEIDE 	0.D0 0.D0 GRAND CRUSTACE PEL. / BENTH. 0.D0 0.D0 1.43D-06 7.140-07 1 3.21D-07 1.61D-07 3 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0	0.D0 PETIT CRUSTACE PEL. / BENTH. 0.D0 0.D0 .44D-06 7.19D-07 0.00 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0	PDISSON 2 MOLLUSQ 2 PEL. PEL. 0.D0 0.D0 1.26D-06 1.26D-06 2.75D-07 2.75D-07 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0
156 CM 244 MUCLEIDE 	0.D0 0.D0 GRAND CRUSTACE PEL. / 8ENTH. 0.D0 0.D0 1.43D-06 7.140-07 1 3.21D-07 1.61D-07 3 0.00 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 1.77D-08 8.85D-09 1	0.D0 PETIT CRUSTACE PEL. / BENTH. 0.D0 0.D0 .44D-06 7.19D-07 0.42D-07 1.71D-07 0.00 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.00 0.85D-08 9.27D-09	PDISSON 2 MOLLUSQ 2 PEL. PEL. 1.26D-06 1.26D-06 2.75D-07 2.75D-07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.03D-08 1.03D-08
156 CM 244 MUCLEIDE 	0.D0 0.D0 GRAND CRUSTACE PEL. / BENTH. 0.D0 0.D0 1.43D-06 7.140-07 1 3.21D-07 1.610-07 3 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 1.770-08 8.850-09 1 0.E0 0.D0	0.D0 PETIT CRUSTACE PEL. / BENTH. 0.D0 0.D0 .44D-05 7.19D-07 1.42D-07 1.71D-07 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.00 .85D-08 9.27D-09 0.D0 0.D0	PDISSON 2 MOLLUSO 2 PEL. PEL. 0.D0 0.D0 1.260-06 1.260-06 2.750-07 2.750-07 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 1.03D-08 1.03D-08 0.D0 0.D0
156 CM 244 NUCLEIDE 	0.D0 0.D0 GRAND CRUSTACE PEL. / BENTH. 0.D0 0.D0 1.430-06 7.140-07 1 3.21D-07 1.610-07 3 0.00 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 1.770-08 8.850-09 1 0.C0 0.D0	0.D0 PETIT CRUSTACE PEL. / BENTH. 0.D0 0.D0 .44D-05 7.19D-07 1.42D-07 1.71D-07 0.00 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.00 0.5D-08 9.27D-09 0.00 0.D0	PDISSON 2 MOLLUSO 2 PEL. PEL. 0.D0 0.D0 1.26D-06 1.26D-06 2.15D-07 2.15D-07 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0
156 CM 244 NUCLEIDE 	0.D0 0.D0 GRAND CRUSTACE PEL. / BENTH. 0.D0 0.D0 1.430-06 7.140-07 1 3.21D-07 1.610-07 3 0.00 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 1.770-08 8.860-09 1 0.C0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.0	0.D0 PETIT CRUSTACE PEL. / BENTH. 0.D0 0.D0 .44D-05 7.19D-07 0.42D-07 1.71D-07 0.00 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.B5D-08 9.27D-09 0.D0 0.D0 B0/KG	PDISSON 2 MOLLUSO 2 PEL. PEL. 0.00 0.00 1.260-06 1.260-06 2.750-07 2.750-07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
156 CM 244 NUCLEIDE 	0.D0 0.D0 GRAND CRUSTACE PEL. / BENTH. 0.D0 0.D0 1.43D-06 7.140-07 1 3.21D-07 1.610-07 3 0.00 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 1.770-08 8.860-09 1 0.00 0.D0 MC3 : MILLISV/H PAR 1 PDISSDN 1 M	0.D0 PETIT CRUSTACE PEL. / BENTH. 0.D0 0.D0 .44D-06 7.19D-07 0.42D-07 1.71D-07 0.00 0.D	PDISSON 2 MOLLUSO 2 PEL. PEL. 0.DO 0.DO 1.26D-06 1.26D-06 2.75D-07 2.75D-07 0.DO 0.DO 0.DO 0.DO 0.DO 0.DO 0.DO 0.DO 0.DO 0.DO 0.DO 0.DO 0.DO 0.DO 0.DO 0.DO 0.DO 0.DO
156 CM 244 NUCLEIDE 	0.D0 0.D0 GRAND CRUSTACE PEL. / BENTH. 0.D0 0.D0 1.43D-06 7.140-07 1 3.21D-07 1.61D-07 3 0.00 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 1.770-08 8.86D-09 1 0.D0 0.D0 MC3 : MILLISV/H PAR PDISSDN 1 M PEL. / BENTH. 1	0.D0 PETIT CRUSTACE PEL. / BENTH. 0.D0 0.D0 4.4D-05 7.19D-07 0.42D-07 1.71D-07 0.00 0.D0	PDISSON 2 MOLLUSO 2 PEL. PEL. 0.D0 0.D0 1.26D-06 1.26D-06 2.75D-07 2.75D-07 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0
156 CM 244 NUCLEIDE 	0.D0 0.D0 GRAND CRUSTACE PEL. / BENTH. 0.D0 0.D0 1.430-06 7.140-07 1 3.210-07 1.610-07 3 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 1.770-08 8.86D-09 1 0.D0 0.D0 1.770-08 8.86D-09 1 0.D0 0.D0 MC3 : MILLISV/H PAR PDISSDN 1 M PEL. / BENTH. 1 0.D0 0.D0 0.D0 6.000-07 7	0.D0 PETIT CRUSTACE PEL. / BENTH. 0.D0 0.D0 .44D-05 7.19D-07 .42D-07 1.71D-07 0.D0	PDISSON 2 MOLLUSO 2 PEL. PEL. 0.DO 0.DO 1.26D-06 1.26D-06 2.75D-07 2.75D-07 0.DO 0.DO 0.DO 0.DO 0.DO 0.DO 0.DO 0.DO 1.03D-08 1.03D-08 0.DO 0.DO
156 CM 244 MUCLEIDE 	0.D0 0.D0 GRAND CRUSTACE PEL. / BENTH. 0.D0 0.D0 1.43D-06 7.14D-07 1 3.21D-07 1.61D-07 3 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 1.770-08 8.85D-09 1 0.D0	0.D0 PETIT CRUSTACE PEL. / BENTH. 0.D0 0.D0 .44D-05 7.19D-07 .42D-07 1.71D-07 .42D-07 0.D0	PDISSON 2 MOLLUSO 2 PEL. PEL. 0.00 0.00 1.260-06 1.260-06 2.750-07 2.750-07 0.00 0.00 0.00 0.00 0.00 0.00 1.030-08 1.030-08 0.00 0.00
156 CM 244 NUCLEIDE 	0.D0 0.D0 GRAND CRUSTACE PEL. / BENTH. 0.D0 0.D0 1.43D-06 7.140-07 1 3.21D-07 1.610-07 3 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 1.770-08 8.860-09 1 0.D0 0.D0 1.770-08 8.860-09 1 0.D0 0.D0 1.770-08 8.860-09 1 0.D0	0.D0 PETIT CRUSTACE PEL. / BENTH. 0.D0 0.D0 .44D-05 7.19D-07 1.42D-07 1.71D-07 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 80/KG	PDISSON 2 MOLLUSO 2 PEL. PEL. 0.00 0.00 1.260-06 1.260-06 2.750-07 2.750-07 0.00 0.00 0.00 0.00 0.00 0.00 1.030-08 1.030-08 0.00 0.00
156 CM 244 NUCLEIDE 	0.D0 0.D0 GRAND CRUSTACE PEL. / BENTH. 0.D0 0.D0 1.430-06 7.140-07 1 3.21D-07 1.610-07 3 0.00 0.D0 0.D0 0.D0 0.D0 0.D0 1.770-08 8.850-09 1 0.C0 0.D0 MC3 : MILLISV/H PAR 1 PDISSDN 1 MI PEL. / BENTH. 1 0.D0 0.D0 0.D0 0.D0	0.D0 PETIT CRUSTACE PEL. / BENTH. 0.D0 0.D0 .44D-05 7.19D-07 0.00 0.D0	PDISSON 2 MOLLUSO 2 PEL. PEL. 0.00 0.00 1.260-06 1.260-06 2.750-07 2.750-07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
156 CM 244 NUCLEIDE 	0.D0 0.D0 GRAND CRUSTACE PEL. / BENTH. 0.D0 0.D0 1.43D-06 7.140-07 1 3.21D-07 1.610-07 3 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 1.770-08 8.850-09 1 0.D0 0.D0 MC3 : MILLISV/H PAR PDISSDN 1 M PEL. / BENTH. 1 0.D0 0.D0 0.D0 0.D0 0.D0 0.00 0.D0 0.D0 0.D0 0.D0	0.D0 PETIT CRUSTACE PEL. / BENTH. 0.D0 0.D0 4.4D-05 7.19D-07 0.42D-07 1.71D-07 0.00 0.D	PDISSON 2 MOLLUSO 2 PEL. PEL. 0.00 0.00 1.260-06 1.260-06 2.750-07 2.750-07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
156 CM 244 NUCLEIDE 	0.D0 0.D0 GRAND CRUSTACE PEL. / BENTH. 0.D0 0.D0 1.43D-06 7.140-07 1 3.21D-07 1.61D-07 3 0.00 0.D0 0.D0 0.D0 0.D0 0.D0 1.770-08 8.850-09 1 0.D0 0.D0 1.770-08 8.850-09 1 0.D0 0.	0.D0 PETIT CRUSTACE PEL. / BENTH. 0.D0 0.D0 4.4D-05 7.19D-07 0.42D-07 1.71D-07 0.00 0.D	PDISSON 2 MOLLUSO 2 PEL. PEL. 0.00 0.00 1.260-06 1.260-06 2.750-07 2.750-07 0.00 0.00 0.00 0.00 0.00 0.00 1.030-09 1.030-08 0.00 0.00
156 CM 244 NUCLEIDE 	0.D0 0.D0 GRAND CRUSTACE PEL. / BENTH. 0.D0 0.D0 1.43D-06 7.140-07 1 3.21D-07 1.61D-07 3 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 1.770-08 8.850-09 1 0.D0 0.D0 1.770-08 8.850-09 1 0.D0	0.D0 PETIT CRUSTACE PEL. / BENTH. 0.D0 0.D0 4.4D-05 7.19D-07 0.42D-07 1.71D-07 0.00 0.D0 0.	PDISSON 2 MOLLUSO 2 PEL. PEL. 0.00 0.00 1.260-06 1.260-06 2.750-07 2.750-07 0.00 0.00 0.00 0.00 0.00 0.00 1.030-09 1.030-08 0.00 0.00
156 CM 244 NUCLEIDE 	0.D0 0.D0 GRAND CRUSTACE PEL. / BENTH. 0.D0 0.D0 1.43D-06 7.140-07 1 3.21D-07 1.61D-07 3 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 1.77D-08 8.86D-09 1 0.D0 0.D0 1.77D-08 8.86D-09 1 0.D0 0.D0 4.77D-08 6.86D-09 1 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 1.44D-07 1 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.	0.D0 PETIT CRUSTACE PEL. / BENTH. 0.D0 0.D0 44D-05 7.19D-07 0.42D-07 1.71D-07 0.00 0.D0 0.	PDISSON 2 MOLLUSO 2 PEL. PEL. 0.DO 0.DO 1.26D-06 1.26D-06 2.75D-07 2.75D-07 0.DO 0.DO 0.DO 0.DO 0.DO 0.DO 1.03D-08 1.03D-08 0.DO 0.DO
156 CM 244 NUCLEIDE 	0.D0 0.D0 GRAND CRUSTACE PEL. / BENTH. 0.D0 0.D0 1.43D-06 7.140-07 1 3.21D-07 1.61D-07 3 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 1.77D-08 8.86D-09 1 0.D0 0.D0 1.77D-08 8.86D-09 1 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 1.44D-07 1 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0	0.D0 PETIT CRUSTACE PEL. / BENTH. 0.D0 0.D0 .44D-05 7.19D-07 .42D-07 1.71D-07 .42D-07 1.71D-07 0.D0	PDISSON 2 MOLLUSO 2 PEL. PEL. 0.DO 0.DO 1.26D-06 1.26D-06 2.75D-07 2.75D-07 0.DO 0.DO 0.DO 0.DO 0.DO 0.DO 1.03D-08 1.03D-08 0.DO 0.DO 1.03D-08 1.03D-08 0.DO 0.DO 2.050 2 MDLLUSO 2 PEL. PEL.
156 CM 244 NUCLEIDE 	0.D0 0.D0 GRAND CRUSTACE PEL. / BENTH. 0.D0 0.D0 1.43D-06 7.140-07 1 3.21D-07 1.610-07 3 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 1.770-08 8.860-09 1 0.D0 0.D0 1.770-08 8.860-09 1 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.	0.D0 PETIT CRUSTACE PEL. / BENTH. 0.D0 0.D0 44D-05 7.19D-07 1.42D-07 1.71D-07 0.D0	PDISSON 2 MOLLUSO 2 PEL. PEL. 0.00 0.00 1.260-06 1.260-06 2.750-07 2.750-07 0.00 0.00 0.00 0.00 1.030-08 1.030-08 0.00 0.00 1.030-08 1.030-08 0.00 0.00 1.030-08 1.030-08 0.00 0.00 1.030-08 1.020-08 0.00 0.00 0.00 0.0
156 CM 244 NUCLEIDE 	0.D0 0.D0 GRAND CRUSTACE PEL. / BENTH. 0.D0 0.D0 1.43D-06 7.140-07 1 3.21D-07 1.610-07 3 0.00 0.D0 0.D0 0.D0 0.D0 0.D0 1.770-08 8.850-09 1 0.C0 0.D0 1.770-08 8.850-09 1 0.D0 0.D0 0.D0 0	0.D0 PETIT CRUSTACE PEL. / BENTH. 0.D0 0.D0 44D-05 7.19D-07 1.42D-07 1.71D-07 0.D0 0.D	PDISSON 2 MOLLUSO 2 PEL. PEL. 0.00 0.00 1.260-06 1.260-06 2.750-07 2.750-07 0.00 0.00 0.00 0.00 0.00 0.00 1.030-08 1.030-08 0.00 0.00 0.00 0.00 PEL. PEL. PEL. PEL. 0.00 0.00 0.00 0.00
156 CM 244 MUCLEIDE 	0.D0 0.D0 GRAND CRUSTACE PEL. / BENTH. 0.D0 0.D0 1.430-06 7.140-07 1 3.21D-07 1.610-07 3 0.00 0.D0 0.D0 0.D0 0.D0 0.D0 1.770-08 8.850-09 1 0.D0 0.D0 1.770-08 8.850-09 1 0.D0 0.D0 0.D0 0	0.D0 PETIT CRUSTACE PEL. / BENTH. 0.D0 0.D0 44D-05 7.19D-07 0.42D-07 1.71D-07 0.00 0.D0 0.	PDISSON 2 MOLLUSO 2 PEL. PEL. 0.00 0.00 1.260-06 1.260-06 2.750-07 2.750-07 0.00 0.00 0.00 0.00 0.00 0.00 1.030-08 1.030-08 0.00 0.00 PEL PEL PEL PEL 0.00 0.00 0.00 0.00
156 CM 244 NUCLEIDE 	0.D0 0.D0 GRAND CRUSTACE PEL. / BENTH. 0.D0 0.D0 1.430-06 7.140-07 1 3.210-07 1.610-07 3 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 1.770-08 8.850-09 1 0.D0 0.D0 1.770-08 8.850-09 1 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D	0.D0 PETIT CRUSTACE PEL. / BENTH. 0.D0 0.D0 44D-06 7.19D-07 0.42D-07 1.71D-07 0.00 0.D0 0.	PDISSON 2 MOLLUSO 2 PEL. PEL. 0.00 0.00 1.260-06 1.260-06 2.750-07 2.750-07 0.00 0.00 0.00 0.00
156 CM 244 NUCLEIDE 	0.D0 0.D0 GRAND CRUSTACE PEL. / BENTH. 0.D0 0.D0 1.43D-06 7.140-07 1 3.21D-07 1.610-07 3 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 1.770-08 8.850-09 1 0.C0 0.D0 1.770-08 8.850-09 1 0.C0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0	0.D0 PETIT CRUSTACE PEL. / BENTH. 0.D0 0.D0 .44D-05 7.19D-07 .42D-07 1.71D-07 .42D-07 1.71D-07 0.D0 0.	PDISSON 2 MOLLUSO 2 PEL. PEL. 0.D0 0.D0 1.260-06 1.260-06 2.750-07 2.750-07 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 1.03D-08 1.03D-08 0.D0 0.D0 1.03D-08 1.03D-08 0.D0 0.D0 1.03D-08 1.03D-08 0.D0 0.D0 0.D0 0.D0
156 CM 244 NUCLEIDE 	0.D0 0.D0 GRAND CRUSTACE PEL. / BENTH. 0.D0 0.D0 1.43D-06 7.140-07 1 3.21D-07 1.610-07 3 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 1.770-08 8.860-09 1 0.D0 0.D0 1.770-08 8.860-09 1 0.D0 0.D0 1.770-08 8.860-09 1 PDISSDN 1 MI PDISSDN 1 MI PEL. / BENTH. 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0	0.D0 PETIT CRUSTACE PEL. / BENTH. 0.D0 0.D0 .44D-05 7.19D-07 .42D-07 1.71D-07 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 0.D0 80/KG	PDISSON 2 MOLLUSO 2 PEL. PEL. 0.00 0.00 1.260-06 1.260-06 2.750-07 2.750-07 0.00 0.00 0.00 0.00 1.030-08 1.030-08 0.00 0.00 1.030-08 1.030-08 0.00 0.00 1.030-08 1.030-08 0.00 0.00 0.00 0.00

Variation de la dose aux organismes abyssaux ionction du temps pour les radionucleides considérés.

I: grand et petit poissons 2: grand et petit mollusques 3: grand et petit crustacés (échelle semi-log)

Doses (mSv.h⁻¹) à trois organismes abyssaux pour les émetteurs a et les émetteurs β/γ pendant 100 ans suivant l'immersion des déchets et pour les compartiments du site de l'AEN (boîte océan 19 et boîte sédiment 20).

·	PE	TIT	PE:	TIT	- GR	AND
	POISS	On Pel.	MDLLUS(QUE BENTH.	CRUSTA	CE PELAG.
	ALPHA	BETA-GAMMA	ALPHA	BETA-GAMMA	ALPHA	BETA-GAMMA
1 AN	-13	- 12	- 10	-12	-12	-12
	7,6.10	4,3.10	- 3. 10	4,4.10	7,6.10	4,4,10
	(15%)	(85%)	(98,6%)	(1,4%)	(63%)	(37%)
10 ANS	-7	-9	-4	-9	-6	-9
	7,4.10	1,4.10	1,3.10	1,4.10	6, 1. 10	1,4.10
	(100%)	(<)	(100%)	(<)	(100%)	(<)
20	-5	-7	-3	-7	-4	-7
	1,2,10	1,6.10	2,4.10	1,6.10	1.10	1,7.10
	(99%)	(1%)	(100%)	(<)	(100%)	(<)
30	-5	-6	-3	-6	-4	-6
	3,2,10	2,2.10	7 . 10	2,2.10	2,8.10	2,2.10
	(94%)	(6%)	(100%)	(<)	(99%)	(1%)
40	-5	-6	-2	-6	-4	-6
	7,4.10	4,1.10	1,8,10	4,1.10	6,5.10	4,2.10
	(95%)	(5%)	(100%)	(<)	(99%)	(1%)
50	-5	-6	-2	-6	-4	-6
	6,3.10	2,3.10	1,7.10	2,3.10	5,6.10	2,3,10
	(96%)	(4%)	(100%)	(<)	(100%)	(<)
60	-5	-6	-2	-6	-4	-6
	5,8,10	1,9.10	1,6.10	1,9.10	5,2.10	1,9.10
	(96%)	(4%)	(100%)	(<)	(100%)	(<)
80	-5	-6	-2	-6	4	-6
	4,6.10	1,5.10	1,3,10	1,5.10	4,2.10	1,5.10
	(97%)	(3%)	(100%)	(<)	(100%)	(<)
100	-5	-6	-3	-6	~4	-G
	3,4.10	1,2,10	9,8.10	1,2.10	3, 1, 10	1,2.10
	(96%)	(4%)	(100%)	(<)	(100%)	(<)
		Cio	Férieur	à 1%		

Doses maximales (mSv.h⁻¹) aux organismes abyssaux dues aux déchets radioactifs, estimations des doses dues à la radioactivité naturelle et doses maximales obtenues par les anglais pour les petits poissons, le petit mollusque benthique et les crustacés (NEA, 1985).

.

Val

Con Con

prol

	PETIT PELAGIQUE	POISSON BENTHIQUE	GRAND POISSON PELAGIQUE	GRAND MOLLUSQUE PELAGIQUE	PETIT MOLLUSQUE BENTHIQUE	GRAND C Pelagique	BENTHIQUE	PETIT C Pelagique	BENTHIQUE
BOITES OCEAN 19 SEDI. 20	-5 7,8.10 (40 ANS)	-5 7,8.10 (40 ANS)	-5 7,9.10 (40 ANS)	-2 1,8.10 (40 ANS)	-2 1,8,10 (40 ANS)	-4 6,6.10 (40 ANS)	-4 6,6.10 (40 ANS)	-4 6,6.10 (40 ANS)	-4 6,6.10 (40 ANS)
BOITES OCEAN 17 SEDI. 18	-5 6.7.10 (45 ANS)	-5 6,7.10 (45 ANS)	-5 6,7.10 (45 ANS)	2 1.7.10 (50 ANS)	-2 1,7.10 (50 ANS)	-4 5,7,10 (45 ANS)	-4 5,7.10 (45 ANS)	-4 5,7.10 (45 ANS)	-4 5,7.10 (45 ANS)
BOITES OCEAN 14 SEDI. 15	-8 5,7.10 (100 ANS)	-8 5,7.10 (100 ANS)	-8 5,7.10 (100 ANS)	-5 1,6.10 (100 ANS)	-5 1,6.10 (100 ANS)	-7 5,1.10 (100 ANS)	-7 5,1.10 (100 ANS)	-7 5,1.10 (100 ANS)	-7 5,1.10 (100 ANS)
BOITE OCEAN 16	-5 6,6.10 (45 ANS)		-5 6,7.10 (45 ANS)	-2 1,7.10 (50 ANS)		-4 5,7.10 (45 ANS)		-4 5,7.10 (45 ANS)	
IRRADIATION NATURELLE	-5 1 2.8.10 -4 4,6.10	-5 8,5.10 -3 1,4.10			-4 9,3.10 -3 3,4.10	-4 9,3.10 -3 3,6.10	-4 9,9.10 -3 4,6.10	-4 2,5.10 -3 2,9.10	-4 3,3.10 -3 4,2.10
BOITE SITE NEA, 1985	-5 5,2.10	-5 7,3.10			-3 8.10	-4 3,6,10	-4 3,8.10	-3 1,2.10	-3 1,3.10

.

.