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ABSTRACT

A multi-step direct multi-step compound model free of the
criticisms suffered by that of Feshbach, Kerman and Koonin
is defined in terms of the statistical hypotheses made about
the interaction matrix elements. The model is briefly de-
scribed and discussed. Also described are our unsuccessful
attempts to parametrize the level and transition strength
densities needed ir. pre-equilibrium calculations in teems of
their moments.
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1.0 INTRODUCTION

In the last decade, an intense effort has been «tade to ob-
tain a consistent quantum mechanical description of pre-
equilibciun reactions. This has been motivated in great
part by the growing body cf experimental cross section data,
differential in energy and angle, which has been obtained
over the same period. The early pre-equilibrium models (1),
using emission rates based on the Weisskopf model, were able
to describe the er.ergy spectra observed but were not pre-
pared to deal with their forward peaked angular distrib-
utions. More recent versions of one of these , the exciton
model, have succeeded in describing well the experimental
angular distributions (2,3). The pce-equilibrium and Hauser-
Feshbach equlibriun compound emission have also been unified
within this model through the inclusion of the effects of
angular momentum in the emission rates (3). Despite their
successes however, these models remain semiclassical ones
based on hypotheses which are intuitively reasonable but
difficult to evaluate or improve.

The first major step towards a quantum mechanical model of
pre-equilibrium reactions was taken by Agassi, Weidennuller
and Mantzouranis (AWM) (4). Using well defined hypotheses on
the statistical nature of the matrix elements coupling con-
figurations, they obtained a unified model of pre-
equilibriunt and equilibrium reactions. Their hypotheses
however yield angular distributions symmetric about 90° and
can only describe the multi-step compound part of the re-
action.

A quantum mechanical model providing the observed anisotropy
was developed shortly thereafter by Tamura and Udagawa (TO)
(5,6). Applying statistical hypotheses similar to those of
AWM to the states excited in direct reactions, they obtained
a good description of the multi-step direct component of the
pre-equilibrium reaction.

One of the first works to attempt to unite the direct and
compound processes in one formalism was that of Feshbach,
Kerman and Koonin (FKK) (7). Although their model has been
used successfully to describe a large body of experimental
data (8), it has also justly suffered many criticisms.
Their model o£ the multi-step compound component makes use
of a "never come back" hypothesis which prohibits the uni-
fied description of the pre-equilibrium and equilibrium con-
tributions. The latter must be included by hand. Several
authors (9,10) have noted that the multi-step direct compo-
nent cannot be written in terms of DWBA matrix elements as
done by FKK. Feshbach claims to have shown that this can in
fact be done (11), The fact that all successful comparisons
with experimental data have been made using DWBA matrix ele-



Rents certainly provides strong motivation for such an at-
tempt. However, Udaga-a, Low and Tamura have pointed out
other approximations in the model's multi-step direct compo-
nent which would still leave its accuracy in doubt (10).

Here, we will.draw on the works of the Heidelberg (4,12) and
University of Texas (5,6) groups to show how the FKK model
can be modified so as to satisfy the criticisms above. We
will then discuss cur not so successful attempts at
parametrizing the level densities and transition strength
densities necessary for its use.



2.0 AM IMPROVED MULTI-STE? DIRECT MULTI-STEP COHPOONO HOPE!.

He can improve the multi-step direct multi-step compound
model of . FKK by modifying the statistical hypotheses on
which it is based. We will use hypotheses consistent with
those oE AWM and of TU. The multi-step direct reaction
model of deeply inelastic heavy ion collisions developed by
Agassi, Ko and Weidenrauller (12) serves as a useful guide in
restating the statistical hypotheses used by TU in terms of
the interaction matrix elements. In particular, we note
their emphasis of the requirement that all statistical hy-
potheses be made in terms of reduced matrix elements in or-
der to conserve angular momentum.

As in the FKK model, we divide the space of states to be
considered into a part in which all particles are in bound
single particle states and another in which one and only one
of these particles is in a continuum state. He label these
by C (for compound) and D (for direct) respectively. We take
as statistical hypotheses on the reduced matrix elements the
following:

For the bound state to bound state interaction, V^V^,

- ^.^V-x'

For the continuum to bound^state interaction, V V ,



For the continuum to continua» interaction,

(c,T.

with all other possible pairs averaging to zero. In summary,
we suppose that the average coupling is non-zero only for
pairs of interactions that couple the same continuum chan-
nels anâ/or bound states.

Let us now briefly discuss the pre-equilibrium model which
we obtain using these hypotheses. We start with the Born ex-
pansion of the Lippstann-Schwinger equation for the Green's

Since the terms in the expansion which couple continuum to
bound states involve an odd\number of like interactions,
they will be zero on the average\

We obtain equations for the average continuum and bound
state components of the Green's function by keeping the low-
est order terms in the asymptotic expansion of their average
as described in the work of the Heidelberg group. We will
use their notation of a bar joining two matrix elements to
denote the average.



For the average continuum state Green's function, we obtain

where the optical potential» given by

depends again on the average Green's functions. This optical
potential is nonlocal and generally quite complicated, de-
pending on the energy, excitation energy, angular amenta
and configuration. To our knowledge, only its ground state
elements have been studied (13).

He obtain a similar Lippoann-Schwinger equation for the av-
erage continuum wavefunction

which we can write in differential form as

^ O
\

where £fc is the channel excitation energy and V«>is the ini-
tial distorting potential which we take to be real.

The average bound state Green's function is determined by
the equation



where the shift factor and "escape" width are determined by

A * i.

while the spreading*width is given by

To calculate average cross sections, we first express the*
in terms of the Born series expansion of the transition ma-
trix.

Beside the average shape elastic cross section, we find in
general contributions from multi-step direct and nulti-step
compound processes.

ZL V. A

The average shape elastic cross section is determined by the
average transition matrix.



The multi-step direct contribution can be written as

.- I

The first term in this expansion is the one-step DKBA while
the second is the two-step process (neglecting any
nonorthogonality terms) so that the two together reproduce
the model of TU. There are, of course, higher order ten»
that could be included although care should be taken with
nonorthcgonaltity teems that also might be necessary.

In the nulti-step compound contribution to the cross sec-
tion, the formation of the compound nucleus and the
posterior particle emission are described by the factors

while the transitions between classes of stgtes in the com-
pound nucleus are determined by the matrix 7C where

A

Heref the external mixing matrix is given by



while th* internal one is

He note that the multi-step compound component depends on
the continuum-continuum interaction which Modifies the
formation/emission factors, the external transition Matrix
and the escape widths. It is easily seen however that these
modifications do not effect the symmetry about 90* of the
conpound angular distribution. This symmetry is a result Of
the statistical hypothesis on the continutm to bound state
interaction which requires that partial waves differing in
total angular momentum or parity contribute incoherently to
the cross section.

In the limit in which the continuum to continuum interaction
goes to zero, the multi-step compound component almost re-
duces to the AWM expression for the cross section. The only
difference is the elastic enhancement factor which is miss-
ing here. This reflects a deficiency in our statistical hy-
potheses which do not yet contain all of the symmetry to be
expected. We are studying the extension of the statistical
hypotheses necessary to include this symmetry, although we
expect the resulting codifications to have little effect at
the energies at which pre-equilibrium reactions are impor-
tant.

The statistical hypotheses we have given thus define a pre-
equilibriun model which yields cross sections having a
nulti-step direct component equal to that of TO and a uni-
fied multi-step compound component similar to the one ob-
tained by AWM. The rodel also specifies the average optical
potentials, Green's functions and wave functions requiring
only the average interaction matrix elements as input param-
eters. \ •

\ \

He admit that the model is exceedingly complex, even more so
than the original multi-step model of FXK. Given present
computational possibilities, it will be necessary to approx-
imate it in sone manner before it can be usefully applied.
As it stands however, it could prove useful as a context
within which we can better understand and evaluate the ap-
proximations and models which we use.



3.0 A MOMENT METHOD APPROXIMATION OF LEVEL AMD THABSITTQH
STRENGTH DENSITIES

The Bost important quantities which enter pre-equlibrium
calculations are the average interact]' matrix elements and
the level densities. An alternative description uses the ap-
propriate product of the two, the density of interaction ma-
trix eienents, which w« will call the transition strength
density.

Combinatorial methods can calculate densities to within the
accuracy of the set of single particle states and the resi-
dual interaction used. Such calculations become prohibitive
for large energies and/or complex configurations however.
He have thus studied the possibility of using a simple mo-
ment method to reproduce the average trend of combinatorial
calculations.

3.1 LEVEL DENSITIES

He will illustrate the moment method calculation of level
densities with a simple case involving one type of particle
and hole. He will assume that we have N particle states and
N hole states and will write their energies as positive
ones with respect to the Fermi energy.

He first define an appropriately unnormalized one-body den-
sity operator for the system.

1--Í

He note that wher. ̂->*> , for fixed"*, this becomes the den-
sity operator for the independent particle ground state. We



obtain the partition function by taking the trace of this
operator.

; - . , • ! • • '

A power expansion in the factors x. and xh> a device first
used by Bloch (14), then permits us to identify the parti-
tion function of each configuration.

The density of states could be obtained by performing the
inverse Laplace transform of the partition function.

>»•»•.<.<>

In terns of a configuration's partition function, we can
calculate its moments using

where

L. * < - c>

10



It turns out, however, to be easier to calculate the Moments
for all configurations at the same time using

t"̂  - O

For example, we have

so that the number of states with p particles and h holes is

Likewise,

11



so that the centro id in energy of the p particle h hole con-
figuration is

whece 4V).. and <lí\ ere the average energies of the single
particle and single hole states, respectively.

Other low moments of interest are the variance in energy

V
Nf-t

and the variance of the spin projection,the spin cutoff fac
tor ,

The reconstruction of the density is most easily performed
in terms of the curoulants rather than the moments. These are
defined as

and are simple polynomial functions of the moments.

We calculate the cumulants through sixth order in A and V
and approximate the configuration partition function as

12



We can then write the density of states as a derivative ex-
pansion about a Gaussian,

where

He expand the exponential derivative keeping terns through
sixth oider. Finally, we obtain the level density using
Bethe's difference formula.

In the calculations performed, we have distinguished between
protons and neutrons permitting independent particle and
hole states for each. As the cutnulants of the state densi-
ties for noninteracting particles are additive, the gener-
alization to this case is trivial.

We have compared the moment method densities with combina-
torial ones obtained using the same sets of single particle
states. Although protons and neutrons were distinguished in
the calculations, this distinction was not investigated. He
have compared densities summed over all configurations with
the same number of particles and holes.

In Figures 1 and 2, we show two examples of the relatively
good agreement obtained for the density of four particle two
hole levels in 'lXZi. Similar results were obtained for other
values of the angular momentum. We note however that the os-
cillations in the combinatorial densities due to shell ef-
fects are not reproduced by the moment method results.

13



We would expect the shell effects to become less important
for more complex configurations. Indeed, as we can see in
Figure 3, the combinatorial total level density of five par-
ticle three hole states in 1^Zr is much smoother than the
four particle two hole one. However, we encounter here the
principal drawback of the moment method. It can describe the
energy dependence o£ the density only within the first few
standard deviations of the centroid. Although the density
falls about four orders of magnitude from its centroid value
in this range, we can see from the figure that the error is
still extremely large. Similar results, using up to 18 mo-
ments, have been reported recently by Jacquemin and Rataria
(15). We thus cannot hope to solve the problem by simply ex-
tending the expansion to include higher moments.

3.2 TRANSITION STRENGTH DENSITIES

We have also applied the moment method to the calculation of
the average spectroscopic amplitudes to be used in the DWBA
calculation of one-step direct reactions. Following TU we
assume a Wigner form for the residual interaction and write
its reduced matrix elements as

c <*c
ftc

We use a single form factor f(r), proportional to the radial
derivative of the optical potential, for all angular momen-
tum transfers and all excitation energies.

As we will look only at the one-step excitation from the
ground state, we write the spectroscopic amplitudes as

' l&

14



To be consistent with the statistical hypotheses discussed
earlier, we mist have

The total one-step angular distribution will then take the
form

As a single application of the residual interaction will
only excite one particle one hole states.

the necessary squared spectroscopic amplitudes are simply

In general, to calculate moments' of the distribution of
spectroscopic amplitudes, we would\tart with a partition
function

vhere Ft is the one body density operator described earlier
and fii is the appropriate transition operator. The function %
now has two pairs of arguments, referring to the initial and
final states respectively. For arbitrary configurations, the

2.'65



calculation of such a partition function is an extremely
difficult problem. Fortunately, it simplifies considerably
in the case of interest here. Because we specify the angular
momentum transferred and the initial state, the number of
arguments reduces to one.

V

We can then calculate the moments as before.

We have used the moment method to calculate the density of
spectroscopic amplitudes in r**Ni. The same set of single
particle states, shown in Figure 4, were used for protons
and neutrons. The resulting one particle one hole spectrum
and the allowed angular, momentum transfers are also shown
there. We note that, because of the Wigner form assumed.for
the residual interaction, only natural parity transitions
are possible.

We have used the resulting spectroscopic densities to calcu-
late the energy-angular distributions for Fe at 14.6 and
25.7 MeV. We introduced two free parameters, fij, and fit ,
which multiplied the contributions to the angular distrib-
ution of even and odd transferred angular momenta, respec-
tively. These were adjusted to obtain the best fit to the
data at 25.7 MeV (16). The strength density so obtained (**
times the spectroscopic density) can be seen in Figure 5.

The fit to the 25.7 MeV data can be seen in Figure 6. In
Figure 7, we show the results obtained at 14.7 HeV, where
the same parameters, d* and A3 , have been used but an
isotropic Hauser-Feshbach component has been added at the
higher energy losses. We see that the resulting fits are not
at all good. Comparing the results at the two energies how-
ever, we find the poorness of t{l, at a given excitation en-
ergy, to be about the same for \the two. A look at the
combinatorial spectroscopic distribution suggests that it
could better reproduce the experimental cross sections. The
moment method has failed here because it cannot reproduce
the structure of the combinatorial density but only its
global trend.

We thus conclude that the moment method will not provide an
immediate solution to the problem of precision in level and
transition strength densities. The combinatorial method
could provide the necessary precision for simple configura-
tions or at low energy. In some cases, such as that of the
one particle one hole transition strength, even more precise
methods could be warranted (6,18). Such methods cannot offer
a complete solution to the problem however. They are too

16



time consuming to be practical for the calculation of densi-
ties involving complex configurations. We believe that the
moment method could still provide a partial solution in
these cases (19). It will be necessary though to supplement
it with other approximate expressions in order to describe
these densities over the entire energy range.

\
A
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4.0 CONCLUSIONS

We have given statistical hypotheses on the interaction na-
trix elements which define a multi-step direct multi-step
compound pte-equilibrium model. The model specifies the av-
erage optical potentials, Green's functions» wave functions
and cross sections in terms of the average matrix elements.
The resulting cross sections have the multi-step direct com-
ponent of TU and a multi-step compound component similar to
that of AWM. As it stands, the model is too complex to be
useful for practical calculations but it can furnish a con-
text within which more approximate models could be under-
stood and evaluated.

The most important quantities which enter pre-equilibrium
calculations are the average matrix elements and the level
densities or, alternatively, the transition strength densi-
ties. We have studied the possibility of using the moment
method as a means of efficiently parametrizing these * and
found it to be generally unsuccessful. The method does not
succeed in reproducing the structure observed in densities
involving simple configurations and, for more complex ones,
can describe the densities only near their energy centroids.
We have not completely discarded the method however but con-
tinue to look for some combination of methods (combina-
torial, moment and others) which could provide a good
approximation to the necessary densities.

• \
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6.0 FIGURE CAPTIONS

Fig. 1 Comparison of the density of 4 particle 2 hoi*
levels of spin 0 in^Zr calculated using the com-
binatorial method (histogram) and the moment
method (smooth curve).

Fig. 2 Comparison of the density of 4 particle 2 hole
levels of spin 10 inuZr calculated using the com-
binatorial method (histogram) and the moment
method (smooth curve).

Fig. 3 Comparison of the density of all 5 particle 3 hole
levels in'lZr calculated using the combinatorial
method (histogram) and the moment method (smooth
curve).

Fig. 4 Neutron (and proton) single particle levels . used
for nUi, the resulting 1 particle 1 hole spectrum
and possible transferred angular momenta.

Fig. 5 Transition strength densities obtained for **Fe
based on the moment method spectroscopic amplitude
distribution ofC*Ni.

Fig. 6 Comparison of the calculated one-step DWBA angular
distributions to the experimental data at 2S.7 MeV
(ref. 16).

Fig. 7 Comparison of the calculated one-step DWBA angular
distributions to the experimental data at 14.6 MeV
(ref. 17).
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