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A coupled-channel optical method for electron-atom scattering is applied to 

elastic electron-sodium scattering at energies of 20, 22.1, 54.4, 100, and 150 

eV. It is demonstrated that the effect of all of the inelastic channels on elastic 

scattering may be well reproduced by the ab initio calculated complex non-local 

polarization potential. The results are found to be in good agreement with the 

recent experiments of Lorentz and Miller [Proc. 16th ICPEAC, New Yo k, 1989, 

abstracts p. 198] 
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I. INTRODUCTION 

The coupled-channel optical (CCO) method is an ab initio approach to electron-

atom scattering. It treats a finite set of scattering channels (P space) explicitly via 

the coupled-channel formalism, whilst the rest of the channels {Q space), including 

the target continuum, arc taken into account indirectly through a complex nonlocal 

polarization potential. This potential is calculated from first principles by taking into 

account the main high order processes up to numerical convergence. This potential, 

together with the first order potential of the explicitly-treated channels, forms the 

optical potential. 

We will use our usual notation nCC for a calculation that has the lowest n target 

states treated explicitly in P space (coupled-channel approach), and similarly for 

nCCO except that the Q space is not excluded but is treated via the polarization 

potential. 

The philosophy of the CCO approach to electron-atom scattering is that the most 

important channels are explicitly coupled through P space whereas the less important 

channels are relegated to Q space. The CCO method is useful whenever an nCC 

calculation does not produce satisfactory (convergent) results even for relatively large 

n. This is often the case when scattering electrons have energies above the ionization 

threshold of the atom. 

Our CCO approach has proved to be very successful in the description of electron-

hydrogen elastic scattering at energies ranging from 0.5 to 30 cV 1 and from 30 to 

400 eV 2 . Our current implementation of the CCO method1 assumes a single valence 

electron in the target atom. We believe that as this method works well for hydrogen 

it should also work well for alkali atoms, which are well described by the Ifartree-Fock 

model with one valence electron above a frozen core3. Furthermore, it has been found 

that the effects of core excitation and target electron correlation on scattering are 
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negligible4. 

The aim of this paper is to demonstrate the effect of the ab initio calculated po­

larization potential in electron scattering from sodium. To maximize this effect and 

therefore provide a most stringest test of the polarization potential, we do a series of 

1CC0 calculations, where P space contains only the ground state and Q space con­

tains the complete set of the sodium excited states. Even though the ls72s12p*Zp 7P 

excited state of sodium couples very strongly to the ground ls72s22ps3s 2S state, we 

leave this state in Q space to show that even this strong coupling may be reproduced 

by the polarization potential. 

In Sec. U we present the formal theory of our CCO method. The complete deriva­

tion of the theory was done in McCarthy and Stelbovics 5 and Bray, Korovalov, and 

McCarthy1. Thus, we give only the final equations for electron scattering on alkali 

atoms. 

In Sec. Ill we present the results of 1CC0 calculations for projectile energies 

of 20, 22.1, 54.4, 100, and 150 eV (Table I). We compare these results (Fig. 1) 

with the measurements of elastic differential cross sections of Lorentz and Miller6. 

The agreement between this experiment and our theory is very good. To show the 

contribution of the polarization potential we also present the corresponding ICC 

calculations (static exchange) which leave out this potential all together. 

II. FORMAL THEORY OF THE CCO METHOD FOR ALKALI ATOMS 

If the target atom can be described as one electron above the frozen core in 

the independent-particle model then the total nonreiativistic Hamiltonian for the 

electron-atom scattering problem can be reduced (sec for example Ref. [5]) to 

/ / = f f l + A'3 + V|+V2 + t*, (1) 

where A'I and A'j arc the kinetic energy operators of the projectile and the valence 
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electrons with the corresponding electron-core potentials vt and v2. The electron-

electron potential is v 3 . For sodium we use the notation C for the frozen core 

ls22s22p6 "5 and A for the ground state of the atom U22s22p*3s 2S. As the mass of 

the nucleus is very much greater than that of the electrons, the center of mass frame 

is taken to be the nucleus. In coordinate space representation 

+,€CJ I r ° r I 

and 

f 3 ( r , , r 2 ) = 1 - — . (3) 

The ^j(r) € C are the one electron core orbitals calculated via the self-consistent 

field Ilartree-Fock method 7 for the ground state of the atom A, 

(A' 0 + v ! , F - t) 4>j(ra) = 0, a = 1 , 2 , j G A, (4) 

where 

The 4>,(r) in equation (2) are the one electron excited orbitals which are calculated 

in the frozen core llartree-Fock approximation8 i.e., 

[Ka + vo-l,)<t>,(ro) = 0, a = 1,2, i$C. (6) 

The solution of the above equation gives us all of the excited states as well as the 

continuum functions of the target atom in the frozen core approximation. 

To get the polarization potential we first define symmetric / ' and Q using one-

electron projection operators1, Pa and Qa, by 
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Pa + Q» = L, P = Pih + liPi-PiP2, Q = QiQi, (7) 

where 

pa= E I*X*I . <?»= E I*X*I. (s) 
and where now the Ia excludes core space. The sum over Qa space indicates a sum 

over excited discrete states and an integral over the continuum states. The complex 

non-local polarization operator VQ is then given by 

PVQP = Pv3QGQ(E^')Qv3P, (9) 

where the Q-projected Green's function GQ satisfies 

Q(£<+> - II)QGQ{EM) = Q. (10) 

The Lippnian Schwinger equation for the T matrix, which depends on the total 

spin S, is 1 

(k<f>,\Ts\^k0) = (k^\v^\4>iok0) 

where the projectile with momentum k 0 is incident on the target with the valence 

electron i:i state 0,o above the frozen core. 

Writing the coordinate space-exchange operator as Pr the matrix elements of VQ 

are given by 5 

(kfc | VQ5 I 4>,V!) - (k& I », + V3 + (~\)SV3Pr | ^.k') 

+ ( - l ) s ( k ^ | ( « i + e . . - £ ; ) P , | ^ k ' ) 

-6V E <k*> I (2<7 - E)PT | ^ k ' ) 

+ < M | V 0 + (-l) 5l'<,/'r I * , * ' ) , (12) 



The details of the calculation of the polarization potential matrix elements may be 

found in Ref.('), however we would like to make explicit here the approximations used 

in its calculation. 

All of the approximations in the calculation of VQ are made in the evaluation of 

GQ. The major approximation that enables us to perform the calculation is that of 

weak coupling in one of the Qa spaces. This neglects non-diagonal matrix elements 

in that space. 

If one of the electrons is in a discrete Qa slate then we assume that the potential 

in which the other electron moves is local and is created by the residual charge of the 

core, and the first electron. If, however, one of the electrons is in a continuum Q„ 

state, we assume that the other electron can be well approxima* e»l as <; free particle. 

These approximations in calculation of GQ have been tested thoroughly for hydro­

gen and have been found to wcrk extremely well1. 

III. RESULTS AND CONCLUSIONS 

In Fig. 1 we present elastic differential cross sections for electron scatterng on 

atomic sodium. The experimental data are due to Lorcntz and Miller6. These data 

are relative and have been normalized to our total elastic cross sections at (Table I), 

which agree with the absolute measurements of Srivastava and Vuskovic9 (Table II). 

The solid line shows the 1CC0 calculation, where P space contains only the ground 

state of the atom, and Q space contains all of the excited states including the target 

continuum. The dashed curve is due to the ICC calculation (static exchange) which 

excludes Q space all together. 

The 1CCO calculation gives good agreement with experiment at all presented en­

ergies. This indicates that the very large effect of the inelastic channels on the elastic 

scattering may be reproduced by the polarization potential. However, this effect di-
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minishcs with increasing energy for non-small angles. Already at 150 eV the simple 

static exchange calculation gives very good agreement with experiment. 

In the calculation of the elastic differential cross section convergence to less than 

1% was achieved by taking, in (8), excited bound states with angular momentum (L) 

up to 3 and principal quantum number up to 10. For continuum target states we 

took L up to 8 and used 25 points in the integration of equation (8). 

There are a number of elastic differential cross section measurements of electron 

scattering on atomic sodium, sec Ref. [6J and references therein. Whilst the exper­

iments generally agree at small angles and therefore agree on the total elastic cross 

section, there is considerable discrepancy at intermediate and backward angles. Thus 

the choice of normalization does not resolve these discrepancies. Therefore, other 

nCCO calculations should be performed with lowest-lying excited states coupled ex­

plicitly through P space. These will check the stability of the current results, and 

furthermore will provide ir elastic data, where there are also discrepancies between 

different experiments. These calculations are considerably more time consuming as 

the number of polarization potential matrix elements grows as the square of n. Such 

calculations are currently being undertaken. 
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TABLE I. Elastic differential cross sections (oj s r - 1 ) calculated using the 1CC0 model 

at a range of energies (eV) at angles 8 (deg.). The integrated elastic ac and the total c, 

cross sections are in araj. Square brackets denote powers of 10. 

9 20.0 22.1 54.4 100.0 150.0 

0 8.00(2] 7.70(2] 4.66(2] 2.93(2] 2.25(2] 
5 3.05(2) 2.73(2] 9.60(1] 5.80(1) 4.84(1] 
10 8.69(1] 7.45(1] 2.80(1] 2.07(1] 1.73(1] 
15 2.55(1] 2.22(1] 1.12(1) 8.76 6.93 
20 8.50 7.86 4.93 4.25 3.67 
25 355 3.33 2.42 2.53 2.27 
30 1.6G 1.52 1.49 1.75 1.50 
35 7.18(1] 6.31(1] 1.11 1.27 1.06 
40 2.64(1] 2.53( 1] 9.37(1] 9.61(1) 7.65(1] 
50 1.20(1] 2.19(1] 7.79(1] 5.85(1] 4.09(1] 
GO 3.88(1] 4.90(1] G.69( 1] 3.76(1] 2.38(1] 
70 6.35(1] 6.80(1] 5.20(1] 2.33(1] 1.42(1] 
80 7.11(1) 6.95(1] 3.39(1] 1.22(1] 9.10(-2) 
90 0.20(1] 5.65(1] 1.65(1] 4.70(-2] 6.29[-2) 
100 4.32(1] 3.69(1) 4.10J-2] 2.08(-2] 6.96(-2] 
110 2.36(1) 1.92(1] 1.37(-2] 6.38(-2] 1.12(1] 
120 1.03(1] 973(-2] 1.17(1) 1.87(1] 1.93(1] 
130 7.2l(-2] 1.12(1] 3.56(1] 3.85(1] 3.01(1) 
M0 1.39(1) 2.28(1) 6.95(1] 6.32(1] 4.31(1) 
150 2.70(1) 4.02[-l) 1.07 8.90(1] 5.60(1] 
160 4.16(1] 5.82(1) 1.41 1.11 6.67(1] 
170 5.30(1] 7.21(1) 1.66 1.27 7.54(1] 
180 5.79' 1] 7.81(1] 1.78 1.35 7.41(-1] 
ot 11.8 10.8 5.84 4.27 3.36 
Ot 68.4 61.9 35.9 21.3 15.4 
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TABLE II. Integrated elastic (trr) and total ( V "oss sections (raj) at 20 and 54.4 eV 

calculated using the 1CCO model. The experimental data <rexP are due to Srivastava and 

Vuskovic9. 

Energy <r« <r? xP Ot a**** 

20 11.8 15.9±4.8 68.4 60.7±18.0 

54.4 5.84 6.14±1.8 35.9 34.3±10.3 
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FIG. 1. Elastic differential cross sections. The solid line is the ICCO calculation and 

the dashed line is the static exchange (ICC) calculation. The experiments of Lorentz and 

Miller are denoted Sy o. The experimental data were obtained via a private communication. 

A preliminary publication of the 54.4 eV results may be found in Ref. (*). 
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