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ABSTRACT )

A multi-step direct mnulti-step compcund model free of the
criticisms suffered by that of Feshbach, Kerman and Koonin
is defined in terms of the statistical hypotheses made about
the interaction matrix elements. The model is briefly de-
scribed and discussed. Also described are our unsuccessful
attempts to parametrice the level and transition strength

densities needed irn pre-equilibrium calculations in terms of
their moments.
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1.0 INTRODUCTION

In the last decade, an intense effort has been made to ob-
tain a consistent quantum mechanical description of pre-
equilibrium reactiors. This has been motivated in great
part by the growing body cf experimental cross section data,
differential 1in energy and angle, which has been obtained
over the same pericé. The early pre-equilibrium models (1),
using emission rates based on the Weisskopf model, were able
to describe the energy spectra observed but were not pre-
pared tc deal with their forward peaked angular distrib-
utions. More recent versions of one of these , the exciton
mcdel, have succeeded in describing well the experimental
angular distributions (2,3). The pre-equilibrium and Hauser-
Feshbach equlibrium compound emission have also been unified
within this model thrcough the inclusion of the effects of
angular momentum in the emission rates (3). Despite their
successes however, these models remain semiclassical ones
based on hypotheses which are intuitively reasonable but
difficult to evaluate or improve.

The first major step towards a quantum mechanical model of
pre—equilibrium reactions was taken by Agassi, Weidenmuller
and Mantzouranis (AWM) (4). Using well defined hypotheses on
the statistical nature of the matrix elements coupling con-
figurations, they obtained a unified model of pre-
equilibrium and equilibrium reactions. Their hypotheses
however yield angular distributions symmetric about 90° and

can only describe the multi-step compound part of the re-
action,

A quantum mechanical model providing the observed anisotropy
was developed shortly thereafter by Tamura and Udagawa (TU)
(5,6). Applying statistical hypotheses similar to those of
AWM to the states excited in direct reactions, they obtained
a gond description of the multi-step direct component of the
pre-equilibrium reaction.

One of the first works to attempt to unite the direct and
compound processes in one formalism was that of Feshbach,
Kerman and Koonin (FKK) (7). Although their model has been
used successfully to describe a large body of experimental
data (8), it has also justly suffered many criticisms,
Their wmodel of the rnulti-step compound component makes use
of a "never come back" hypothesis which prohibits the uni-
fied description of the pre-equilibrium and equilibrium con-
tributions. The latter must be included by hand. Several
authors (9,10) have noted that the multi-step direct compo-
nent cannot be written in terms of DWBA matrix elements as
done by FKK. Feshbach claims to have shown that this can in
fact be done (11). The fact that all successful comparisons
with expgfimental data have been made using DWBA matrix ele-
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ments certainly prcvides strong motivation for such an at-
tempt. However, Udagawa, Low and Tamura have pointed out
other approximations in the model's multi-step direct compo-
nent which would still leave its accuracy in doubt (10).

Here, we will draw on the works of the Heidelberg (4,12) and
University of Texas (5,6) groups to show how the FKK model
can be modified so as to satisfy the criticisms above. We
will then discuss ocur not so successful attempts at
parasetrizing the level densities and transition strength
densities necessary for its use.




2.0 AN IMPROVED MULTI-STE? DIRECT MULTI-STEP COMPOUND MODEL

We can improve the multi-step direct multi-step compound
ocdel of _FKK by modifying the statistical hypotheses on
which it is based. We will use hypotheses consistent with
those of AWM and of TU. The multi-step direct reaction
model of deeply inelastic heavy ion collisions developed by
Agassi, Ko and Weidenmuller (l12) serves as a useful guide in
restating the statistical hypotheses used by TU in terms of
the interaction matrix elements. In particular, we note
their emphasis of the requirement that all statistical hy-
potheses be made in terms of reduced matrix elements in or-
der to conserve angular momentum.

As in the FKK model, we divide the space of states to be
considered into a part in which all particles are in bound
single particle states and another in which one and only one
of these particles is in a continuum state. We label these
by C (for compound) and D (for direct) respectively. We take

as statistical hypotheses on the reduced matrix elements the
following:
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-~ For the continuum to continuum interaction, \‘..‘.
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with 211 other possible pairs averaging to zero. In summary,
we suppose that the average coupling is non-zero only for

pairs of interactions that couple the same continuum chan-
nels and/or bound states.

Let us now briefly éiscuss the pre-equilibrium model which
we obtain using these hypotheses. We start with the Born ex-

pansion of the Lipprann-Schwinger equation for the Green's
functions.
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Since the terms in the expansign which couple continuum to
bound states involve an odduwnumber of like interactions,
they will be zero on the average)
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We obtain equations for the average continuum and bound
state components of the Green's function by keeping the low-
est order terms in the asymptotic expansion of their average
as described in the work of the Heidelberg group. We will

use their notation of a bar joining two matrix elements to
denote the average.
L]
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For the average continuum state Green's function, we obtain

-

G. = Go + GLVUTG,

where the optical potential, given by

-
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depends again on the average Green's functions. This optical
potential is nonlocal and generally quite complicated, de-
pending on the energy, excitation energy, angular mosenta
and configuration. To cur knowledge, only its ground state
elements have been studied (13).

We obtain a similar Lippmann-Schwinger equation for the av-
erage continuum wavefunction
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which we can write in differential form as
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where £, is the channel excitation energy and Ve, is the ini-
tial distorting potential which ve take to be real.

The average bound state Green's function is determined by
the equation

G = :L-r C:::_(A'i.fs(r'f-rr"")\(:i
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wvhere the shift factor and'escape'uidth are determined by
- 3 Y1? b \
A=ET = NLGIV.

while the 'spreading’ width is given by
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To calculate average cross sections, we first express them

in teras of the Born series expansion of the transition ma-
trix. ’ :
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Beside the - average shape elastic cross section, we find in
general contributions from multi-step direct and multi-step
compound processes.

The average shape elastic cross section is determined by the
average transition matrix.
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The multi-step direct contribution can be written as
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The first term in this expansion is the one-step DMBA while
the second is the two-step process {neglecting any
nonorthegonality termss) so that the two together reproduce
the model of TU. There are, of course, higher order terms
that could be included although care should be taken with
nonorthogonaltity terms that also might be necessary. .
In the multi-step compound contribution to the cross sec-
tion, the formation of the compound nucleus and the
posterior particle eaission are described by the factors
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while the transitions between classes of states in the com-
pound nucleus are determined by’-ﬂthe matrix 7{ where
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Here, the external mixing matrix is given by
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while the internal one is

Yap = XRP ui\'»u\p A= py (,U\'Iu.\o

We note that the multi-step compound component depends on
the continuum-continuum interaction which wmodifies the
formation/emission factors, the external transition matrix
and the escape widths. It is easily seen however that these
modifications do not effect the symmetry about 90° of the
compound angular distribution. This symmetry is a result of
the statistical hypothesis on the continuum to bound state
interaction which requires that partial vaves differing in

total angular momentum or parity contribute incoherently to
the cross section.

In the limit in vhich the continuua to continuum interaction
goes to zero, the multi-step compound component almsost re-
duces to the AWM expression for the cross section. The only
difference is the elastic enhancement factor vwhich is miss-
ing here. This reflects a deficiency in our statistical hy-
potheses which do not yet contain all of the symmetry to be
expected. VWe are studying the extension of the statistical
hypotheses necessary to include this symmetry, although we
expect the resulting modifications to have little effect at

the energies at which pre-equilibrium reactions are impor-
tant.

The statistical hypotheses we have given thus define a pre-
equilibrium model which yields cross sections having a
multi-step direct component equal to that of TU and a uni-~
fied multi-step compound component similar to the one ob-
tained by AWM. The model also specifies the average optical
potentials, Green's functions and wave functions requiring

only the zverage interaction matcix elements as input param-
eters. '\,\ 4

We admit that the model is exceedikgly complex, even motre SO
than the original multi-step model of PKK. Given present
computational possibilities, it yill“be necessary to approx-
imate it in some manner before it can be wusefully applied.
As it stands however, it could prove useful as a context
within which we can better understand and evaluate the ap-
proximations and models which we use.



3.0 A MOMENT METHOD APPRCXIMATION OF LEVEL AND TRANSITION
STRENGTH DENSITIES

The =most important quantities which enter pre-equlibrium
calculations are the average interacti- matrix elements and
the level densities. An alternative description uses the ap-
propriate product of the two, the density of interaction ma-

trix elements, which we will call the transition strength
density.

Combinatorial wmethods can calculate densities to within the
accuracy of the set of single particle states and the resi-
dual interaction used. Such calculations becoae prohibitive
for large energies and/or complex configurations however.
We have thus studied the possibility of using a simple ®mo-
ment method to reproduce the average trend of combinatorial
calculations. .

3.1 LEVEL DENSITIES

We will illustrate the moment method calculation of level
densities with a simple case involving one type of particle
and hole. We will assume that we have N particle states and
N  hole states and will write their energies as positive
ones with respect to the Fermi energy.

We first define an appropriately unnormalized one-body den-
s¢ity operator for the system.

Fc(P (\ /\ (q_a + cﬂ'a-xpéu -‘ﬁ\
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We note that whern g ¥+, for fixed¥, this becowes the den-
sity operator for the independent particle ground state. We



obtain the partition function by taking the trace of this
operator.
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A power expansion in the factors x, and x,, a device first
used by Bloch (14), then permits us to identify the parti-
tion function of each configuration.
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The density of states could be obtained by performing the
inverse Laplace transform of the partition function.
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In terms of a configuration's partition function, we can
calculate its moments using
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It turns out, however, to be easier to calculate the moments
for all configuraticns at the same time using

(-%\’(_%\&Z(ﬁ,x\\ - %(*.\9(\\“,1'\ <U\M*>M\
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so that the centroid in energy of the p particle h hole con-
figuration is

LUD - pLay, « WL,

where <%, and {¢7, are the average energies of the single
particle and single hole states, respectively.

Other low moments of interest are the variance in energy
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and the variance of the spin projection,the spin cutoff fac-
tor,

LAY, 4R, = e -p) ((u, - ad )+ WA ‘“\( W, - 4“3\

N, = N -\

The reconstruction of the density is most easily performed

in terms of the cumulants rather than the moments. These are
gefined as
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and are simple polynomial functions of the moments.

We calculate the cumulants through sixth order in 4 and ¥
and approximate the configuration partition function as
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We can then write the density of states as a derivative ex-
pansion about a Gaussian,

A
F(Q‘\\;O‘M\ = “_&-‘5_———- G_\Q L 1“\ R ‘\‘tﬁ %\
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We expand the exponential derivative keeping terms through

sixth order. Finally, we obtain the 1level density using
Bethe's difference formula.

P LP'M . Q":;‘\ = (A(e'\\ ;\).“::I\ - P(f\\\"\),f’\:iﬁ-l\

In the calculations performed, we have distinguished between
protons and neutrons permitting independent particle and
hole states for each. As the cumulants of the state densi-
ties for noninteracting particles are additive, the gener-
alization to this case is trivial

We have compared the moment method‘densxtxes with combina-
torial ones obtained using the same' sets of single particle
states. Although protons and neutrons were distinguished in
the calculations, this distinctién was not investigated. We
have compared densities summed over all configuratijons with
the same number of particles and holes.

In Figures 1 and 2, we show two examples of the relatively
good agreement obtained for the density of four particle two
hole levels in “*Zr. Similar results were obtained for other
values of the angular momentum. We note however that the os-
cillations {n the combinatorial densities due to shell ef-
fects are not reproduced by the moment method results.
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We would expect the shell effects to become less important
for more complex canfigurations. Indeed, as we can sSee in
‘"Figure J. the combinatorial total level density of five par-
ticle three hole states in '°2r is much smoother than the
four particle two hole one. However, we encounter here the
principal drawback of the moment method. It can describe the
energy dependence of the density only within the first few
standard deviations of the centroid. Although the density
falls about four orders of magnitude from its centroid value
in this range, we can see from the figure that the error is
still extremely large. Similar results, using up to 18 mo-
ments, have been reported recently by Jacquemin and Kataria
(15). We thus cannot hope to solve the problem by simply ex-
tending the expansion to include higher moments.

3.2 TRANSITION STRENGTH DENSITIES

We have also applied the moment method to the calculation of
the average spectroscopic amplitudes to be used in the DWBA
calculation of one-step direct reactions. Following TU we

assume a Wigner form for the residual interaction and write
its reduced matrix elements as

(5T (5, L1 NV TN € T (58D ) = S =

T -4+ L4 A A A
TN 3 (SR {000
C .

We use a single form factor f(r), ‘proportional to the radial
derivative of the optical potential, for all angulact momen-
tum transfers and all excitation energies.

As we will look only at the one-step excitation from the
ground state, we write the spectroscopic amplitudes as

' b _ A 8
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To be consistent with the statistical hypotheses discussed
earlier, we must have

8 In
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The total one-step angular distribution will then take the
form
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As a single application ' of the residual jinteraction will
only excite one particle one hole states,
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the necessary squared spectroscopic amplitudes are simply
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In general, to calculate mme&”_of the distribution of
spectroscopic amplitudes, we would xtart with a partition
function \
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where F, is the one body density operator described earlier
and ¥ is the appropriate transition operator. The function £
now has two pairs of arguments, referring to the initial and

final states respectively. For arbitrary configurations, the
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calculation of such a partition function is an extremely
difficult problem. Fortunately, it simplifies considerably
in the case of interest here. Because we specify the angular
momentum transferred and the initial state, the number of
arguments reduces to oOne.

2o = T (8RB

We can then calculate the moments as before.

We have used the moment method to calculate the density of
spectroscopic amplitudes in S“Ni. The same set of single
particle states, shown in Fiqure 4, were used for protons
and neutrons. The resulting one particle one hole spectrum
and the allowed angular momentum transfers are also shown
there. We note that, because of the Wigner form assumed, for

the residual interaction, only natural parity transitions
are possible.

We have used the resulting spectroscopic densities to calcu-
late the energy-angular distributions for f“pe at 14.6 and
25.7 MeV. We introduced two free parameters, 4, and g% ,
which multiplied the contributions to the angular distrib-
ution of even and codd transferred angular momenta, respec-
tively. These were adjusted to obtain the best fit to the
data at 25.7 MeV (16). The strength density so obtained ﬂﬁ
times the spectroscopic density) can be seen in Figure 5.

The fit to the 25.7 MeV data can be seen in Figure 6. In
Figure 7, we show the results obtained at 14.7 MeV, where
the same parameters, pf, and 82 , have been used but an
isotropic Hauser-Feshbach component has been added at the
higher energy losses. We see that the resulting fits are not
at all good. Comparing the results at the two energies how-
ever, we find the poorness of fit, at a given excitation en-
ergy, to be about the same for \the two. A 1look at the
combinatorial spectroscopic diskgibution suggests that it
could better reproduce the experimental cross sections. The
moment method has failed here because it cannot reproduce

the structure of the combinatorial density but only its
global trend. E

We thus conclude that the moment méthod will not provide an
fmmediate solution to the problem of precision in level and
transition strength densities. The combinatorial method
could provide the necessary precision for simple configura-
tions or at low energy. In some cases, such as that of the
one particle one hole transition strength, even more precise
methods could be warranted (6,18). Such methods cannot offer
& complete solution to the problem however. They are too
]

.
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time consuming to be practical for the calculation of densi-
ties involving complex configurations. We believe that the
moment method could still provide a partial solution in
these cases (19). It will be necessary though to suppleament
it with other approximate expressions in order to describe
these densities over the entire energy range.
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4.0 CONCLUSIONS

We have given statistical hypotheses on the interaction ma-
trix elements which define a wmulti-step direct multi-step
compound pre-equilibrium model. The model specifies the av-
erage optical potentials, Green's functions, wave functions
and cross secticns in terms of the average matrix eleaents.
The resulting cross sections have the multi-step direct com~
ponent of TU and a multi-step compound component similar to
that of AWM. As it stands, the model is too complex to be
useful for practical calculations but it can furnish a con-

text within which more approximate models could be under-
stood and evaluated.

The most important quantities which enter pre-equilibrium
calculations are the average matrix elements and the level
densities or, alternatively, the transition strength densi-
ties. We have studied the possibility of using the moment
method as a means of efficiently parametrizing these - and
found it to be generally unsuccessful. The method does not
succeed in reproducing the structure observed in densities
involving simple confiqurations and, for more complex ones,
can describe the densities only near their energy centroids.
We have not completely discarded the method however but con-
tinue to look for some combination of methods (combina-
torial, moment and others) which could provide a good
approximation to the necessary densities.
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6.0 FIGURE CAPTIONS

Fig. 1 Comparison o©of the density of 4 particle 2 hole
levels of spin 0 in ®zr calculated using the com-
binatorial method (histogram) and the moment
method (smooth curve).

Fig. 2 Comparison of the density of 4 particle 2 hole
levels of spin 10 in*2r calculated using the com-
binatorial method (histogram) and the moment
method (smooth curve).

Fig. 3 Comparison of the density of all 5 particle 3 hole
levels in ™2r calculated using the combinatorial

method (histogram) and the moment method (smooth
curve).

Pig. 4 Neutron (and proton) single particle levels . used
for **Ni, the resulting 1 particle 1 hole spectrum
and possible transferred anqular momenta.

Fig. S Transition strength densities obtained for Sepe
based on the moment method spectroscopic amplitude
distribution of "*Ni.

Pig. 6 Comparison of the calculated one-step DWBA angular
distributions to the experimental data at 25.7 MeV
(ref. 186).

Fig. 7 Comparison of the calculated one-step DWBA angular
distributions to the experimental data at 14.6 MeV
(ref. 17).
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