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ABSTRACT

Ignition in the ITEB baseline machine (a=2.15 m, R=6 m, B =4.85 T, I =22 MA),

is studied in the frame of a 1/2-D model using the ITER-89P scaling of the energy

confinement time.

The required value of the enhancement factor f with respect to the L-mode,
Li

allowing ignition with a total fusion power of 1100 MW, is found to be 1.9 at

an optimum operating temperature of 11 keV. A sensitivity analysis shows that

the critical f =2 value can be exceeded with relatively small changes in theL
physical assumptions. It is concluded that the safety margin is not sufficient

for this project.

Optimization of a thermonuclear plasma in a tokamak is then performed with

constraints of given maximum magnetic field B in the superconducting wind-

ings, given distance d__ between the plasma and the maximum magnetic field point,
DO

imposed safety factor q. at the plasma edge, and given averaged neutron flux

F at the plasma surface. It is shown that the minimum enhancement factor f
Tl Ij

with respect to the L-mode, allowing ignition at a given value of the total fusion

power P , is only a function of the torus aspect ratio A.

Taking the ITER reference values for the above constraints (i.e.

B. = 11 T, d__ = 1.1 m, q as 3, T =1 MW/mz), it is found that the required
tIUcLX SS y Tl

value of f is practically independent of the aspect ratio (very broad minimum
LJ

in A) but can be sensibly improved by increasing the total fusion power P̂  .

With P =1700 MW, a reasonable safety margin (f » 1.5) is obtained. With such
fuS LJ

a power, the machine corresponding to an aspect ratio A=4, which would be fav-

ourable for the technology phase, is found to have a = 2.22 m, R = 8.87 m,

B. = 6.66 T, I a 20.2 MA.
t P

Analytical expressions of the conditions resulting from the above optimization

are also derived for an arbitrary monomial scaling of the energy confinement

time, and shown to give excellent agreement with the numerical results.
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1. IMTBODUCIION

The ITER baseline machine [l] is obtained by an optimization procedure where

the following constraints are retained:

- imposed maximum magnetic field in the superconducting windings

- given value of the blanket plus shield width (d = 1 m),

- given value of the safety factor at the magnetic surface enclosing 95% of the

poloidal flux (q. a 3),

- given value of the averaged neutron load on the first wall (1 MW/m2),

- given value of the enhancement factor with respect to the ITEE-89P L-mode

scaling of the energy confinement time ( f =2 ) ,
Ij

- given density-averaged temperature of operation ([T]=IO kev),

- given inductive burn time t =400 s for an internal inductance l.=0.65.burn i

With the above constraints and the usual ITER assumptions concerning the

plasma composition, profiles, and shape of the poloidal section, it is shown

that the machine is completely determined, giving A=2.79, a=2.15 m, B =4.85 T,

I =22 MA, where a is the horizontal minor radius, I the total plasma current,
P P
and B the magnetic field on the magnetic axis.

In the present study , a somewhat different optimization is performed in order

to assess the sensitivity of the confinement requirements with respect to the

design assumptions. In the optimization scheme, the above first four constraints

are retained together with the value of the total fusion power P . The

enhancement factor required for ignition in these conditions appears to be only

a function of the operating temperature and of the aspect ratio. It will be shown

that this value of f exhibits a minimum with respect to the latter two param-
LJ

eters. Choosing these optimum conditions completely determines the machine

parameters as well as the plasma operating point.

In section 2, we recall the main features of the 1/2-D stationary model

implemented in the present version of the HELIOS code.

In section 3, we give the approximate analytical conditions obtained with

the ITER-89P scaling, for the possibility of ignition with an imposed value of

the total fusion power or of the averaged neutron flux at the plasma surface.

We also derive the analytical criterion for ignition when both the above con-

straints are assumed as well as the constraint on the value of the maximum

magnetic field inside the superconducting windings. The correspondg conditions

for a general monomial scaling are given in Appendix D.
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In section 4, ignition in ITER with the reference parameters and assumptions

is studied. A sensitivity analysis is also performed by varying different

parameters around the reference values.

In section 5, we show the existence of optimum values of the operating tem-

perature and aspect ratio for ignition with given B. , d^_, q., F , and P_ .
'CluâX Go y II rllS

The corresponding minimum value of the L-mode enhancement factor is calculated

as a function of the total fusion power. The machines corresponding to P =1100,

1700, 2200, and 3500 MW are described, a machine with P =1700 MW and a larger

aspect ratio (A=4) is also discussed in some details.

SI units are used except for the temperature which is always expressed in

KeV Oc=1.6022*10~16 JAeV).

2. THE MODEL

In this section, we describe the model implemented in the present version

of the HELIOS code. Improvements with respect to the previous version [2,3] are

the following:

- modélisation of the outer magnetic surface poloidal secti&n allowing the

description of plasmas with an inner/outer dissymetric separatrix with two

x-points,

- arbitrary ratio T /T. (radially constant) introduced in all the terms of thee i
thermal equilibrium equation,

- introduction of the Sadler-Van Belle [4] D-T reactivity,

- new definition of the "degrading" power used in the expression of the energy

confinement time.

2.1. Fusion reactions

In the present version of the code, we only consider the D-T fusion reaction

D + T » *He(3.56 MeV) -t- n(14.03 MeV) [17.59 MeV] (1)

For a 50-50 D-T plasma, the correction introduced by the contribution of the

D-D and T-T reactivities can be estimated to be of the order of a few percents.

2.2. Geometry

2.2.1. Outer magnetic surface, plasma volume, poloidal section surface and plasma surface

In the case of a plasma poloidal cross-section with a strong triangularity

and X-points, the elliptical approximation for the outer magnetic surface is

no longer accurate for the calculation of the geometrical quantities. In the

present version of the code, the outer magnetic surface is supposed to be sym-
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etrical with respect to the equatorial plane ana to have X-points . The elongation

and triangularity at the separatrix are denoted K^. and §„, a is the plasma
A A

horizontal minor radius, R is the inajor radius. The outer magnetic surface makes

an angle ij»* with the horizontal plane at the external side of the torus and fy~

at the internal side [Fig. I]. The case of an outer magnetic surface with no

X-points is recovered by making ty*=ty~=Q. If the following conditions are sat-

isfied, i.e.,

K. tC (2)=
A A

the poloidal section of the outer magnetic surface may be modelled with portions

of ellipses. The mathematical description of the outer surface in this case is

given in Appendix A. In the frame of this model , it is possible to derive analytic

expressions for the total plasma volume V, for the surface S of the poloidal

cross-section and for the external plasma surface S. We obtain

V = 2Jt2KxAa
3 0v(Sx,Kx,A,4/,i(r) (3)

where A=5/a is the torus aspect ratio,

and

S = 4îi Aa E1(/c)0(ôfK/Afd'*/il'~) {5)
A û A A

with

E1(K ) = - K E[U-I/**)'*] (6)

where the function E is the complete elliptic integral of the second kind, and

the explicit expressions for the factors 0 , 0 , and 0 are given in Appendix

A. These quantities represent the corrections with respect to the case of an

elliptic cross-section with no triangularity (and no X-points). For the ITER

reference case (A= 2.79, K =2.22, S =0.58, IJi+=IS0, <|T=68°), we obtain©,, = 0.89,
A A V

©_ a 0.92, 0_ s: 0.94, showing that the corrections are of the order of 10%.
op o

2.2.2. Magnetic surfaces, radial integrations

For the volume and poloidal surface integrations, the magnetic surfaces are

supposed to be similar to the outer magnetic surfaces [center O (no Shafranov

shift), similarity factor p (p=0 at the magnetic axis, p=l at the plasma boun-

dary)]. For any function F(p), we have
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J **i
F(p) as = I F(p) 2pdp (8)
S JO

where Q1(S.,,«„»4-*»«|>") is given in Appendix A. The factor G1 represents theX X
correction to the volume integration introduced by the deformation of the mag-

netic surfaces relative to the pure elliptic case. The model for the shape of

the surfaces is of course not physical, but it allows to introduce a simple

mathematical consistency between the radial integrations and the volume calcu-

lation.

2.3. Safety factor

The cylindrical safety factor g at the magnetic surface where the poloidal

flux is 95% of the total poloidal flux will be used. It is related to the total

plasma current I flowing through the plasma by the relation [5]

Tf^ _ . -^ I * . ** e>* « *-i c--^ iT̂ - with K = K (1+28 -1.28 ) (9)
AXp

where B is the toroidal magnetic field at the magnetic axis, and K and S are

the elongation and triangularity at the 95% magnetic surface, respectively. The

true safety factor q at the 95% magnetic surface is also used, it is related

to q by the following fit:

C ,-Ĉ /A
'rt do)

where we take C =1.17 and C =0.65 [5].ql q2

2.4. Composition, impurities

The electron density is denoted n. In the present version of the code, we

suppose a plasma with an equal mixture of D and T ( n=n ). Two light impurity

species, with atomic numbers Z1 and Z2 are supposed to be present with an

arbitrary ratio nz/n1=rïl. A fraction f =n /n of alpha particles is also assumed

(Z =2). The resulting effective atomic number Z is defined by the relation

(11)

The impurity contents is completely determined if Z1, Z2, r21, f , and Z are

given. We obtain
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- 2[Z1(ZI-2)+ralZï(Za-2)]fa
fDT = n = Z1(Z1-I) + F21Z2(Z2-I)

f = nk ̂ri n Z1(Z1-I) + T21Z2(Z2-I)

f» = %• = ral f, (14)

where f_ is the fraction of D + T.

2.5. Temperatures

The electron temperature is denoted T. The deuterium, tritium as well as all

the impurity species and the thermalized alpha particles are assumed to have

the same temperature T. . We note

Ti
«1 = S" (15)

2.6. Profiles, averaged values

The electron density and temperature profilas are supposed to have the fol-

lowing form:

Ct Ct

n(P) = nc(l-p
2) n , T(p) = T0(l-p

2) T (16)

where n0 and T0 are the values at the magnetic axis , and a and a_ are the profile

peaking parameters. The volume averaged electron density <n> and the density

averaged electron temperature [T] will be used. With the above profiles, we have

l f n -
- Jv ndv -

_ fy
'" j

vndv

where the function T1 is defined in Eq. (A. 27).

The central horizontal line averaged electron density n defined by the relation

n(x) dx
- - (I9)

is generally used by experimentalists (in the expression of the density limit

or of tne energy confinement time). With the above profiles, we have the relation
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2.7. Thermal equilibrium

2.7.1. The thermal equilibrium equation

The following thermal equilibrium equation is solved numerically by the code :

P (<n>,[T]) + P r t([T]) + P „ = P,,(<n>,[T]) + PJ.(<n>,[T],P, ) (21)Ot SZ cLuCl 5 t /H^fT

where P , P-., P . , are the alpha, ohmic, and additional power sources and P_,a it aao. o
P the bremsstrahlung radiation and transport losses, respectively. The syn-

chrotron radiation losses, which are neglected here, can be shown to be negligible

for a realistic reflection coefficient of the wall and the operating temperatures

which will be considered in the present paper (~ 10 keV). All the source and

loss terms are integrated over the profiles given in Eq. (16).

By definition of the global energy confinement time T_, the transport loss
El

Pt is expressed as

W.(<n>,[T])
(22)

where W1. is the total energy content of the plasma and P^ is the so-calledth aeg
"degrading" power. The expression of P is as follows:

with

Pdeg ' Ptot - £rPB (23)

Ptot ' P« + P0 + Padd (24)

The case e. =0 (P̂  =P,_ ^) was generally considered until recently. Howeverr deg tot
if the degration of the confinement is supposed to be due to a [T] dependence

of T_, it can be shown that £ =1 must be taken.Ca r

2.7.2. Alpha power source

The number N of D-T fusion reactions occuring in the plasma volume is

Nf = Iv 11DV^V dV (25)

where ITV(T.) is the D-T thermonuclear reaction rate for two D and T maxwellian

populations with the same temperature T.. The expression used for <rv(T) is given

in Appendix B. The alpha power source may be written as

P = (26)
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where F is the fraction of the total generated alpha particle power which is
a

delivered to the plasma ( electrons and ions ), and E is the initial kinetic energy

of the alpha particle (3.56 MeV)1. Using the definition of Z , the plasma

quasi-neutrality, and the profiles in Eq. (16), it can be shown that

2 ^
P (<n>,[T]) = C ̂  ffV*([T]) F E V (27)a a 4 a a

where ffv ([T]) is the profile averaged thermonuclear reaction rate, we obtain

„. /a 7
.) —

2 2an — I T 2 01T I 3 0
(1-f/*) n ov « T^[T]UV) (1- I f" P) 2pdp (2S)

with T0X[T] given in Eq. (18). The integration in Eq. (28) is performed numer-

ically. C is the dilution coefficia
impurity and 4He contents, we obtain

ically. C is the dilution coefficient in the alpha power source due to thea

Fz1(Z1-Z J-HT11Z1(Z1-Z ) - 2[ZI(Z1-2)+r21Z2(Z2-2)]f ]
2

C = - — - — - - (29)o I Z1(Z1-DtT11Z1(Z1-D I us;

2.7.3. Ohmic power source

In the present version of the code, the local plasma resistivity is taken

in the simplified following form:

f

3/2 TNC(A.P) with T)0 = 3x10 (30)

where

TNC(A'P) = ' - 1.95 1/2 0.95
- —

is the local neo-classical resistivity enhancement factor. The ohmic power is

given by

V2 dv (32)

Assuming pure inductive current drive ( E=TJJ), and a flat electric field E, the

ohmic power may be written as

1 Here the plasma kinetic energy is neglected in comparison with the initial

alpha particle energy.
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[T]3/2
(33)

with S given in Eq. (4), and T]0, 7 given in Appendix C.

2.7A. Additionnai power

The additional power source P ,, is a constant in a 1X2-D model. Only ignitionadd
will be considered in the present paper (i.e. P ,,=0).add

2.7.5. Bremsstrahlung radiation loss

The non-relativistic Born approximation is used for the electron-ion

bremsstrahlung loss, i.e.

P = [ C Z nV/2 d v (34)B Jv B eff

with

) 3/Ï m C *

With the profiles in Eq. (15), we obtain

PB«n>,[T]) = C* Zeff<n>
2tT]1/2 V (36)

with

)3/2(l-f«+cxrp)
1/2

 1 1 1
n rC = c Ï ii ± ii i (37)

n R 14-Ort +rt /7 7/7 1/7B B l+2ccn+ccTX2 [l-ri (an)01/A]
3/2[1_ri (Ctn+O1)Q1XA]

1/2

The above expression has been checked by comparison with the numerical inte-

gration in Eq. (34).

2.7.6. Transport losses, energy confinement time scaling

For the multispecies and multi-temperature plasma considered here, the thermal

energy content in Eq. (22) may be written as

Wfch(<n>,[T]) = Cw 3<n>k[T] V (38)

with

1-Ur11 (Z2-D Hzeff-i)+[ (Z1-D (Z1 -2 Hr21 (Z2-D (Z2 -2) ]fo

- ( 3 9 )
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The expression of the global energy confinement time t_ in terms of the plasma
Ei

parameters is taken to be the mixed neo-Alcator/ITER-89P scaling following the

Goldston prescription [6]:

where t is the neo-Alcator scaling [7], we take

^ENA " 7X10"22 Meff » «2*

ana T__ is the ITER-89P monomial scaling [5]s
EP

„0.5 0.5 T0.85 ,-,0.1 _0.2 _1.2 0.3
M (C I ( n ) B R a

T = f C eff X 2 E (42)
EP L T pO.5 l '

deg

with

C = 4.8*10~6>1 =: 3.81*10~6 (43)

In the above expression of T__, M is an effective atomic mass number of
ciF erf

the plasma ions (for a 50-50 D-T plasma, M is taken to be 2.5), and f is
SlI LJ

the so-called energy confinement time enhancement factor relative to the L-mode.

2.8. The operating window

2.8.1. Bets limit

We suppose that operation is restricted to the first MHD stability regime

with the usual Troyon limit on beta, i.e. <(3> < <0>T with

(44)

where C is given in Eg. (39) and

<p> = 10~8 g -E- (45)T Efca

where g is the Troyon parameter. The fast alpha contribution to beta is not

considered in the present version of the code.

2.8.2. Density limit

The density at the edge is limited by a thermal instability of the outer

plasma. A number of models have been recently proposed to quantify this limit

[5]. In the present paper, the Greenwald limit [8] for the line averaged density

is calculated but is not considered as a strong constraint. We have
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5G = 1014 "X Ï* (46)

P

2.9. Other relations

A number of otner constraints may be imposed to a machine. These constraints

lead to additional relations between the physical parameters of the tokamak.

2.9. 1. Maximum magnetic field inside the superconducting windings

Let B ùe the maximum toroidal magnetic field inside the superconducting
tmax

windings, and d be the thickness of the wall, inner part of the blanket, shield,
BS

cryostat, and coil mechanical structure, we have the relation

tmax

2.9.2. Total fusion power

Let P be the total fusion power (alpha particles plus neutrons) generated

by the thermonuclear plasma, we have

Pfus ̂ a5T *̂([T]) <W V (48)

2.9.3. Average neutron load at the plasma surface

Let F be the surface averaged neutron flux at the plasma surface, we have

where the surface S of the plasma is given in Eq. (5).

From Eqs. (48) and (49), we see that imposing both P and F yields a simple

necessary condition on the plasma radius, i.e.

(50)

3. APFBOXIHATE ANALYTICAL CRITERIA FOR IGNITION

Neglecting the ohmic power P- at ignition, and supposing that I/T_.. is
S£ ENA

negligible in comparison with I/T__ in Eq. (40) (i.e. t_ s T__), the thermal
tic b bP

equilibrium equation [Eq. (21)] may be solved analytically [2]. Thence, different

analytical conditions for ignition may be derived.

i K 1
2n E +E[ a n

1/2
1

A1/2
Ey2Ux

)Q

pl/2
fus

1/2 pl/2
S n
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3.1. Criterion for Ignition with imposed total fusion power

The condition for the ignition curve in the (<n>,[T]) plane to have at least

one point of contact with the constant fusion power curve may Ce expressed

explicitely. In the special case of the ITER-89P scaling and using a syntax

similar to that of Réf. [10], this condition may De written as:

f, F
,0.5

M0'5

F F F0'05 eff a0'7 B1'05 > 1 (51)
"igP ^L ^a ''dilution peaking shape fus 0.85 0.2 t

where

with

and

where

,0.45

E'ailution{Zeffrfo'Zl'Z"r*1'fli) =

Fpea*ing( W Weff '«Vï

0.85

©,

l
,0.55

(1-1/A2)2

0.85

cigp
c E0-5
T Ct

= 1.16"1O"
(Eot n

2P = 0.1 [T]
•TV" ([T] J-

4C_Z „
S* = B eff
B F E C

a a a

(52)

(53)

(54)

(55)

(56)

(57)

C and C,, are given in Eqs. (29) and (39), 0,, in Eq. (A.9); K, C and C „ areCt w V ql q2
defined in Eqs. (9,10) and E in Eq. (23). The minimum in Eq. (56) is calculated

numerically as well as the CTV ([T]) function [Eq. (28)].

3.2. criterion for ignition with imposed averaged neutron flux at the plasma

surface

A similar condition may be wr.itt.an for the possibility of ignition at or below

a given averaged neutron flux F at the plasma surface. This condition reads:n

- 26 -
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0.5 _
M0'5

„0.05 eff 0.8 1.05
igF L a dilution peaking shape n 0.85 0.15

q*

,_ ,1 (58)

where

-0.05, > r -TO.85 „0.05
E1 Uv)IiOK2I 0S

0.05
l+K

0.55 (i-i/A)

0.85

(59)

With

cigr
c E0'5
t a

°'°5
1.41x10" (60)

and 0 is given in Eq. (A.14).

3.3. Criterion for ignition with constraints on B. , d_ , q , r , and P
tlDoK Bb y u IuS

Imposing both the fusion power P and the neutron flux T , together with

the maximum magnetic field B. , the distance d^_, and the value of q , thetmax BS if
condition for ignition may be written in the following form:

CigPF fL Fo FdilutionFpeakingFshape j,0.35 [ A
n

°-4 Pa i ri /al1'05 M0'5, A~j-~d__/a B _ _fus BS I eff 105
0.85 ,0.55 tmax

where

with

Cigpr

.0.85
1-HT 1

0.05 0.35 L 2KX Ii1 ux;

C E0'5 E0'35T O n

(i-i/A2)2

0.85

(si)

(62)

(63)

In Eq. (61), a is supposed to be expressed in terms of A, P and F by means

of Eq. (50). With the above constraints and giving the shape of the poloidal

section, we clearly see that the value of f calculated from Eq. (61) is only
Li

a function of the aspect ratio A.

3.4. Generalisation to an arbitrary monomial scaling

The generalisation of the three above conditions to a monomial scaling of

the energy confinement time T_ with arbitrary exponents, i.e.

TE = TEP = fLCT

M11
 K

X I1 fïï/ H*3 RP aa
Meff KX 1P U) B

t
 R a

"deg
(64)

- 27 -



- 14-

is given in Appendix D.

4. SENSITIVITY STUDl FOR THE ITER BASELIHE HACBIDE

4.1. The ITER reference parameters

The reference parameters for the ITER baseline machine [l] are as follows:

a = 2.15 m, R = 6 m, B4. = 4.85 T, I = 22 MAt P

KV = 2.22, Sv = 0.58, K = 1.98, S = 0.39
X A

(65)

(66)

We take 4»*=18°, ty~=68° to represent the ITER plasma shape. Tne corresponding

poloidal cross-section is represented in Fig. 1. We also assume:

T.=T (0.=1)i e i

F = 1, Z = 1.7, f = 10%, Z1 = 6 (C), rzl = O (67)
ot err ot

Meff = 2"5' an = °"5' 0T = 1

The total fusion power for the baseline ITER project is taken to be

Pfus = 1100 MW (68)

The distance between the inner plasma boundary and the point with maximum toroidal

magnetic field is taken from Réf. [9]:

= 1.127 m (69)

For the degrading power [Eq. (23)] in the ITER-89P scaling, we take £ =1.

With the above parameters, the following quantities may be calculated:

A := 2.79, V = 1080 m3, S s 29.6 m2, S = 803 m2
P

F a 1.09 m/m2, q , s 2.48, q, s= 3.06, B4. a 10.7 Tn cyl i|i tmax

fl (C) s 1.67 %, f = 70 %, C = 0.49, C,, = 0.908 (70)

1.49, . 1.56, 1<17

4.2. Ignition for tbe reference parameters

The ignition curves for the ITER reference parameters are represented in

Fig. 2 for f = 1.84, 1.93, 2. The first two values correspond to contact of the

ignition curve with the Troyon beta limit curve (g=3) and to the constant fusion

power curve (P =1100 MW or F = 1.09 MW/m2), respectively. The Greenwald

density limit is also indicated. The sensitivity of the ignition curve to the

value of f is clearly illustrated. Disregarding the problem of thermal control

of the burn, we also see that an optimum temperature exists for operation at
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an imposed value of the total fusion power. In the present case, this temperature

is [T] a 11 keV and the corresponding enhancement factor is fT = 1.93.Li

4.3. Sensitivity of ignition to various plasma parameters and model hypothesis

4.3.1. Effect of the density profile peaking parameter

The minimum value of f. (denoted fr_) allowing ignition with a fixed fusionL Lr
power P =1100 MW has been represented in Fig. 3 as a function of the exponent

a of the density profile. The full curve is the numerical result obtained with

the HELIOS code, the dotted line represents the analytical criterion from

Eq. (51). The optimum temperature [T] corresponding to the contact between

the ignition curve and the curve P =1100 MW is also plotted. The excellent

agreement between numerical and analytical results is due to negligible ohmic

power for the optimum plasma parameters and to the predominance of the degraded

part in the expression (40) of the energy confinement time. We see that density

profiles slightly flatter than assumed in the reference case lead to required

values of f in excess of 2. The optimum temperature stays in the range 10-13
L

keV.

4.3.2. Effect of the temperature profile peaking parameter

The variation of f as a function of the exponent a of the temperature
LiP *

profile has been plotted in Fig. 4 as well as the corresponding ignition tem-

perature. Detrimental effect of temperature profiles slightly flatter than the

reference parabolic case is also clearly seen. The optimum averaged temperature

is strongly decreasing when peaking the temperature profile, as a consequence

of enhanced nuclear reactivity in the central part of the plasma.

4.3.3. Effect of dilution due to alpha particles

The variation of f as a function of the fraction f of the helium ashes

in the plasma is represented in Fig. 5 (with 2 =1.7 kept constant). For f =12%,

the critical f =2 value is overshot.LJ

4.3.4. Effect of carbon contamination

The variation of f as a function of Z (with f =10% kept constant) is
LiP GiI OC

represented in Fig. 6. We see that f =2 is exceeded for Z ,. > 1.8.L erf

4.35. Effect of the ratio Te/Ti

The variation of f._ as a function of the ratio T /T. is represented in
LF 3 1

Fig. 7. An ion temperature 6% lower than the electron one would make the required

value of f greater than 2.
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4.3.6. Effect of the hypothesis on the degrading power

The variation of f._ as a function of the parameter E in Eq. (23) isLtP r
represented in Fig. 8. If the bremsstrahlung radiated power is not substracted

from the total power in the calculation of the degrading power (E =0 instead

of e. =1), the required value of f is also found to be in excess of 2.
r LM

From the results of the above sensitivity analysis, it can be concluded that

the safety margin of the ITER baseline project is not sufficient.

5. OPTIMIZATION OF ITER

5.1. Optimization of the aspect ratio for fixed values of P., . r . B. „. a__,
IUS U uDcUC Oa

and ̂

We suppose that the total fusion power and the averaged neutron flux at the

plasma surface are imposed. We take the ITER reference values:

P., = 1100 MW , T a 1.09 MW/m* (71)fus n

In the present analysis, the heat load on the divertor plates is not explicitely

constrained, however, imposing a constant value of the averaged neutron flux

is equivalent to imposing a constant value of the meari thermal flux on the

divertor plates since the total heat loss is proportional to the neutron loss,

and the surface of the divertor plates is proportional to the plasma surface

(for a given poloidal shape).

The maximum magnetic field in the superconducting windings is also supposed to

be given. In the axisymmetrical approximation, this field is obtained in the

equatorial plane on the outer surface of the windings at a distance d from

the plasma surface. For ITER we take [Eqs. (69), (7O)]

1.127 m , B * 10,7 T (72)

The width d is supposed to be the same for all aspect ratios. The shape of

the poloidal section of the plasma (K , S , K, S, 4>*, $-), is also supposed to
X X

be unchanged, the values given in Eq. (66) being retained. The 95% safety factor

q is supposed to be fixed, we take the ITER value [Eq. (7O)]

q^ = 3.06 (73)

With the above constraints, the value of f._ is only a function of the aspect
LF

ratio A as is now explained. Given ft, the value of a is given by Eq. (50). The

major radius follows (R = Aa). The toroidal magnetic field is then given by

Eq. (47). The total plasma current may now be deduced from Eq. (9). At this point,

all the macroscopic parameters of the plasma are known so that f may be computed
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as described in section 4.2. Results for the above numerical parameters and A

varying from 2.79 to 5 are given in Table I.

TABLE I. Optimization of ITER aspect ratio for given P (1100 MW) and

F (1.09 MW/m2).

A

a (m)

R (m)

Bt (T)

1P (MA)

fLP

V (m3)

<n>( I020m~3)

[T] (keV)

g

n/nG

2.79

2.15

6.00

4.85

22.0

1.93

1080

1.13

11.4

1.89

0.801

3

2.07

6.21

5.19

20.6

1.91

1040

1.15

11.4

1.86

0.807

3.46

1.92

6.65

5.79

17.9

1.90

964

1.19

11.5

1.84

0.628

4

1.78

7.13

6.33

15.4

1.91

893

1.23

11.5

1.89

0.859

4.5

1.68

7.55

6.71

13.6

1.93

839

1.27

11.5

1.96

0.892

5

1.59

7.95

7.03

12.0

1.97

795

1.30

11.5

2.06

0.926

We see that the enhancement factor is minimum for a finite value of the aspect

ratio (A iz 3.46). Increasing A allows larger magnetic fields, but the constraints

on P and T result in smaller values of the minor radius and plasma current

which in turn degrade the confinement. As the minimum of the function f (h)
LP

is very flat (Fig. 9), choosing A=2.79 does make a big difference as far as

confinement is concerned. In the same way, choosing large value of A (if the

ITER-89P scaling law for T_ is confirmed to be extrapolable to such values [5])
Ci

is not a serious drawback. This result could be considered in support to large

aspect ratios, which can be shown to be more favourable when constraints relative

to steady state operation are included in the analysis [l],

5.2. Variation of the total fusion power

Repeating the above aspect ratio optimization for increasing values of P

(see Fig. 9) yields the results given in Table II below
fus
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TABLE II. Parameters of an ITER-like machine at the optimum aspect ratio for

increasing values of Pfus'

Pfus(MW)

A

fLP

a (m)

R (m)

Bfc(T)

Ip(HA)

V (m 3 )

<n>( I02°m~3)

[T] UeV)

g

HA6

1100

3.46

1.90

1.92

6.65

5.79

17.9

964

1.19

11.5

1.84

0.828

1700

3.01

1.49

2.57

7.73

5.57

27.4

2000

1.02

11.5

1.45

0.835

2200

2.77

1.29

3.05

8.46

5.41

35.1

3070

0.939

11.5

1.27

0.843

3500

2.40

1.01

4.15

9.96

5.02

54.7

6670

0.803

11.5

1.02

0.858

We see that the optimum value of A is decreasing with increasing fusion power

but the minimum is always very flat. For a 1700 HW machine, the minimum value

of f is about 1.5; for a 2200 HW device, it is atout 1.3. L-mode ignition is
L

possible only with a 3500 MW machine. Note that the optimum temperature is

constant and that Troyon and Greenwald conditions are always satisfied.

For comparison, the same curves have been represented in Fig. 10 in the case

of Goldston scaling [6]. Increasing the aspect ratio is always favourable with

this latter scaling.

5.3. Ignition curves in a 1700 MW ITER-like machine

Now, we consider in more details the machines corresponding to P =1700 HW.

The tokamak described in Table II is optimised to ignite at the lowest possible

value of f. with the constraints given in Egs. (71, 72, 73) for T , d_«, B ,L n Ba tmax
q and the poloidal cross-section shape described in Eq. (66).

Taking advantage of the interest of large aspect ratios for current drive

issues, it is also worth considering the possibility of a machine with A=4 keeping
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the same fusion power and the same constraints. The parameters of such a tokamak

are found to be

a s 2.22 m , R = 8.87 m , I = 20.2 HA , B4. s 6.66 T , V a= 1720 m3

P t

Ignition in this machine is obtained for f a 1.52 which is very close to the
Ij

optimal value f=1.49 obtained for A a 3. It is also interesting to note that
L

the enhanced maximum magnetic field allowed by larger aspect ratios

(B a 13.3 T in Réf. [i]) is also a favourable effect which has not been takentmax
into account here.

The ignition curves corresponding to the latter machine are plotted in

Fig. 11 for f =1.55/ 1.52, and 1.48 corresponding to operations atLi
Pfus = 1100 HW (Fn = 0.707 HW/m

2), Pfu£.=1700 MW (Tn = 1.09 HW/m
z), and

Pfus=3000 MW (Tn = 1.93 MW/m*), respectively.

6. CONCLUSION

Operation of the ITER baseline machine (aspect ratio A=2.79), with a total

fusion power of 1100 HW is found to require a minimum value f =1.93 of the
L

enhancement factor with respect to the ITER-89P scaling of the confinement time.

Minor deviations with respect to the reference assumptions for the ash or

impurity contents, density and temperature profiles, ratio of electron to ion

temperatures, as well as alternate definitions of the degrading power, result

in values of the required enhancement factor in excess of 2.

Considering the above insufficient safety margin, optimization of the aspect

ratio has been performed for given values of the maximum m jnetic field, blanket

plus shield width, safety factor at the edge, averaged neutron flux at the plasma

surface, and total fusion power. For the ITER reference values of these con-

straints, the optimum aspect ratio is found to be A=3.5, but it corresponds to

only a marginal improvement of f (1.90).
LJ

A reasonable safety margin (f =1.5) is obtained by increasing the totalLi
fusion power up to 1700 MW, the corresponding optimum aspect ratio being shifted

to A=3. On the basis of the relative insensitivity of the confinement constraints

with respect to the value of the aspect ratio and of the advantage of large values

of A for continuous operation issues, a machine with P =1700 MW and A=4 has

been described. Operation in this machine with f in the range 1.4-1.6 allows
L

the production of a neutron wall load in the range 0.7-2 MW/m2.
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APPENDIX A

Model for the geometry

If conditions (2) are satisfied, the outer magnetic surface may be represented

with portions of ellipses. Introducing J=x/a and C=z/a, we obtain the following

parametric equations for the outer poloidal section:

for < B <
5 = (Tsine? X X

with

< g <

5 = /Tsin0

0* = r - arcsin, = arcsin———— (A.3)
A £ l~t I-U

B~ = I + arcsin--̂ — = n - arcsin ~ (A.4)

Sv+(l-5v)t* -Sv+(l+Sv)f
_» _ A A _ A A , _ „ i
O0 T-̂ T: » «o - l-2t-

a* = (1+5x) fefe ' «" ' (̂ 5X5 ̂T (A-£

1-t* „. 1-t" ,. .
(l-2t*P ^ (l-2f

where

^6X
tgvj.- (A.i

The explicit expressions of the factors Q , 0 , 0 , Q1 inV Sp 5
Eqs. (3, 4, 5, 7) are as follows:

Volume

8v+(l-6v)t*
Q _ ^ \ J. * / I . ^ A A

V 2 u_2t^3/2L " A l~2t'

-t-
2 -3/2L A 1^t- j"^vv- ' ' 3n A l-2
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where

arc(t) .1-2 arcsin-t- - \
* 1^ *

1/2
(A.10)

(i-t)

In the special case i|,*=i|r=o (no X-points), we obtain

(A.11)

• Poloidal surface

6SP 'SP 3/2
(l-2t*)3/2

3/2
(l-2f)3/2

arc<t' (a.12)

In tne special case i|»*=i|<"=0, we obtain 0 =1 independent of the triangularity.

• Plasma surface

Introducing

1+8.X 1-Sx
(A.13)

we have

9S - (A.14)

where

'lVV
+ ...

A 2
1-t*

1-f (A.15)

for

(A.16)
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1+5.,
0S l-2t* (1-

2A
1-t* ..(f'+lA*2)

for

and

1-t*

(C* 1
_ _

in- *2)'* +
l-t-

x i-f
(l-2f

-8 +(1+8 )

U+ 7A l-2t- n-e:

i-f
1-f (i-2t--i/«-2; i-t-

for

(A.17)

(A.18)

(A.19)

O < tgf (A.20)

0: = i-t-
S JtE1UJ l-2f

_X

2A

(I+ ±
 X X

v A l-2t- H-Ii-(I-Zt-).-i1»}] -

in-(f 1-t- (A.21)

for

* ««• < (A.22)

In the auove expressions, E(<p,k) is the incomplete elliptic integral of the second

kind [ll].

Volume integration
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l+S (l-t*)2[5 +(1-8 )t*]

(l-2t*)
arc(t*) -

(l-2t-)5/2

(1-Sx)'

l-2t* l-2t-

In the special case fy*=fy~=o, we obtain

1 - (1-

The following general relation between 0 , 0 , ana Q1 holds

Q = e (l- ̂ MV Spv A '

The following relation will also be used

with

F2(a+2)
= 1]

where F is the Euler gamma function.

arc(f) -

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

N.B.; All the above analytic expressions have been checked by comparison with

the numerical calculation of the integral expressions of the related quantities.

APPENDIX B

Fit for the D-T thermonuclear reaction rate

The D-T reaction rate ffv(T) used in the code is the fit, based on recent

measurements, recently proposed by Sadler and van Belle [4], The fit may be

written as

(B.I)

where

-1/3
a =

a/2
"KeV

2.566327x10
-18

b =
3B
2/3

B 19.98303

(B.2)

(B.3)
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(P«+P»T)TUfT) - 1 -U(T) - 1

wnere n is the deuterium-tritium reduced mass [n=m m /(m +m )], and

.
ItSV

= 1.124656*10 keV , B = 34.3827025

P1 = 1.0545128*10~
15 , P2 = 2.5077l33xlO~

2 , P3 = 6.6024089*10~
2

P4 = 2.5773408><10~
3 , P5 = 8.1215505><10~

3 , P, = -6.1880463xlO~5

,(B. 4)

(B. 5)

(B. 6)

APPENDIX C

Ohmic power

The ohmic power with the assumptions given in section 2.7.3 is given by

Eq. (33) With

(l+an)
3/2(l+3aTX2) *n+a^ )01/A]

ana

1 - 1X2

3 B(l+3aT/2.)-

2V 1-

095 .
(1+2aT)

B(l+3aTX2,) -

1-F1 Oâ )Q1 XA

a . r(f ,
F(+3aTX2)

where

3/2

(c.l)

(C.2)

is the beta function [ll]. 7 is the profile averaged neo-classical resistivity

enhancement factor. A typical value is 7* (A=3, a =1,01=0.0862) = 2.58. The above

expression has been checked by comparison with the numerical integration in

Eq. (32).

APPENDIX D

Ignition conditions for a general monomial scaling

With the same approximations as explained in section 3 and taking a general

monomial scaling of the energy confinement time [Eq. (64)], the analytical

conditions for ignition, Eqs. (51), (58), (61) become:
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7/ Ignition for a given value of the total fusion power

"• f p p p p p x
"igP L o dilution peaking shape fus

where

M
2i+2p+2c(-3f-3

'eff 2
cLl+f+2 c-2p

i » 2
V

B̂  > 1
(D.I)

1-P
2

(D. 2 )

Fpeaking(an'aT'ei'Fo'Zeff 'Vl̂  = ̂ (D. 3)

i+r i
(1-1/A2)2

(D. 4)

with

T a
3-y-2i

3x2

(D.5)

and

min [T]
( [T] )

(D.6)

2/ Ignition for a given value of the averaged neutron flux at the plasma surface

C f F P F F' PigF L a dilution peaking shape n

C, (D.7)

where

2 U2I-S
(D.S)

and
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T a (D.9)

3x2

3/ Ignition for yiven values of the fusion power, neutron flux at the plasma surface, maximum

magnetic field, blanket plus shield width, and edge safety factor

•fusC figPr L * a * dilution ''peaking ''shape 2 i+2c>+2a-3v-3
4

<«
6 c-2p+2a-y-l tmaxB*I:_ = 1 (D.10)

where

I+K2

2t+2p+2a-3p-3

' 4 ^

"

2 2(i-i/irr
(D.11)

2t+2p+2a-3y-3
1-u 4C E E• c a n (D.12)

3*2 2 f to Jc (E +E )ro a n

ana where a is supposeu to tie given by Eq. (50).
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FIGURES CAFTIONS

Fig. i. ITER plasma poloidal cross-section assumed in the model (K =2.22,
A

S =0.58, ̂ =18°, il.-=680).
A

Fig. 2. Ignition curves for the ITER reference parameters [Eqs. (65-67)], and

f=1.84, 1.93, 2.0; Troyon beta limit curve (g=3); Greenweild density limit,L
and constant fusion power curve P =1100 MW.

Fig. 3. Effect of the density peaking parameter on the minimum value of f.
L

required for ignition with P̂  =1100 MW in the ITER reference machine and

corresponding optimum ignition temperature. Dotted line is from analytical

expression Eq. (51).

Fig. 4. Effect of the temperature peaking parameter on the minimum value of f
Lt

required for ignition with P =1100 MW in the ITER reference machine and

corresponding optimum ignition temperature. Dotted line is from analytical

expression Eq. (51).

Fig. 5. Effect of the fraction of 4He on the minimum value of f required for
LJ

ignition with P =1100 MW in the ITER reference machine (Z =1.7) andXuS Sir
corresponding optimum ignition temperature. Dotted line is from analytical

expression Eq. (51).

Fig. 6. Effect of the variation of 2 on the minimum value of f required for

ignition with P =1100 MW in the ITER reference machine (f =10%) and

corresponding optimum ignition temperature. Dotted line is from analytical

expression Eq. (51).

Fig. 7. Effect of the variation of T /T. on the minimum value of f required
6 3. L

for ignition with P̂  =1100 MW in the ITER reference machine and corre-fus
spending optimum ignition temperature. Dotted line is from analytical

expression Eq. (51).

Fig. 8. Effect of the hypothesis on the value of the degrading power on the

minimum value of f required for ignition with P =1100 MW in the ITERL rus
reference machine and corresponding optimum ignition temperature. Dotted

line is from analytical expression Eq. (51).

Fig. 9. Values of f for ignition with imposed values of B. s 10.7 T,L tmax
d = 1.13 m, q = 3.06, T = 1.09 MW/m2 , and P, as a function as theDO i|j n fus
torus aspect ratio, for P = 1100, 1700, 2200, and 3500 MW. Dashed lines

are from analytical expression Eq. (61).

10. Values of f for ignition with GoIc
LJ

of B a 10.7 T, d_c s 1.13 m, q. = 3.06, T = 1.09 MW/m1, and Px astmax BS Y n fus

Fig. 10. Values of f for ignition with Goldston scaling with imposed values
LJ
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a function as the torus aspect ratio, for p = llOO, 1700, 2200, and 3500

HW. Dashed lines are from analytical expression Eq. (D.10).

Fig. 11. Ignition curves for the A=4, 1700 W-J ITER-like tokamak with f =1.48,
Li

1.52, 1.55 corresponding to contact with P =3000, 1700, 1100 MW; Troyon

beta limit curve (g=3); Greenwald density limit.
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Fig. 1 : ITER plasma poloidal cross-section assumed in the model

(Kx = 2.22 ,Sx = 0.58 ,V + =IS 0 ,\|^ = 68°)
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Fig. 2 : Ignition curves for the ITER reference parameters [Eqs. (65-67)] and fi, = 1.84,1.93,2 ;

Troyon beta limit curve (g = 3) ; Greenwald density limit, and constant fusion power curve

(P^=I 100 MW).



Fig. 3 : Effect of the density peaking parameter on the minimm value of ft required for ignition
with Pfus = 1100 MW in the ITER reference machine and corresponding optimum ignition
temperature. Dotted line is from analytical expression Eq. (51).



Fig. 4 : Effect of the temperature peaking parameter on the minimum value of ft required for

ignition with Pf111. = 1100 MW in the ITER reference machine and corresponding optimum

ignition temperature. Dotted line is from analytical expression Eq. (51).



Fig. 5 : Effect of the fraction of 4He on the minimal value of fL required for ignition

with Pfus = 1100 MW in the ITER reference machine (Zeff = 1.7) and

corresponding optimum ignition temperature. Dotted line is from analytical

expression Eq. (51).
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Fig. 6 : Effect of the variation of value of Zgff on the minimal value of ft required for ignition

with Pfus = 1100 MW in the ITER reference machine (fa = 10 %) and corresponding

optimum ignition temperature. Dotted line is from analytical expression Eq. (51).
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Fig. 7 : Effect of the variation of T6/!; on the minimal value of ft required for ignition

with Pf03 = 1100 MW in the ITER reference machine and corresponding optimum

electron temperature. Dotted line is from analytical expression Eq. (51)
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Fig. 8 : Effect of the hypothesis on the value of the degrading power on the minimum value

of ft required for ignition with Pfus= 1100 MW in the ITER reference machine and

corresponding optimum electron temperature. Dotted line is from analytical

expression Eq. (51).
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Fig. 9 : Values of ft for ignition with imposed values of Btmax ~ 10.7 T, des ~ 1.13m,

qv ~ 3.06 , Fn = 1.09 MW/m2 , and Ps18 as a function of the torus aspect ratio,
for Pfus = 1100,1700,2200, and 3500 MW. Dashed lines are from analytical
expression Eq. (61).
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Fig. 10 : Values of ft for ignition with Goldston scaling with imposed values of Btmax - 10.7 T,

dss = 1.13 m , qv = 3.06 , Tn * 1.09 MW/m2, and Pfus as a function of the torus aspect

ratio, for P^5 = 1100, 1700,2200, and 3500 MW. Dashed lines are from analytical

expression Eq. (D. 10).
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Fig. 11 : Ignition curves for the A = 4, 1700 MW ITER-like tokamak with fL = 1.48, 1.52, 1.55

corresponding to contact with P^5 = 3000,1700,1100 MW ; Troyon beta limit curve

(g = 3) ; Greenwaid density limit.


