11. 22 21 March

Н.Н. Хренников, А.В. Шукин

ИАЭ-4709/4

СРАВНИТЕЛЬНЫЙ АНАЛИЗ РАСЧЕТА И ЭКСПЕРИМЕНТА ДЛЯ УРАН-ГРАФИТОВЫХ РЕШЕТОК НА ПРИРОДНОМ И СЛАБООБОГАЩЕННОМ УРАНЕ

Москва — ЦНИ Иатоминформ — 1988

Ключевые слова: уран-графитовые решетки, реперные измерения, сравнение расчета с экспериментом, прецизионные программы, метод Монте-Карло.

Проанализированы три набора экспериментов, проведенных в разное время в различных лабораториях по измерению материального параметра для уран-графитовых решеток на природном и слабообогащенном уране. Сравнение с расчетом по программам MCU (метод Монте-Карло) и TRIFOGR указывает на достаточно хорошее согласие между расчетом и экспериментом (~0,4% в K_{эф}).

Three sets of experiments carried out at different times and in different laboratories on measuring the material parameter for uranium-graphite lattices, using natural and weakly enriched wanium have been analyzed. Comparison with the calculations by the TRIFOGR code and MCU packing reveals reasonable agreement between the calculation and experiment (~0,4% in K_{ch}).

© Центральный научно-исследовательский институт информации и технико-экономических исследований по атомной науке и технике (ЦНИИатоминформ) 1988 ł

введение

Повышение точности и надежности инженерных программ, используемых в реакторных расчетах урана-графитовых систем, тесно связано с выбором для их тестирования так называемых реперных данных. В качестве этих данных могут служить либо результаты хорошо аттестованных экспериментов, либо расчетные данные, полученные по современным прецизионным программам, включая и непосредственно численный эксперимент методом Монте-Карло.

Отбор реперных данных представляет собой самостоятельную и весьма важную проблему реакторной физики. Помимо очевидной необходимости тщательной верификации и тестирования прецизионных расчетных схем по результатам экспериментов, требуется детальная экспертная проверка и собственно экспериментальной информации, вплоть до выбраковки ряда данных, а, возможно, и некоторых экспериментальных методик, не удовлетворяющих современным требованиям по точности.

Alight a Processes

Для уран-графитовых систем такая проблема, к сожалению, практически не решена, причем не только на отечественном, но и на мировом уровне. Настоящая работа в какой-то степени ликвидирует этот пробел, по крайней мере для определенного класса уран-графитовых систем, а именно для решеток с моноблоком из естественного и слабообогащенного металлического урана.

В качестве экспериментальной информации выбраны три представительных набора данных: английские эксперименты, выполненные в рамках национальной программы BICEP [1], измерения на уран-графитовых решетках в ClilA (в Хэнфорде) [2] и эксперименты на холодном критическом стенде MARIUS в Сакле (Франция) [3]. Несмотря на то, что большинство эгих измерений было проведено около 20 – 30 лет назад, они и по сей день считаются классическими, а высокая аттестованность позволяет их рассмагривать в качестве базовых для уран-графитовых систем на природном и слабообогащенном уране.

Эти экспериментальные данные неоднократно использовались за рубежом для анализа вычислительных схем по мере их совершенство-

вания (см., например, [4 - 7]), причем соответствие между расчетом и экспериментом далеко не всегда улучшалось с повышением качества используемых в программе физических моделей. Характерным примером может служить опыт создания программы WIMS. Относительная неудача при обсчете экспериментов по исходной версии этой программы (расхождение между расчетом и экспериментом в Каф достигало ~2 - 5%) привела ее авторов к выводу о необходимости снижения эффективного резонансного интеграла 238 U на $\sim 10\%$ [5]*. Правда, затем американским ученым, используя метод Монте-Карло (программа МОСА) [8] при обсчете ~15 сборок из серии ВІСЕР, удалось довпечатляющего согласия с экспериментом (расхождение в биться $K_{ab} \simeq 0.4\%$), причем, в основном, за счет более корректного учета утечки нейтронов в решетках с сильной анизотропией. Однако ограниченный набор экспериментов, выбранных для сравнения в этой работе. а также некоторые упрощения физической модели, заложенные в программе, не позволяют сделать какие-либо обобщающие выводы.

В данной работе для сравнения с экспериментом используется недавно созданная отечественная программа MCU [9], реализующая метод Монте-Карло для решения залач переноса излучений в реакторах и защите. Одновременно на выбранной серии экспериментов проводится тестирование программы TRIFON [10], вернее, ее модификации, созцанной авторами данной работы специально для расчета уран-графитовых систем.

1. КРАТКОЕ ОПИСАНИЕ ИСПОЛЬЗУЕМЫХ ДЛЯ АНАЛИЗА ЭКСПЕРИМЕНТАЛЬНЫХ ПРОГРАММ

1.1. Английские эксперименты BICEP

Работа, осуществленная в рамках британской программы BICEP, заключалась в экспериментальном определении материального параметра для более чем 200 сборок с графитовым замедлителем с испольюванием в качестве топлива сплошного цилиндрического блока из металлического урана и двуокиси и кластерных решеток из двуокисых твэлов. В большинстве экспериментов исследуемая сборка пред-

^{*} К сожалению, авторы не располагают информацией о том, проводился ли овторный анализ этих экспериментов по мере совершенствования программы vIMS, а также по другим зарубежным программам после 1968 года.

ставляла собой куб с размерами граней от 2,5 до 3 м. Графитовая кладка была пронизана горизонтальными каналами, образующими правильную решетку, внутри которых размещались топливные элементы. Топливные элементы – это отдельные блочки высотой ~40 см, заключенные в алюминиевую оболочку. В канале топливные блочки закреплялись с помощью специальных деталей также из алюминия. Внутри каналов, в кладке, технологические трубы не устанавливались, и межцу топливом и графитовым блоком оставался свободный газовый зазор, причем во многих случаях весьма значительный. В распоряжении экспериментаторов имелось достаточное количество графита для сооружения сборок с квадратной решеткой, шаг которой изменялся от ~13 $_{10} \sim 40$ см, диаметр отверстий варьировался от 3,8 до 11,4 см. Исследовались решетки с обогащением топлива от 0,424% до 1,155% ²³⁵ U. Измерения материального параметра в экспериментах ВІСЕР проводилось экспоненциальным методом, основанным на определении длины релакзащии распределения нейтронов по оси, перпендикулярной плоскости источника, и поперечного лапласиана B², определяемого геометрическими размерами с учетом экстралолированной длины. В решетках с сильной анизотропией измерения проводились для двух ориентаций каналов относительно плоскости источника: горизонтальной и вертикальной.

Благодаря широкому набору обогащений топлива, шагов решетки, величины газовых зазоров эксперименты BICEP являются наиболее представительной серией для уран-графитовых систем, а наличие в ряде случаев сильной анизотропии миграции нейгронов представляет наиболее жесткий тест для теории.

1.2. Измерения на уран-графитовых решетках в Хэнфорде

Основу измерений в Хэнфордской лаборатории кампании "Дженерал электрик" составляют классические эксперименты, поставленные в обоснование Манхэттанского проекта США. В общей сложности было исследовано более 300 сборок. Измерения проводились в основном на сборке размером 2,5 x 2,5 м. Диаметр топливного элемента изменялся от 2,35 до 6,35 см, шаг решетки – от 10,6 до 38 см. Наряду с моноблоком из естественного металлического урана рассматривались также втулочные и кластерные композиции. Расположение каналов в сборке – горизонтальное. Топливные элементы высотой ~ 10 см заключались

2

в алюминиевую оболочку и размещались внутри технологической трубы, установленной в отверстие в графитовой кладке.

В отличие от экспериментов BICEP в большинстве опытов исследовались решетки, как с газовым зазором между топливным элементом и технологической трубой, так и при заполнении его теплоносителем (обычно — водой, в некоторых случаях органическим теплоносителем — моноизопропиленом). Обогащение варьировалось от естественного до 1,44% ²³⁵ U. Метод исследования — экспоненциальный опыт.

1.3. Эксперименты на критстенде MARIUS

Исследования уран-графитовых решеток на естественном уране во Франции проводились под эгидой французского Комиссариата по ядерной энергии в научном центре Саклэ на критическом холодном стенде MARIUS и температурном стенде CESAR [11]. Измерение материального параметра и характеристик решеток проводилось в рамках критического эксперимента методом постепенного замещения [12].

Характеристики рассматриваемых решеток изменялись в диапазонах: шаг решетки от 19,2 до 3,84 см; диаметр канала – от 7 до 17 см, диаметр топливных элементов – от 2,8 до 6,4 см. Высота блочков из естественного урана составляла 30 см. Топливо заключалось в оболочку из магний-циркониевого сплава ($o_a = 64,5$ мб, плотность – 1,74 г/см³). Расположение каналов в сборке – горизонтальное.

2. ТИПЫ РЕШЕТОК, ОТОБРАННЫХ ДЛЯ СРАВНЕНИЯ С РАСЧЕТОМ

Имея в виду не совсем удачный опыт предшествующих сравнений расчета с экспериментом для уран-графитовых решеток по зарубежным данным (см. введение), а также то, что настоящая работа является, по-видимому, одной из первых попыток систематического анализа широкого набора экспериментов по отечественным прецизионным программам для уран-графитовых решеток, из всего многообразия описанных экспериментов были выбраны решетки наиболее простой геометрии, а именно, решетки с топливом в виде сплошного цилиндрического блочка в квадратной решетке. Было выбрано около 60 сборок, основные характеристики которых приведены в табл. 2.1. Среди них 26 сборок BICEP, 20 хэнфордских сборок и 10 сборок на критстенде MARIUS. Большая часть из них была описана в [5], ряд новых добавлен для

~~	блица 2	.1. Основн	ıbre xapa	актеристин	ки экспе	римента	ЛЬНЬГХ	сборок, н	спользу	'embix d	пя сравн	ения с ра	ÇHETOM		
2	Обозна-	Oбoræ		Разме	тры зон	(радиусь	ν, cM)		Ядсриь	ле конц	ентрации	1 зон,	Сечение	Экспер	имсн-
	чение	цение							suep/cr	м ³ .10 ⁻²	ব		графита	Тальны	с бак- _ ź
	римента	-OHTO	TO II-	внут-	внеш-	воз-	Tpy-	замед-	c (U ^s)X	c(U ⁵)X	c(A1)*X	c(C) X	00(2200),	линги,	W
	<u>.</u>	шению	JIHBO	ренний	ний	душ-	6a	литель	× 10 ²	× 10•	$\times 10^{2}$	$\times 10^{2}$		R ²	R ²
		к при-		радиус	рациус	ный за-) 		1 1	24
	_	-поq		v 60-	0 00 -	иги дое									
		ному		изроц	почки	вода									
		урану													
	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16
}	BICEP	3	4												
-	91 21	1,0	1,270	1,3462	1,6053	1,905	(7,165	4,749	3,441	6,074	8,418	4,082	5,83	-5,66
2	87	1,0	1,270	1,3462	1,6053	1,905	١	8,885	4,749	3,441	6,074	8,484	4,075	3,94	-2,81

•															
	~	3	4	S	6	7	œ	6	10	11	12	13	14	15	16
17	1:MR 22/5	1,6()6	1,5189	1,7336	1,8352	3,4925	I	8,598	4,682	5,473	6.228	8.676	4.087	2.15	1 15
18	EMR 24/5	1,606	1,5189	1,7336	1,8352	3,4925	ł	985,8	4,682	5,473	6.228	8.676	4.087	4 76	-116
19	EE 10/7	1,303	1,524	1,7336	1,8352	4,7625	ł	10,031	4,686	4,435	6,228	8,755	4.079	0.757	1.13
20	EE 2/7	1,303	1,524	1,7336	1,8352	4,7625	i	10,031	4,686	4,435	6,228	8,755	4,079	3.11	-0.811
21	EE 21/8	1,303	1,5189	1,7336	1,8352	3,4925	ł	8,598	4,686	4,435	6,228	8,676	4.087	0.788	1.15
22	EE 7/8	1,303	1,5189	1,7336	1,8352	3,4925	I	98حـ8	4,686	4,435	6,228	8,676	4,087	4.116	- 2.01
23	EE 5/12	0,589	1,5151	1,5494	1,8034	4,7625	ł	10,031	4,705	2,002	6,131	8,755	4.079	3.11	-4.28
24	EE 9/12	0,589	1,5151	1,5494	1,8034	4,7625	ł	10,031	4,705	2,002	6,131	8,755	4,079	-3.92	1.13
25	EE 13/11	0,589	1,5151	1,5494	1,8034	5,755	ł	11,146	4,705	2,002	6,131	8,815	4,073	-3,36	1,13
26	G 31/13	0,589	1,5151	1,5494	1,8034	3,492	1	10,031	4,705	2,002	6,131	8,724	4,082	-4,26	1,16
	MARIUS														
27	28/70/192	1,0	1,385	1,385	1,924	3,500	i	10,832	4.420	3.205	0.0459	8.524	3.79	0.906	0.277
28	31/70/224	1,0	1,535	1,535	2,027	3,500	ł	12,638	4.590	3,326	0.0466	8.524	3, 19	0.946	0,293
29	40/70/317	1,0	1,985	1,985	2,392	3,500	ļ	17,873	4,447	3,222	0,0488	8,524	3,79	0,364	0, 299
30	40/90/317	1,0	1,985	1,985	2,392	4,500	1	17,873	4,447	3,222	0,0488	8,524	3,79	0,455	0, 292
31	50/90/317	1,0	2,500	2,500	2,663	4,500	1	17,873	4,605	3,337	0,0623	8,524	3,79	0,910	0, 295
32	50/110/317	1,0	2,500	2,500	2,663	5,500	ł	17,873	4,605	3,337	0,0623	8,524	3,79	0,957	0,289
33	31/70/192	1,0	1,535	1,535	2,027	3,500	!	10,832	4,590	3,326	0,0466	8,524	3,79	0,975	0,277
34	31/90/224	1,0	1,535	1,535	2,027	4,500	ł	12,638	4,590	3,326	0,0466	8,524	3,79	0,845	0,282
35	28/90/192	1,0	1,385	1,385	1,924	4,500	i	10,832	4,420	3,205	0,0459	8,524	3,79	0,723	0,258
36	50/140/384	1,0	2,500	2,500	2,663	7,000	ł	21,664	4,605	3,337	0,0623	8,524	3,79	0,408	0,282
	HANFORD*	*													
37	1.17/5.19	1,0	1,490	1,490	1,590	1,750	1,910	7,434	4,810	3,295	7,480	8,321	4,066	0 -	110***
38	1.17/5.19	1,0	1,490	1,490	1,590	1,750	1,910	7,434	4,810	3,295	7,480	8,321	4,066	0 -	760
39	1.17/6.19	1,0	1,490	1,490	1,590	1,750	1,910	8,867	4,810	3,295	7,480	8,321	4,066	0	840
40	1.17/6.19	1,0	1,490	1,490	1,590	1,750	1,910	8,867	4,810	3,295	7,480	8,321	4,066	C	170
41	1.17/7.0	1,0	1,490	1,490	1,590	1,750	1,910	10,031	4,810	3,295	7,480	8,266	4,066	-	000

. .

.

Окончание табл. 2.1

\$2

	1.17/7.0	1,0	1,490	1,490	1,590	1,750	1,910	10,031	4,810	3,295	7,480	8,266	4,066	1,160
_	.17/7.5	1,0	1,490	1,490	1,590	1,750	1,910	10,748	4,810	3,295	7,480	8,266	4,066	0660
_	.17/7.5	1,0	1,490	1,490	1,590	1,750	1,910	10,748	4,810	3,295	7,480	8,266	4,066	1,220
	.17/10.375	1,0	1,490	1,490	1,590	1,750	1,910	14,868	4,810	3,295	7,480	8,321	4,066	0,150
l	.17/10.375	1,0	1,490	1,490	1,590	1,750	1,910	14,868	4,810	3,295	7,480	8,321	4,066	0,570
1	.36/5.19	1,0	1,727	1,740	1,830	2,020	2,200	7,434	4,310	3,12	7,750	8,321	4,066	-1,140
	.36/5.19	1,0	1,727	1,740	1,830	2,020	2,200	7,434	4,310	3,12	7,750	8,321	4,066	2,250
-	.36/6.19	1,0	1,727	1,740	1,830	2,020	2,200	8,867	4,310	3,12	7,750	8,321	4,066	0,310
	.36/6.19	1,0	1,727	1,740	1,830	2,020	2,200	8,867	4,310	3,12	7,750	8,321	4,066	0,020
-	.36/7.0	1,0	1,727	1,740	1,830	2,020	2,200	10,031	4,310	3,12	7,750	8,266	4,066	0,780
-	.36/7.0	1,0	1,727	1,740	1,830	2,020	2,200	10,031	4,310	3,12	7,750	8,266	4,066	0,810
_	.36/7.5	1,0	1,727	1,740	1,830	2,020	2,200	10,748	4,310	3,12	7,750	8,266	4,066	0,850
	.36/7.5	1,0	1,727	1,740	1,830	2,020	2,200	10,748	4,310	3,12	7,750	8,266	4,066	1,010
ī	.36/10.375	1,0	1,727	1,740	1,830	2,020	2,200	14,868	4,310	3,12	7,750	8,321	4.066	0,260
-	.36/10.375	1,0	1,727	1,740	1,830	2,020	2,200	14,868	4,310	3,12	7,750	8,321	4,066	0,710

· . . .

ļ

1

Ì

* В экспериментах MARIUS в качестве покрытий использовался Mg - Zi сплав, для экспериментов в Хэнфорде приведены концентрации алюминиевых покрытий с учетом торцевых участков (концентрация алюминия в технологических трубах была 0,0609.10^{2 4} ядер/см³).

** Во всех нечетных вариантах зазор между блочками и трубой заполнен водой.

*** Приводятся данные по материальному параметру $B^2 = B_I^2 + B_Z^2$.

расширения диапазона обогащений и шагов решетки. Наиболее широко представлены эксперименты ВІСЕР. Часть решеток (N⁰ 1 – 6) идентична за исключением шага, другой набор (N⁰ 17, 21) отличается лишь обогащением. Некоторые решетки (N⁰ 11, 25) имеют очень сильно выраженную анизотропию, в других (N⁰ 1 – 3, 7, 8), напротив, анизотропия отсутствует.

Из американских экспериментов выбраны решетки с топливом только естественного обогащения с диаметром блочка 3 и 3,5 см (1,17 и 1,36 дюйма) с различным шагом решетки от 13,2 до 26,4 см.

Проанализированы сборки как с водой в зазоре между топливным блочком и технологической трубой, так и при ее отсутствии. Поскольку эти данные единственные во всем наборе измерений, в которых анализируется влияние теплоносителя (воды) на реактивность системы, они очень важны с точки зрения представления о надежности расчетной оценки аварийных ситуаций с потерей теплоносителя в уран-графитовых решетках этого класса.

Используемые французские эксперименты (MARIUS) практически перекрывают весь диапазон проведенных измерений и отличаются от двух предыдущих серий наибольшим диаметром топливного блочка (до ~50 мм), большим диапазоном шага от ~19 до 38 см и заметной толшиной оболочки.

- 3. ОСНОВНЫЕ ИСТОЧНИКИ ПОГРЕШНОСТЕЙ

При сравнении расчета с экспериментом необходимо иметь представление об уровне погрешности измерений. Первый и основной источник погрешности – собственно погрешность измерений.

Для экспериментов BICEP значительный ряд ранних измерений описан в [13], однако позднее они были подвергнуты более тщательному анализу и скорректированные данные приведены в [1]. Именно эти последние результаты и использовались в настоящей работе. Для большинства измерений погрешность в материальном параметре составляет менее 5%, за исключением сборки 91, где ошибка составляла около 50%. Однако из-за малой утечки погрешность в $K_{эф}$ составляет даже для этого экстремального случая менее 0,4%.

Для американских измерений подробные указания о погрешности материального параметра не приведены, но, по мнению автора работы [2], ее можно считать для всех измерений равной порядка 4.10^{-6} см⁻².

Это соответствует относительной ошибке $\sim 3\%$ для шага a = 19 см и $\sim 7\%$ для шага a = 26 см.

В экспериментах на критическом стенде MARIUS ошибка составляла от 1 до 3%.

При рассмотрении целой серии экспериментов можно сделать вывод, что влияние систематической погрешности в материальном параметре на $K_{3\phi}$ пренебрежимо мало. Действительно, уменьшение ошибки в измерениях длины релаксации указывает, что систематические ошибки (поправки на высшие гармоники, или на депрессию потока вблизи счетчика) гораздо меньше ошибок счета и подгонки кривых методом наименьших квадратов. Аналогичная ситуация наблюдается и при определении экстраполированной длины, когда несмотря на учет систематической погрешности, основной вклад в погрешность вносит, по всей видимости, измерение формы потока. По этой причине нет оснований ожидать значительного влияния на $K_{3\phi}$ ошибок в определении материального параметра.

Вторым, и может быть более важным источником расхождений между расчетом и экспериментом, является расхождение в определении нуклидного состава топлива. Вообще говоря, собственно нуклидный состав топлива для всех измеренных сборок приведен с достаточной точностью. Так. в описаниях экспериментов ВІСЕР указывается на то, что при измерениях с блоками диаметром 2,54 и 3,05 см (1,0 и 1,2 дюйма) использовалось топливо особой чистоты, в го время как блоки диаметром 4,17 см (1,64 дюйма) удовлетворяли коммерческим стандартам. По оценкам, в последнем случае дополнительные примеси в топливе могут привести к вредному поглощению, составляющему ~0,05% в коэффициенте использования тепловых нейтронов. Мегаллический уран во французских экспериментах в некоторых случаях содержал добавки в виде алюминия (~0,4% по весу) или сплава алюминия с железом (300.10⁻⁵ Fe и 1000 Al). Такая высокая аттестованность топлива позволяет при расчетном анализе практически устранять погрешность, связанную с неопределенностью нуклидного состава. К гораздо большей погрешности при сравнении эксперимента с расчетом приводят ошибки при учете покрытий, технологических труб и деталей крепления. Дело в том, что как уже отмечалось, топливо из естественного урана, используемое в этих экспериментах, представляло собой блочки небольшой высоты (10 см для HANFORD, \sim 30 см – MARIUS и \sim 40 см – BICEP) с покрытием по боковым и торцевым участкам. Учет горцевых покрытий уменьшает плотность топлива по сравнению со стандартной.

Особенно это заметно в экспериментах в Хэнфорде, где эффективная плотность топлива в ряде случаев достигает 17,1 г/см³ вместо стандартной 18,9 г/см³. Это, в свою очередь, приводит к неоднозначности в ядерных концентрациях топлива, используемых при расчетном анализе разными авторами. Так, например, при обсчете американских экспериментов (HANFORD) английскими специалистами концентрация ²³⁵U в естественном уране для одного и того же эксперимента колеблется от 3,255.10²⁰ до 3,314.10²⁰ ядер/см³, то есть в пределах ~2% (ср. [4] и [5] для сборки № 37 из табл. 2.1). В связи с этим отобранные для сравнения эксперименты были пцательно проанализированы для унификации исходных данных. Поэтому приведенные в табл. 2.1 данные американских (HANFORD) и французских (MARIUS) экспериментов по нуклидному составу топлива отличаются от приведенных в уже цитированных [4] и [5].

Еще одним источником погрешности является степень чистоты графита и связанная с ней величина теплового сечения графита. В английских экспериментах это значение определялось для каждой отдельной сборки при относительной ошибке ~ 2,5%, или 0,1 мб. При больших значениях отношения объема графита к объему урана и больших шагах решетки ошибка в сечении графита может приводить к заметной погрешности. Например, для эксперимента ВІСЕР-76 (V_{3am}/V_{TORD} = 77, шаг a = 20 см) уменьшение на 2,5% сечения поглощения в графите приводит к увеличению $K_{3\phi}$ на 0,3%. С другой стороны, для ВІСЕР-91 (V_{3am}/V_{TORD} = 29, шаг = 12 см) изменение в $K_{3\phi}$ пренебрежимо мало.

Определенный вклад в сечение поглощения вносит содержание влаги в графитовой кладке. Для английских экспериментов измерение влажности графита проводилось несколько лет спустя после завершения программы измерений, и, по утверждению [5], содержание водорода в кладке на этоз период составило от 50 до 100.10⁻⁶ по весу для выбранных образцов. Присутствие водорода в таких количествах должно приводить к увеличению замедляющей способности графита $\xi \Sigma_s$ на 2,5%. В данном исследовании этот аспект не учитывался.

Сечение графита, используемого в экспериментах в Хэнфорде, было получено по измерениям длины диффузии. Эти измерения анализировались в [4], где получено значение $\sigma_a = 4,066$ мб, и именно это значение использовалось в данной работе.

Во французских измерениях сечение графита, приводимое в [6], равно $\sigma_a(2200) = 3,79$ мб. Погрешность определения этой величины не приведена.

10

Что касается покрытий, то в экспериментах BICEP и HANFORD использовались, как уже отмечалось, алюминиевые оболочки, во французских — магний-циркониевые. Приводимые в табл. 2.1 концентрации опементов покрытий в экспериментах HANFORD и MARIUS увеличены по сравнению со стандартной за счет учета торцевых участков топливных блочков.

4. ОПИСАНИЕ РАСЧЕТНЫХ СХЕМ, ПРИВЛЕЧЕННЫХ ДЛЯ СРАВНЕНИЯ С ЭКСПЕРИМЕНТОМ

Выбранные эксперименты использовались для тестирования двух прецизионных программ: пакета программ MCU, реализующего метод Монте-Карло применительно к реакторным задачам, и ячеечной программы TRIFOGR. Ниже приводится краткое описание используемых расчетных схем.

4.1. Пакет программ МСU

Реперные расчеты по пакету МСИ проводились по стандартной версии для ЭВМ БЭСМ-6. В качестве управляющего использовался модуль MCURT2. Для описания геометрии системы использовался геометрический модуль ROMBIC [14]. Накопление в процессе моделирования, обработка и печать функционалов осуществлялись модулем регистрации REGL [15]. Для корректного учета вероятности избежать утечки из системы в модуль REGL был добавлен специальный блок расчета высших пространственных моментов и смешанных произведений. В качестве библиотек использовались стандартные библиотеки ТЕПКОН, LIPAR-4 и БНАБ в версии от апреля 1988 года.

4.2. Программа TRIFOGR

Программа TRIFOGR является модификацией известной программы TRIFON [10] и ориентирована на расчет урана-графитовых систем. Основные изменения в программе TRIFON коснулись тепловой части. Расширена и укрупнена энергетическая сетка (граница тепловой группы – 1 эВ при 40-групповом равномерном разбиении по скоростям).

Групповые сечения для тепловой группы рассчитаны по программе TERMAC [16] и объединены в специальный файл в зависимости от температуры. Модели рассеяния: для графита – кристаллическая с учетом когерентных эффектов; для воды – модель H20K, основанная на фононном спектре американской библиотеки ENDF. Для уран-графитовых систем на природном уране сечения для ²³⁸U в области выше 1 эВ универсальны и получены путем сравнения групповых скоростей захвата с расчетом методом Монте-Карло (пакет MCU) с учетом s- и p-рассеяния. Тепловые параметры для ²³⁵U таковы: $\sigma_f = 583,5$ 6; $\sigma_a = 680,5$; $\nu^5 = 2,437$. Можно считать, что расчеты по программам TRIFOGR и MCU проводились практически на одной и той же системе констант.

Обработка результатов проводилась по следующей схеме. По заданному нуклидному составу и геометрии (см. табл. 2.1) рассчитывался коэффициент размножения бесконечной однородной решетки (K_{∞}). В ячеечной программе TRIFOGR эгому соответствовал расчет отдельной цилиндризованной ячейки с условием отражения на внешней границе, в программе MCU — расчет оздельной ячейки с реальной внешней границей и условиями трансляционной симметрии и боковых и торцевых гранях.

Затем по экспериментально определенным радиальным и аксиальным лапласианам и по расчетным значениям четных пространственных моментов скорости генерации нейтронов \tilde{r}^{2n} вычислялся эффективный коэффициент размножения лип каждов из сборок по формуле:

$$K_{g\phi} = K_{\infty} P(B^2) = K_{\infty} \sum_{n=0}^{\infty} (-1)^n \frac{(B\bar{r})^{2n}}{2n!}$$
 (1)

В вариантах с естественным ураном ($K_{\infty} - 1 \ll 1$) и при слабой анизотропии ($M_z^2 \simeq M_r^2$) в выражении (1) достаточно ограничиться первыми двумя членами разложения. Для решеток со слабообогащенным ураном или в случае сильной анизотропии приходится учитывать четвертые и шестые пространственные моменты и их смешанные произведения.

В программе TRIFOGR блок расчета высших моментов отсутствует, в связи с чем высшие моменты \tilde{r}^4 и \tilde{r}^6 и смешанные произведения рассчитывались по аналитическим выражениям, содержащим расчетные значения средних сечений.

5. ОСНОВНЫЕ РЕЗУЛЬТАТЫ СРАВНИТЕЛЬНОГО АНАЛИЗА

Результаты расчетного анализа сведены в табл. 5.1 и 5.2. Для каждого из вариантов приведены значения K_{∞} , рассчитанные по программам TRIFOGR и MCU, а также пространственные моменты и полная вероятность утечки, полученные методом Монте-Карло. В последних

			Maulota		tre-Napho (Hai	([3]) xer mc u			
ă	Обозначение	2	ň	етные прост	гранственные и	моменты ској	рости тенераци	и нейтронов	
:	эксперимента	8	x ² /2!, cm ²	z ² /2!, cm ²	x ⁴ /4! × ×10 ^{*6} , cm ⁴	z ⁴ /4! × ×10 ⁻⁶ , cm ⁴	x ⁶ /6! × × 10 ⁻¹⁰ , cm ⁶	z ⁶ /6! × ×10 ⁻¹⁰ , cm ⁶	(1 - P(B ²)) × × 100
1	2	ñ	4	5	9	7	8	6	10
	BICEP		-						
-	91	0,996 ± 0,005	426	433	2.777	2.806	1 734	1 683	0.30
2	87	$1,053 \pm 0,005$	485	483	3,685	3,600	2,770	2.592	0,20 5.36
m ·	67	$1,070 \pm 0,006$	542	552	4,735	4,891	4,051	4.393	6,03
4	83	$1,053 \pm 0,004$	798	1012	10,52	19,53	15.90	60.81	5.06
ŝ	66	$1,053 \pm 0,004$	798	1012	10,52	19,53	15,90	60.81	5 5 3
ہ م	16	$1,065 \pm 0,003$	605	607	6,053	6,256	6,323	7.081	5 96
	120	$0,950 \pm 0,003$	368	372	2,142	2,193	1.185	1.304	-56)
x	103	$1,079 \pm 0,003$	537	536	4,719	4,542	4.277	3 748	6.86
6	17W.12	$1,080 \pm 0,003$	681	725	8,024	9,136	9.873	11.91	6.85
10	18W.1	$1,053 \pm 0,004$	684	849	7,360	12,39	8,310	22.21	4.56
11	1 - 38	$1,075 \pm 0,003$	938	1295	14,41	32,26	24,56	116.7	6.48
12	1 - 7	$1,075 \pm 0,003$	938	1295	14,41	32,26	24.56	116.7	6.77
<u>, I</u>	1 - 29	$1,031 \pm 0,003$	637	775	6,606	11,32	6,790	21.64	137
4	1 - 24	$1,081 \pm 0,003$	637	775	6,606	11,32	6,790	21.64	7.38
cl ;	<u> </u> - 54	1,033 ± 0,003	519	592	4,322	6,549	3,605	17,25	3.41
10	1 - 59	$1,087 \pm 0,005$	658	733	272,7	10,52	8,135	18,23	7,67
10	EMK 22/5	$1,168 \pm 0,003$	480	533	3,517	4,581	2,426	4,465	14,9
9 9	E.M.K. 24/5	1,168 ± 0,003	480	533	3,517	4,581	2,426	4,465	15,0
د ا 10		1,139 ± 0,003	653	782	6,641	13,42	6,888	92,93	12.6
		1,139 ± 0,003	653	782	6,641	13,42	6,888	92,93	12,7
1		$1,101 \neq 0,003$	498	548	3,851	4,975	3,097	5,490	9,58
	E.F. //8	$1,101 \pm 0,003$	498	548	3,651	4,975	3,097	5,490	8,92
	EE 5/12	$0,833 \pm 0,002$	709	892	8,058	18,92	9,084	189,0	39,8
4	EE 9/12	$0,833 \pm 0,002$	709	892	8,058	18,92	9,084	189.0	20,1
25	EF 13/11	$0,852 \pm 0,003$	874	1182	12,72	34,71	16,02	530,2	-17,8
26	(; 31/13	$0,847 \pm 0,003$	565	612	5,138	6,471	4,655	9,830	- 19,3

e-Kar MO Thi nacuet. Таблица 5.1. Основные результа

.

OkOI	чанис таш. J.I									
1	2	3	4	5	9	7	8	6	10	
	MARIUS									
27	28/70/192	$1,085 \pm 0,003$	625	668	6,550	7,630	7,521	10,04	7,14	
28	31/70/224	$1,096 \pm 0,003$	630	664	6,588	7,014	7,340	7,093	7.50	
29	40/70/317	$1,069 \pm 0,003$	729	727	9,620	9,238	13,65	12,41	4,66	
30	40/90/317	$1,071 \pm 0,004$	756	785	10,09	11.04	14,29	17,71	5,49	
31	50/90/317	$1,093 \pm 0,002$	619	629	6,531	6,773	7,069	7,556	7,11	
32	50/110/317	$1,096 \pm 0,004$	656	725	7,201	13,02	8,206	105,1	7,90	
33	31/70/192	$1,084 \pm 0,004$	564	600	5,206	6,050	5,248	7,059	6,83	
34	31/90/224	$1,092 \pm 0,003$	697	783	7,954	10,46	9,575	15,32	7,67	
35 36	28/90/192 50/140/384	$1,087 \pm 0,003$ 1 087 + 0,004	724 845	851	8,293 17,88	12,67	9,888 21 10	26,38 74 66	7,08 6,06	
2			2					-		
	HANI-UKD*									
37	1.17/5.19	0.993 ± 0.004	340	344	1	1	ļ	i	- 0.40	
38.	1.17/5.19	0.964 ± 0.004	380	382	I	:	;	ı	- 3,01	
39	1.17/6.19	$1,028 \pm 0.004$	412	420	1	i	I	ł	3,40	
40	1.17/6.19	1,035 ± 0,004	454	458	I	I		l	3,38	
41	1.17/7.0	1.049 ± 0.003	460	463	1	I	ł	l	4,39	
42	1.17/7.0	$1,055 \pm 0,003$	482	484	ļ	ł	1	l	5,31	
43	1.17/7.5	$1,050 \pm 0,003$	497	498	I	ł	ł	t	4,67	
44	1.17/7.5	$1,064 \pm 0,003$	510	515	I	I	i		5,92	
45	1.17/10.375	$1,010 \pm 0,004$	705	101	I	i	ł	ł	1,19	
46	1.17/10.375	$1,045 \pm 0,003$	705	705	1	I	ł	ł	4,02	
47	1.36/5.19	$0,964 \pm 0,003$	317	322	ļ	ł	I	ι	-4,15	
48	1.36/5.19	$0,911 \pm 0,004$	375	377	1	ł	1	ŧ	-9,33	
49	1.36/6.19	$1,011 \pm 0,004$	377	381	1	1	ł		1,19	
50	1.36/6.19	0,995 ± 0,002	423	424	I	Ι	1	l	0,10	
51	1.36/7.0	$1,034 \pm 0,004$	426	428	ł	1	1	ŧ	3,19	
52	1.36/7.0	$1,028 \pm 0,003$	454	455	ł	i	ł	:	3,50	
53	1.36/7.5	$1,042 \pm 0,003$	461	467	:	ı	1	ł	3,84	
54	1.36/7.5	$1,045 \pm 0,003$	492	492	1	1	1	ì	4,02	
55	1.36/10.375	$1,025 \pm 0,003$	670	610	I	ł	ł		1,76	
56	1.36/10.375	$1,055 \pm 0,004$	670	675	Í	1	1		4,55	
*	Bo BCeX HeyeTHLIX	M DOER XETHENDER	тежа у бл	очками и тру	ибой заполнен	н волой.				

11.44

Окончание табл. 5.1

.

Та	блица 5.2. Эф	рфективн	ые коэффиі	циенты размі	южения, рэ	ссчитанны	ie no nporp	ammam TRIFOGR	и МСU	
Š	Обозначение эксперимента	Обо <i>га</i> - щение*	Ориен- тация **	Топливо ф, см	Воздуш- ный зазор ¢, см	Шаг, см	K ^(IR)	K _w (MCU)	K ^(TR) эф	фс _у (л. м)У
Т	2	3	4	5	6	7	×	6	10	11
	BICEP									
-	16	1.0	>	254	381	12 70	100 0	500 0 + 900 0	0.087	
5	87	1.0	· >	2.54		15.75	1.054	1.053 ± 0.005	0,908	0,992 = 0,000
'n	97	1,0	Н	2,54	3,81	17,78	1.067	1.070 ± 0.006	1.001	1.003 - 0.007
4	83	1,0	>	2,54	9,52	17,78	1,059	$1,053 \pm 0.004$	1.003	0.997 ± 0.005
S	66	1,0	Н	2,54	9,52	17,78	1,059	$1,053 \pm 0.004$	0.998	0.992 ± 0.006
9	76	1,0	>	2,54	3,81	20,00	1,068	$1,065 \pm 0,003$	1.006	1.003 ± 0.006
7	120	1,0	Н	3,05	3,81	12,70	0,947	$0,950 \pm 0,003$	1,000	$1,003 \pm 0.005$
œ	103	1,0	Н	3,05	3,81	20,00	1,081	$1,079 \pm 0,003$	1,007	$1,005 \pm 0,004$
6	17W.12	1,0	>	3,05	6,98	25,14	1,079	$1,080 \pm 0,003$	1,005	$1,006 \pm 0.004$
10	18W.1	1,0	H	3,05	9,52	17,78	1,045	$1,053 \pm 0,004$	0,994	$1,005 \pm 0,004$
7	1 - 38	1,0	Н	2,54	11,43	20,32	1,074	$1,075 \pm 0,003$	1,004	$1,005 \pm 0.004$
12	1 - 7	1,0	>	2,54	11,43	20,32	1,074	$1,075 \pm 0,003$	1,001	$1,002 \pm 0,005$
<u>.</u>	1 - 29	1,0	H	4,17	11,43	25,14	1,079	$1,081 \pm 0,003$	0,999	$1,001 \pm 0,003$
4	<u> </u> - 24	1,0	>:	4,17	11,43	25,14	1,079	$1,081 \pm 0,003$	0,999	$1,001 \pm 0,003$
2	l - 54	1,0	>	4,17	9,52	20,32	1,027	$1,033 \pm 0,003$	0,992	0,998 • 0,003
16	1 - 59	1,0	>	4,17	9,52	30,48	1,085	$1,087 \pm 0,004$	1,011	$1,009 \pm 0,006$
<u></u>	EMR 22/5	1,6	H	3,05	6,98	15,24	1,166	$1,168 \pm 0,003$	0,993	$0,995 \pm 0,004$
8	EMR 24/5	1,6	>:	3,05	6,98	15,24	1,166	$1,168 \pm 0,003$	166'0	$0,993 \pm 0,004$
19	EE 10/7	1,3	Ŧ	3,05	9,52	17,78	1,142	$1,139 \pm 0,003$	0,998	$0,996 \pm 0,004$
0 ~	E.E. 2/7	<u>ا</u> رع	>	3,05	9,52	17,78	1,142	$1,139 \pm 0,003$	0,997	0,995 - 0,004
71	EE 21/8	1,3	H	3,05	6,98	15,24	1,099	$1,101 \pm 0,003$	0,993	$0,996 \pm 0,004$
	EE 7/8	1,3	>	3,05	6,98	15.24	1,099	$1,101 \pm 0,003$	1,000	$1,003 \pm 0,004$
-1 -1 -1	FE 5/12	0,6 0	>:	3,05	11,43	20,32	0,832	$0,833 \pm 0,002$	1,164	$1,165 \pm 0.003$
4.	11.9/12	0,6	H	3,05	6,98	15,24	0,832	$0,833 \pm 0,002$	666'()	$1,001 \pm 0,004$
1	EE 13/11	0,6 ,	H	3,05	9,52	15,24	0,845	$0,852 \pm 0,003$	0,996	$1,004 \pm 0,004$
Q.7	G 31/13	0,6	H	3,05	9,52	15,24	0,842	0.847 ± 0.003	1,002	$1,009 \pm 0,004$

OKI	ончание табл. 5	ci _								
-	2	m_	4	5	9	L	×	6	10	11
	MARIUS									
27	28/70/192	1,0	>	2,77	7,01	19.20	1.601	1.085 ± 0.003	1 (113	
20 r t	31/70/224	1,0	ン	3,07	10,7	22,40	1,095	$1.096 \pm (1.003)$	1.012	1,000 - 0,004
50	40/70/317	1, 0	~	3.96	10'2	31,70	1,081	$1,069 \pm 0.003$	1.031	1.070 ± 0.005
30	40/90/317	1,0	>	3.96	8.99	31,70	1,082	1.071 ± 0.004	1.023	1.012 ± 0.006
51	50/90/317	1,0	·>	5,00	8.99	31,70	1,094	1.093 - 0.002	1.016	1015 - 0.004
() () () ()	50/110/317	1,0	>:	5,00	10,00	31,70	1,095	$1,096 \pm 0.003$	1.008	$1,019 \pm 0.004$
5	31/70/192	1,0	`~	3,07	10,7	19,20	1.081	1.084 ± 0.004	0.997	1.010 ± 0.005
т 4 г	31/90/224	1,0	>:	3,07	8,99	22,40	1,095	$1,092 \pm 0,003$	1.012	1.008 ± 0.004
33	28/90/192	0,1	>>	2,77	668 6	19,20	1,088	1,087 + 0,003	1,011	$1,010 \pm 0.004$
2		0,1	>	00,0	I 4 , U	38,40	060,1	$1,087 \pm 0.004$	1,025	$1,022 \pm 0,006$
	HANFORD**	*								
37	i.17/5.19	1,0	Н	2.97	3.50	13.18	0.989	0 993 + 0 004	1003	0 997 + 11 1105
38	1.17/5.19	1,0	Н	2,97	350	13,18	0.996	0.964 ± 0.004	566 0	0.993 - 0.005
39	1.17/6.19	1,0	Н	2,97	3,50	15,72	1.030	1.028 ± 0.004	0.996	0.993 ± 0.005
40	1.17/6.19	1,0	H	2.97	3,50	15,72	1,030	1.035 ± 0.004	0.996	1.000 ± 0.005
41	1.17/7.0	1,0	Н	2,97	3,50	17,78	1,047	1.049 ± 0.003	1.000	1.003 ± 0.004
4	i.17/7.0	1,0	I	2,97	3,50	17,78	1,057	$1,055 \pm 0,003$	1001	0.999 ± 0.004
4.	1.17/7.5	1,0	H:	2,97	3,50	19,05	1,051	$1,050 \pm 0,003$	1,001	$1,001 \pm 9,004$
4	C///1.1	0,1	Ξ:	2,97	3,50	19,05	1,066	$1,064 \pm 0,003$	1,003	$1,001 \pm 0,004$
4 4 0 4	2/201/111	0,0	Ξ:	2,97	3,50	26,35	1,022	$1,010 \pm 0,004$	1,011	$0,998 \pm 0,006$
44	1 36/5 10), 1		19,2	040	20,35	1,053	1.045 ± 0.003	1,012	1,003 ± 0,005
48	1.36/5.19		: 1		404	13,10	1000	0,964 ± 0,003	1,993 1000	$1,003 \pm 0,004$
49	1.36/6.19	1.0	Н	3.45	40,4	15.72	1 007	1011 ± 0.004	0050	0,220 - 0,004
50	1.36/6.19	1.0	H	3.45	4 °	15,77	1994	0.995 ± 0.002	5000	0.004 - 0.003
51	1.36/7.0	1,0	Н	3,45	4.04	17.78	1.030	1.034 ± 0.004	0 948	1.001 + 0.005
52	1.36/7.0	1,0	Н	3,45	4,04	17,78	1.034	1.029 ± 0.003	0.998	0.993 ± 0.004
53	1.36/7.5	1,0	Н	3,45	4,04	19,05	1,039	1.042 ± 0.003	1,000	$1,002 \pm 0.004$
54	1.36/7.5	1,0	Н	3,45	4,04	19,05	1,049	$1,045 \pm 0,003$	1,000	$1,003 \pm 0,004$
55	i.36/10.375	1,0	Н	3,45	4,04	26,35	1,028	$1,025 \pm 0,003$	1,009	$1,007 \pm 0,005$
56	1.36/10.375	1,0	Н	3,45	4,04	26,35	1,060	1,055 ± 0,004	110,1	$1,007 \pm 0,006$
	[ı							
	⁺ 110 OTHOLLICI	чию к пр	иродному	урану.						

** Обозначения: V – вертикальное, H – горизонтальное расположение каналов в сборке. *** Во всех нечетных вариантах зазор между блочками и трубой заполнен водой.

,

8

یں۔ روبی

колонках табл. 5.2 приведены значения К , полученные по формуле (1). Сравнение данных, имеющихся для звух измерений, свидетельствует о том, что в целом утечка и анизотрошия миграции описываются весьма удовлетворительно, при этом учет шестого пространственного момента дает вклад в К_{эф} менее 0,2%. Однако для некоторых решеток, отмеченных в табл. 5.1 кружком, сходимость ряда по четным пространственным моментам не так удовлетворительна. В наихудшем случае (для решетки ЕЕ 13/11) вклад шестого моменга в К_{эф} достигает 0,4%. Ошибка, связанная с определением моментов, получена путем анализа отдельного расчета, в котором просгранственные моменты печатались для отдельных серий, и для них рассчитывалась среднеквадратичная ошибка. В ряде серий обнаружено достаточно сильное расхождение между индивидуальным распределением моментов и средним значением, особенно для решеток с сильной анизотропией. Исключение таких аномальных серий могло бы заметно уменьшить общую погрешность, однако из-за сильной асимметрии в распределении моментов трудно провести выбраковку. Однако в большинстве случаев, чувствительность К неопределенности шестого момента мала и требуется отбросить реально голько несколько серий.

Общие результаты таковы. Для экспериментов BICEP среднее эначение К_{эф} равно

 $K_{3\Phi}^{BICEP} = (1,0010 \pm 0,0046),$

для экспериментов MARIUS

 $K_{9\Phi}^{MARIUS} = (1,0131 \pm 0,0046),$

а для измерений в Хэнфорде

٢

 $K^{HANFORD} = (0.9996 \pm 0.0045).$

Приведенные ощибки состоят из экспериментальных ощибок, включающих неопределенность в сечении графита (2,5%) и ошибку в матернальном параметре, рассчитанную по приводимым неопределенностям в длинах релаксации и экстраполированных размерах (см. разд. 3), а также из расчетной погрешности К и утечки.

Следует отметить, что в экспериментах BICEP для нескольких сборок проводились дополнительные измерения с вертикальным расположением каналов. Для этих дополнительных решеток в большинстве случаев получаются удовлетворительные результаты, однако в некоторых сборках (см. EE 5/12 в табл. 5.2) расчетные значения утечки значительно превосходят экспериментальные. Похожий результат получен и при обработке этого эксперимента по американской программе Монте-Карло MOCA [8]. Это свидетельствует, видимо, об ошибке эксперимента, поскольку для данного варианта ряд по пространственным моментам не сходится ($B^6M^6 > B^4M^4$).

Для экспериментов в Хэнфорде расчетные оценки наиболее близки к экспериментальным.

На экспериментах на критстенде MARIUS следует остановиться особо. Расчетные оценки $K_{3\phi}$ для эток серии демонстрируют довольно заметное расхождение с экспериментом. Однако результаты тесно групимруются вблизи значения $K_{3\phi} \approx 1,01$, что свидетельствует о наличии некой систематической погрешности. Причина этой погрешности по-видимому, в следующем. В отличие от двух других экспериментальных серий, во французских измерения использовался метод постепенного замещения, т. не экспоненциальный опыт. Интерпретация же этотс метода опирается на явный вид диффузионного уравнения для распределения нейтронов, в частности, используется связь между K_{μ} и материальным параметром, не учитывающая высших пространственных моментов. Но для систем с сильной анизотропией, к которым относятся и эксперименты на стенде MARIUS, как уже показано выше, неучет высших моментов может приводить к заметному искажению результатов.

Проверкой высказанного предположения мог бы служить непосредственный обсчет этой серии экспериментов, не опирающийся на модельные представления.

ЗАКЛЮЧЕНИЕ

В настоящей работе приведен сравнительный анализ экспериментов на уран-графитовых решетках с естественным и слабообогащенным ураном и расчетов по реперной отечественной программе Монге-Карло MCU и прецизионной детерминированной программе TRIFOGR.

Проанализировано около 60 экспериментов, проведенных в разных странах различными научными группами. По результатам исследования можно сделать следующие выводы.

Во-первых, устойчивое совпадение (в пределах статистической ошибки) результатов эксперимента и реперного расчета для экспериментов BICEP и HANFORD, подкрепленное более ранними американскими расчетами [7], позволяет рассматривать исследованную в настоящей работе экспериментальную информацию как весьма надежную, и, по-видимому, дает возможность рекомендовать ее в качестве реперной.

Во-вторых, наличие систематического сдвига результатов для критических экспериментов на стенде MARIUS, в основу интерпретации которых полежен метод постепенного замещения, скорее всего указывает на то, що для решеток с сильной анизотропией метод постеленного замещения приводит в классической формулировке к заметной погрешности и гребует уточнения.

В-третьих, широкий спектр исследованных решеток для разных шагов решетки и диаметров блочков при вариации обогащения позволяет рассматривать программу MCU в существующей версии с используемой библиотекой констант как весьма апробированное средство для анализа уран-графитовых систем, по крайней мере, этого класса. И, наконец, что касается программы TRIFOGR, то и для нее продемонстрирована высокая степень надежности оценки не только реактивности системы, о чем свидетельствуют результаты табл. 5.1, но и отдельных скоростей реакций в различных энергетических областях в сравнении уже с реперным расчетом по программе MCU.

Тенденция к увеличению погрешности по мере роста шага решетки в программе TRIFOGR объясняется, по-видимому, консерватизмом в выборе сечений ²³⁸U в эпитепловой области. Этой погрешности, вероятно, можно избежать, используя формализм выбора сечений, предложенной автором программы TRIFON в работе [17].

В заключение авторы выражают признательность А.М. Дегтяреву за помощь в проведении расчетов на предварительном этапе исследования.

Список литературы

- 1. BICEP. AEEW-R235 (part 1, 2), 1963.
- 2. Wood D.E. Material Buckling Measurements on Graphite Uranium Systems at Hanford. HW-69525, 1961.
- 3. Cogne F. Mesures globales de reseaux a graphite dans l'empilement critique MARIUS, CEA-R2478, 1964.
- 4. Harper R.G. An Analysis of Experimental on Graphite Moderated Assemblies Fuelled with Uranium, Plutonium and Uranium-Plutonium Metal. AEEW-R325, 1964.
- 5. Barclay F.R. An Analysis of Uranium Metal-Graphite Systems using the Multi-Group Code "WIMS". AEEW-R473, 1966.
- 6. Cogne F., Meyer-Heine A. Uranium and Uranium-Plutonium fulled Lattices with Graphite and Heavy Water Moderator. A Comparison of Experiment with Prediction. - In: The Physics Problem in Thermal

Reactor Design. -- Proc. Int. Conf. London, 1967, p. 48 - 58.

- Hellens R.L., Sehgal B.R. and Mizuta H.A. Comparative Analysis of Some Graphite and Heavy Moderated Reactor Lattices. Ibid., p. 27 – 38.
- 8. Dannels R.A. and Honeck H.C. MOCA-2A:A Fast Effect Monte-Carlo Code for IBM-7090. WCAP-2685.
- Майоров Л.В., Юдкевич М.С., Лиман Г.Ф. Программный пакет МСU для решения задач переноса излучений методом Монте-Карло. – ВАНТ. Сер. Физика и техника ядерных реакторов, 1985, вып. 7, с. 27 – 31.
- 10. Бурмистров А.Я., Кочуров Б.П., Кварацхели А.Ю. Аннотация программы "TRIFON". – ВАНТ. Сер. Физика и техника ядерных реакторов, 1985, вып. 4.
- 11. Bacher P., Cogne F. Physics Experiments in Graphite Lattices. CEA-R2157, 1962.
- 12. Bacher P., Naudet R. Mesures de laplaciens par la methode du remplacement progressif. Journal of Nuclear Energy, part A, 1961, vol. 13.
- 13. Lockey D.J. et al. AERE/R2597, 1958.
- 14. Носовский И.В. Аннотация геометрического модуля "ROMBIC". --ВАНТ. Сер. Физика и техника ядерных реакторов, 1985, вып. 7.
- 15. Майоров Л.В., Юдкевич М.С. Нейтронно-физические константы в расчетах реакторов на гепловых нейтронах. М.: Энергоатомиздат, 1988. 137 с.
- Гомин Е.А., Лиман Г.Ф., Майоров Л.В. Аннотация программы "TERMAC". – ВАНТ. Сер. Физика и техника ядерных реакторов, 1985, вып. 4, с. 53.
- 17. Кочуров Б.П. Эффективные резонансные уровни. М.: Атомная энергия, 1986, т. 60, вып. 3, с. 176.

СОДЕРЖАНИЕ

Реферат	
Введение	1
1. Краткое описание используемых для анализа экспериментальных	
программ	2
1.1. Английские эксперименты BICEP	2
1.2. Измерения на уран-графитовых решетках в Хэнфорде	3
1.3. Эксперименты на критстенде MARIUS	4
2. Типы решеток, отобранных для сравнения с расчетом	4
3. Основные источники погрешностей	8
4. Описание расчетных схем, привлеченных для сравнения с экспе-	
риментом	11
4.1. Пакет программ МСИ	11
4.2. Программа TRIFOGR	11
5. Основные результаты сравнительного анализа	12
Заключение	18
Список литературы	19

Редактор Т.И. Титкова Технический редактор Н.А. Малькова Корректор Л.В. Пономарева

Подписано в печать 25.08.88. Т-15854. Формат 60х90/16 Печать офсетная. Усл. иеч. л. 1,25. Уч.-изд. л. 1,3 Тираж 172. Цена 20 коп. Заказ 384. Индекс 3624

Подготовлено к изданию и отпечатано в Институте атомной энергии им. И.В. Курчатова 123182, Москва, пл. Академика Курчатова

Препринт ИАЭ-4709/4. М., 1988