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ABSTRACT

The Cornwall-Norton nodel is studied in the strong

coupling regime. It is shown that the feralonic self-energy at

large »omer>t& behaves as Zip) (• /p) In (p/»>. We verify that in

the strong coupling phase the dynamically generated aasses of

gauge and scalar bosons are of the sane order, and the essential

features of Lhe nodel resaln intact.



The '"orruall-Ncr»--•' --lei Is one of the simplest

•odeIs of dynamical gauge boson Bass gene. * in four

dlaenslo: -• In this model the Sch'- inger-Dyson

equation for the fernionic self-energy is quite similar to the one

of quantum electrodynamics (QEO), and assuming that tnls equation

has a non-trivial solution like the one proposed for QEO by

J.i-nsra, Baker and Wllley( . it was shown that the gauge boson

acquires a dynamical mass. Posteriorly, with the use of an

efectlve potential for composite operators1 , it was found that

the mass generation occurrs only when the coupling constant has a

moderately small critical value. The model also contains a

composite scalar boson , which plays the role of the standard

s" iel Hlggs boson, and whose mass is numerically small when

cc- - d to the gauge boson mass.

Nowadays It is believed thit the Johnson, Baker and

( 21

Wllley solution of mass generation in QED is not realized in

Nature. Kaskawa and Nakagima<s> have shown that QED admits a

non-trivial solution for the gap equation only when the coupling

constant a is larger than a » a/3. Further studies'61 confirmed

this result, which also imply that even In the presence of a bare

mass the non-trivial solution for a < a disappears when we go to

the chlral limit'5'6'.

If the chlral symmetry breaking solution of QED at

weak coupling does not exist, we could imagine that many of the

results of refs. 1, 3 and 4 can be substantially modified, because



part of the» were obtained assualng a weak coupling reglae.

H aev-. we l«lleve that the alee characteristics of the model

should reaaln Intact, as ong as they only depend on the existence

of c nan-trivial feralonlc self-e .rgy solution. Recalling again

the slallai ity t tween the gap equation or Q£0 and the

Cornwall-Norton one, we coae to the conclusion that also the

Cornwall-Norton aodel aust be realized In the strong coupling

reglae.

It has been claiaed that Q£D possesses a non-

trlvlal ultraviolet fixed point at a * «/3<T\ and this

hypollie&ls is corroborated by numerical sliulat ions' '. One sight

wonder If the same fixed point does not* appear in the

Cornwall-Nor ton «odel. If this Is the case, the aodel is one

exaaple of gauge boson aass generation In the presence of a fixed

point, and its study aay also be Interesting to learn aspects of

dynaalcal a ss generation with U£l) technicolor theories'8'.

In this work we study the Cornwall-Norton model In

the strong coupling reglae. We discuss the solution of the gap

equation, coapute the effective potential of composite operators

at stationary points, and calculate the gauge and scalar boson

The Schw 1 nger-Dyson equation for the fera Ionic

propagator of the model Is



• ̂  • lg* I -2J c* k)

k B li

- i - c' (k) A,

wiire CA(B>. S Indicate respectrvely th. coaplete gaugí be sons and

feralon propagators, &xl T a.o the vertex functions. In ter*s of

tfte sulf-energ.' £(p) we can write

S"l(pi -/ - « 0 - U p ) • £s(p) • x3 E^íp) Í2)

where we divided £(p) In the hi rally syaaetrlc (£ ) and

asyaaetrlc it ) parts. Using Eq. (1) and (2) In the lowest order

of f, and working In the Landau gauge we obtain

• mQ* I s ( p - k ) l 2 -

It* (3)

Changing (g2 - g^) In Eq. (3) by e2, where e Is the electromagnetic

coupling constant, we arrive at the CED gap equation. Therefore,

following ref. (2), It was assuaed that Eq. (3) has the solution

(p8) » 6 . [ —2 J (4)

where 6m Is the dynaalcal aass, anc"

•' t ( 8 * g} * °<g



subjected tw tr.e condition 0 < g2 - go < iJ^/2, which delimits
A B

the weak coupling region.

-.nsilyy.ng the B-gauge boson self-energy

- ~ i Tr [ rl (p~k>p) S(p} J» T2 s(p"k)

we can verify that a'* ̂;. u".?ri

iiven as :-. function of X (p) by

Ü ID i. t (7)
B j (2w)4 Lp * m)'-

•i the ir ...u..i is in the Euclidean space anr< ^ •- '.:.c

mass ( i . e . , t s - ^ plus oyiiaiiiical). The introduction of Eq. (4) into

Eq. (7) en ta i l s

= M^ = 5- (6m)2 + 0 (g2 , g2) (8)
B 2«6 * B

The existence of a massive scalar boson was

inferred in an ingenious way'4'. The kinetic term of the effective

action for composite operators was computed, leading to an

effective Ginzburg-Landau Lagrangian density of the form

o . J A [ 4. u^» •f •-1 o)

where A and B are functions of €, òm and m. and whose minimizEition

imply in one composite scalar boson mass equal to

•Í--3--



-icn the critic::' \-»'•'•-- •"-•'-J " r r^ (3) ana 1-», i. -u_

- ..̂ uiierical hierarchy jct«ce;. .c

gauge :- . i,roer . ,tr. * '-,«

• -.-Ü-. ii.e procedure to arrive at Eq. (9) is explained in ret'.

. — «j> emphasized by >_w :•:.-.*. ' --M

Chi.' *-„-,•«> ... •< ivt exDected tc be valid at strong coupling.

v-. :.. *v.,| li; hierarchy bet een Eqs. 18) and (10) is surely one

of the results th;\t can be modified in the strong coupling phase.

Due to the formal identity between the Cornwall-

Norton gap equation with t:.e QED one when we ch;.nge (g - g )/4n

by a (> e /4n} in Eq. (3J. we cay i:~ansiaie a u tne results ox"

refs. (5) and (6), concerning the QED gap equation, to our

prcrlera. These results can be stated as.- a) In a theory chirally

c-.-iT̂ atric (m = 0): :) When a < a * n/3 there is only the trivial

solution ( 1 = 0 ) . ii) When a > a besides the trivial solution.
c

£(p) has an infinite number of oscilating solutions, b) In a

theory with a bare mass (si * 0). i) When a < a there is only one

non-trivial solution, but it turns out to be trivial in the chiral

limit (m - * 0 ) , ii) When a > x there is a finite number of

0 c

non-trivial solutions. For simplicity, and as we want to study a

real iheory of dynamical mass generation we will set n = 0 in Eq.

ii}, consequently the dynamical 1 mass, denoted by óm,wiil be equal

to the total mass in and £(p) will be non-trivial for a. > a s n/3.

Eq. (3) can be transformed into a differential

equation whose solution is (hereafter we drop the symbol A



f r o » I ( p ) )

[ -1. . r -. _J_ - y \ 2 ; -^ ] (11)
where C i s a constant determined by the boundary conditions and

2 _ 2

At large Moaenta £q. (11) can be expanded as

coth «7
( 2,-l/z , com 17 -|i/x f „

JL 1 sin Í2, in l-E

(13)

where

I F (1 • 2y ' ) 1
-— - arctg 2? 114)

r ( i / 2 • r ' ) !

U T s n ' -• & " gB " 4" /3* ̂ - *13* assUBes th* simpler fora

«Pi -=- in 4" CIS)

pW

With the help of Eq. (13) we can determine the

gauge boson nass (Eq. (7)), and, following Ref.O), we can compute

the effective potential for conposite operators (0). The idea of

computing 0 i s to determine for which value of j (or. g2 - g2}

occurs the symmetry breaking. I .e . the BinlBu» of energy will

happen for a specific value of the coupling constant. However, an



easier way to extract lnfor alien about the cinlaua of energy is

to compute <tl>, i.e. the values of Q at stationary points:

<Q> = 21
I A l l ~ W B ~ ~

J

(16)

The computation of eq. (16) is enough to determine the critical
2 2

value of (g - g ) a; will be shown in the following. The value if

<Q> is much less sensible than D to any possible deviation' of a

linearized expression of £(p) from the actual solution of the

non-linear gip equation. Notice that all the information about the

gauge bosons which appears in Q was swept away in Eq. (16); it

enters only in the lepenience of £(p) on (g2 - g ).

To determine <•> as a function of jr we need only

the ultraviolet part of Zip) given by Eq. (13). The infrared part,

at least In the leacng approximation, does not depend on j<8'.

Considering that £(p naturally damps the integrals in Eq. (16) we

can expar.i the ultraviolet part of <Q> in powers of 2(p)/p, and

introducing th vt iable x * p /m we obtain the leading tern of

where X * £/m, and only the region p > m2 was considered. This

calculation has already been done for QED, where the substitutic:.

of Eq. (13) into Eq. (17) yields411'



3 2 «• « , (

[ 3 _

1/4) J (U

2» sin 4P-COS 43) • 4l<Ml) (cos 2g- TSl" 23) ]
2

* •

For (g2 - g 2)/ 4a < »/3 only the trivial solution lE(;i} * Q)

exists15*61, and for (g* - g^)/ 4» *• *S3 we verify that the

minimi* of energy (I.e. the «irviBU» of Eq. (18)) occurs hi

t«2 ~ gf)/4> > « ^ (or 7 * 0). Ue conclude that this point

corresponds to an absolute alnlcua * . Notwithstanding, following

Wilson's work on the renoraallzatlon group equations * v? know

th t a fixed point is a stationary point of a potential,

therefore, we identify the value of (g2 - gz)/4« * x/3 as a fixed

point of the theory.

The dynaalcal symmetry breaking in the Cornwall-

Norton aodel, as discussed above, is realized at strong coupling

when (g2 - g2)/4x - «/3. therefore, the fer*ionic self-energy at

large aoaenta has the universal behavior given by Eq- (15), and

this is the expression of £(p) to be used in the calculation of

gauge and scalar boson aasses.

The aasses of gauge and scalar bosons and the

hierarchy found between the» in the weak coupling regiae . as

will be shown in the following, are Modified at strong coupling.

The calculation of the gauge boson »ass is straightforward; fro»

Eqs. (7) and (15) we find

•£ * j-^- •* (19)



wher* the integral in Eq- 17). for simplicity, was cut la the

Infrared ai p • a and evaluated numerically. The aala difference

with respect to the weak coupling result (Eq. (8)1 is a factor

1/c.

In the case of the scalar boson mass a method

devised by Ellas and Scaaroa113* to compute the slgaa aesoa aass

of quaatua chroaodyaaalcs nay be helpful. The scalar asa

when we coapute the fcraloa-tadpole diagram of Fig. (1).

result Is

wfcsre g - s the composite scalar bosoa coupling to the feralons.

and < i > is the rcnomalixed feralon condensate. The

calculation of the condensate is Identical to the case of QED.

(It)

which was determined by Bardeen, Leung and Love . and is given

by

(21)

when evaluated at the critical coupling constant.

When the chiral syasetry Is broken the theory also

foras Colo. ".one bosons, and the coupling of these bosons to the

feralons (g^ J a» well as the scalar coupling have their strength

given by the aldberger-Treiaan relation

10



where f is the Coldstone boson decay constant obtained through

the Pagels-Stokar formula*IS*

i f * _ £x)--ix£-(x)
t* - -=-£ dx x E(x) - (2J)

41 * l lx •? (xtf

Where x * p2/a2 and, for simplicity and consistency with our

previous calculations, we introduced a cut-off at p • m . Using

I(p) given by Eq. (15) we obtain f^2 - 0.49 m2/4«2. and combining

the above expressions we arrived at the scalar boson mess

H • 0.7a. Comparing this result with Eq. (10) we notice again a

difference of a factor «.

The ratio between the gauge and scalar boson mass

M2 0.26 gj
*

Apart froa the condition (g2 - g^)/4a « c/3, g^ is not

constrained, and if g2/4« _ 0(1) we do not have any hierarchy

between pauge and scalar masses, as can be seen from eq. (24).

However, if g is small we have the opposite of what was obtained

at weak coupling, i.e. »£ « M2.

The existence of a scalar boson lighter than the

dynamical mass, as obtained in Ref. (4> at weak coupling, is an

interesting feature because in a realistic theory this scalar

would play the role of the Higgs boson, and we could think of m

11



•odel where the Higgs boson aass would lay bellow ths

characteristic aass scale of the standard aodel. Unfortunately, as

we verified here, if the theory is realized at strong coupling the

Hlggs boson aass will probably be of the order of the dynaaical

In conclusion. In this paper we have coaputed the

effective potential for cosposite operators at stationary points
9 9 *

and shown that the niniaua of energy occurs for (g - gB)/4i * a/3. »

Therefore, the asymptotic feralonlc self-energy behaves as

X(p) _ (a8/p) In (p/a). He coaputed the gauge and scalar boson

masses, and verified that they are of tha saae arder at strong

coupling. Although the «asses are aodifled, the aany nice

properties of the aodel reaain Intact. It would be interesting to

Investigate if these results are changed by the addition of the

chlrally invariant four-feraion operator (with coupling constant

C) to the lagrangian of the aodel"". Naively, even if the fixed

point Is aoved to soae point in the plane (a, C ) U T > the syasetry

breaking still happens at strong coupling (a orC), and we should

not expect any gross deviation in our results.
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FICURE CAPTION

Fig. 1 - Feral on aass gap equation in teras of the scalar boson

tadpole graph
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