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The Cornwall-Norton model ls studied in the strong
coupling regime. It 1is shown that the fermlonic self-energy at
large momenta behaves as I(p) _ (la/p) In {(p/m). We verify that in
the strong couplln; phase the dynamically generated masses of
gauge and scalar bosons are of the same order, and the essentlal

features of Lhe model remaln intact.



The “orrvall-Nort - -~1e1'? is one of the simplest

sodels of aynamical gauge boson mass geae.x..... 1 four
dimensio: - ». In this model the Sch.inger-Dyson
equation for the fereionic self-energy is quite similar to the one
of quantums electrodynarics (QED), and assuaing that thls equat’ion

has a non-trivial solution like the one proposed for QED by

Jrbnsrna, Baker and Hllley(z ,» It was shown that the gauge boson

acquires a dynamical mass. Posteriorly, with the use of'han

ef“ective potential for composite operatorsm. it was found that

the mass generation occurrs only when the coupling constant has 2

roderately small critical value. The model also contalns a

4)

composite scalar boson' , which plays the role of the standard

r- iel Higgs boson, and whose mass is numerically small when

zz: - -+d to the gauge boson mass.

Nowadays it is believed that the Johnson, Baker and

\dllley.(z solution of mass generation in QED is not realized in

Nature. Naskawa and Nakagina(s' have shown that QED admits a
non-trivial solutlon for the gap equation only when the coupling

6) confirmed

constant & is larger than a = #/3. Further studies'
this result, which alsc imply that even in the presence of a bare
mass the non-trivial solutfon for a < e disappears when we go to

the chiral 1imit'®®.

If the chiral symmetry breaking solution of QED at
weak coupling does not exisit, we could imagine that many of the

results of refs, 1, 3 and 4 can be substantinlly modified, because



part of them were obtalned assuming a weak coupling regime.
b wev: -  we lclieve that the nice characteristics of the model
should remain intact, as .ong as they only depend on the exlistence
of ¢ non-trivial fermionic self-e..cgy solution. Recalllng agaln
the simtlaiity L-tween the gap equation of QED and the
Cornumll-Norton one, we come to the co.xlusion that also the
Cornwmll-Norton model must be realized in the strong couplisg
regime.

It has been <claiaed that QED possesses a non-
trivial ultraviolet fixed point at & = w37, and this
hypotiwsis is corrovorated by nuaserical sllulauons(m. One aight
wonder if the same fixed point does not-- appear In the
Cornwmal}-Norton sode). 1f this s the case, the model is one
exan>le of gauge boson mass generation In the presence of a fixed
point, and its study may also be inter-sting to learn aspects of
dynamical s ss generation with U{1) technicolor theories'®.

in this work we study the Cornwall-Norton model in
the strong coupling regime. YWe discuss the solution of the gap
equation, coampute the effective potential of composite operators
at stationary points, and calculate the gauge and scalar boson

The Schwinger-Dyson equation for the ferslonic

propagnator of Lhe mode} ls‘”



.
s p) =f+m ¢+ lgf [ 9k ¢ x) o sipx) r: {p-k.p)

(1)

'k

: B
L -
* | ent

1

G

(k) 1“‘!2 S{p-k) r‘" (p-k.p)

wire G“'). S indicate respect:vcly th. complete gaugs bxsons and

fermaion propagators, and I’ a'c the vertex functions. In teras of
the sclf-energ’ E(p) we can write -
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where we divided E(p) in the :hirally symmsetric (}:s) and
asymmetric (}:‘) parts. Using Eq. (1) and (2) in the lowest order

of ', and working in the Landau gauge we ootain
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Changing (g: - g:) in Eq.(3) by ez, where e is the electromagnetic
coupling constant, we arrive at the QED gap equation. Therefore,

following ref. (2), it was assumed that Eq. (3) has the solution
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I hH = bm [—2] (4)
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where &m is the dynaaical mass, and

J 2 2 2 2
o (a‘ - 3.) + 0 (x‘, s.) (5)




2 2 . R
suuvjected Lc tne condition O < gf - 8y < 4r' /3, which delimits
the weak coupling region.

:naly?.ng the B-gauge boson self-energy
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we can verify that ai .. naTant
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2 the r ..ews 15 in the Euclidean space and = = .

mass (i.e., btaz~z rius aynamical). The introduction of Eq. (4) into

Eq. (7) entails
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The existence of a massive scalar boson was

inferred in an ingenious way“). The kinetic term of the effective

action for composite operators was computed, leading to an

effective Ginzburg-Landau Lagrangian density of the forn'?

= ] 1 2 A +_B &
Q-de[—é—-(auO)+—4—¢ ——6—-¢] (9)

where A and B are functions of €, ém and m, and whose minimization

imply in cne composite scalar boson mass equal to'®

4
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niin the critic: vatns Faend 7 Tofe {3) ana (a i was
Luaerical hicrarcay oetwee:n ¢ . e

gauge - .ouiger an the

... ke procedure to arrive at Eg. (9] is ex:lained in ref.

e .- «S$ emphasizes by oworieal o
Shatt- -2 s ie pot expected t¢ be valid at strong coupling.
¥-tiss that +w2 hierarchy bet.2en Egs. (8) and (10) is surely one
of the results that can be modified In the strong coupling phasé?
Due to the formal identity between the Cornwall-
Norton gap equation with t:.e QED one when we chinge (gi - gﬁ)/du
Dy a (# e2/4n) in Eg. (3)., we may lransiale aii: the results or
refs. (5) and (€), concerning the QED gap equation, to our
prc-lem. These results can be stated as: a) In a theory chirally
svmmatric (mo = 0): :) When a < a, = n/3 there is only the trivial
solution (X = ¢). ii) When a > « besides the trivial solution,
£(p) has an infinite number of oscilating solutions. b) Ina
theory with a bare mass (m = 0). i) When a < a there is only one
non-trivial solution, but it turns out to be trivial in the chiral
limit (mo-» 0), 1ii) When a > x there is a finite number of
non-trivial solutions. For simplic.ty, and as we want to study a
real theory of dynamical mass generation we will set B, = 0 in Eg.
(1), consequentiy the dynamicall mass, denoted by ém, wiil Le equal
to the total mass m and E(p) will be non-trivial for a > acz n/3.
Eq. {3) can be transformed into a <differential

7)

equation whose solution is' (hereafter we drop the symbol a



fros E.(p))
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where C Is a constant determined by the boundary condltions and
82 e 32 1/
R 1 _ 3 [ B ’
3 & iy = ’2— [ 1 = [_'_“. ]] (12)

At large momenta Ej. (11} can be expanded as
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AL ysn g; - g; = 48 /3) Eq. (13) assumes the simpler form
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P
p2>>n2
With the help of Eq. (13) we can determine the
gauge koson mass (Eq. (7)), and, following Ref.(3), we can compute
the effective potential for composite operators (). The idea of
computing Q is to determine for which value of 7 (or, g: - g:)

occurs the symmetry breaking, i.e. the olnimum of energy will

happen for a specific value of the coupling constant. However, an



easier way to extract infor ation about the einimum of energy is

to coapute <D, l.e. the values of @ at staticnary points:

' .
<P = 21 I i_p_. { 1n [ 1 - Iz(p)/pz] + f(pl/ipz— Ep)} 1
i2q}) ,

(16)
The computation of eq. (16) is enough to determine the critical
value of (g: - g:) a3 will be shown in the following. The value >f
<> is much less sensible than 1 to any possible deviation ;t a
linearized expression of I(p) from the actual solution of the
non-linear g:p equation. Notlce that all the information about the
gauge bosons which apoears in I was swept away in Eq. (16); it

enters only in the iepenience of E(p) on (g: - gz).

(]

To deteraine <> as a function of y we need only
the ultraviolet part of I(p) given by Eq. (13). The infrared part,
at least in the leading approximation, does not depend on 7'°’.
Considering that £(p naturally damps the intezrals in Eg. (16) we
can expar.i the ultraviolet part of <@ in powers of Z{p)/p, and
introducing th: ve-iable x = ;:.2/112 we obtain the leading term of

<S>
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where I = I/m, and only the region pz > &° was considercd. This
calculation has already been done for QED, where the substitutir-,

of Eq. (13} into Eq. (17) ylelds“”
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For (g: - g:)/ 4n < »/3 only the trivial sclution (E{(»} = G)

(S5,8)

exists , and for (g:-g:)/ 4z 2 w3 we \verify that the

minimum of energy (l.e. the minimum of Eg. (18)) occurs at
(g:-g:)lll 2 w3 (or 7 =0) Ue conclude that this point

corresponds to an absolute atntcus''?. Notwithstanding, following

Wilson®s work on the renormalization group equations‘m w2 know
thit m fixed point is a statlonary point of a potential.
therefore, we identify the value of (gi - g:)Mu' = u/3 as a fixed
point of th: theory.

The dynamical symsetry breaking in the Cornwall-
Norton model, as discussed above, is realized at strong coupling
when (g: - g:)/n = 1/3, therefore, the feralonic self-energy at
large mosenta has the universal behavior given by Eq. (15), and
this is the expression of I(p) to be used in the calculation of
gauge and scalar boson masses.

The masses of gauge and scalar bosons and the
hierarchy found between thea in the weak coupling regne"). as
will be shown in the following, are modifjed at strong coupling.
The calculation of the gauge boson mass is straightforward; froa
Eqs. (7) and (15) we find

2
0.41 g
M o ox — g2 (18)



wviiere the Iintegral ia Eq. (7)., for simplicity, was cul 'l- the
infrzred at p = n and cvaluwn’ed nuaerically. The min difference
uith respect to the weak coupling result (Eq. (8)) is a factor
1/¢.

In the case of the scalar boson mass >- method
devised by Ellas and Seacron''™ to compule the sigea meson mass
of quantus chroacdynanics may be helpful. The scalar mass appears

vhen we cospute the feralom-tadpole diagrsa of Fig. (1), uhés

Vd
result 1is

wkare .’;‘ 5 the composite scalar boson coupling to the fermions,
and < ¢ >, I the renormalized fermlon condensate. The
calculaticn of the condensate is identical to the case of (QED,
which was detersined by Bardeen, Leung and Love''*’, and is given

by

¢;p>.- -._‘_'.S?...’ (21)
2x

when evaluated at the critical coupling constant.
When the chiral symseiry is kroken the theory also
forms Cola. ‘one bosons, and the coupling of thess bosons Lo the

ferajons ((.. .) as well as Lthe scaler coupling have their strength

given by the  oldberger-Treiman relation

]
£, g = 2 (22)
(o T
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where f. is the Goldstone boson decay constant obtalned through

the Pagels-5Stokar formula‘'®

2 2 *® - f:x)--él—xf'(x)
£ - -!'-5 [ dx x E(x) (23)
4x 1 (x +& (03

Where x = pz/lz and, for simplicity and consistency with our
previous calculations, we introduced a cut-off at pz = a Using
£(p) given by Eq. (15) we obtain r: = 0.49 a’/4x°, and coabining
the above expressions we arrived at the scalar boson mess
H’ « 0.7u. Comparing this result with Eq. (10) we notice again a

diiference of a factor €.

The ratio between the gauge and scalar boson mass

is
" 0.26 g}
L . (24)
2 r
| ]
Apart from the condition (g: - g:)/h s u/3, g: is not

constrained, and if g:/n . 0(1) we do not have any hierarchy
between gauge and scalar masses, as can be seen from eq. (24).
However, if g: is small we have the opposite of what was obtained
at weak coupling, i.e. H: << H:.

The existence of a scalar boson lighter than the
dynasical mass, as obtained in Ref. (4. at weak coupling, is an

interesting feature because in a realistic theory this scalar

would play Lhe role of the Higgs boson, and we could think of a

11



sode]l where the Higgs boson mass would 1lay bellow ths
characteristic mass scale of the standard model. Unfortunately, as
we verified here, If the theory is realized at strong coupling the
Higgs boson mass will probably be of the order of the dynamical
RasSS,

In conclusion, in this paper we have computed the

effective potential for composite operators at stationary polnts

and shown that the ninimum of energy occurs for (s:- g:)/u ~ 1/3.! -~

Therefore, the as mptotic fermlonic self-energy behaves as
Z(p) _ (lz/p) in {(p/m). We computed the gauge and scalar boson
masses, and verified that they are of the same order at strong
coupling. Although the masses are modified, the many nlce
properties of the model remain intact. It would be interesting to
investigate if these results are changed by the addition of the
chirally invariant four~-fermion operator (with coupling constant

G) to the lagrangian of the lodcl“"

. Najvely, even If the fixed
point is moved to some point In the plane (a, )" the symaetry
breaking still happens at strong coupling (a orG), and we should

not expect any gross deviation in ow results.
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FIGURE CAPTION

Fig. 1 - Fermjon mass gap equation in terms of the scalar boson

tadpole graph
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