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RÉSUMÉ

La symbiose de l'algèbre différentielle et de la formulation algébrique de
Lie de l'optique fournit un ensemble de moyens très puissants qui
permettent d'analyser et de comprendre la dynamique orbitale dans les
accélérateurs complexes, l'augmentation de la perturbation atteignant des
ordres très élevés. Afin de pouvoir employer ces moyens efficacement, il
est généralement nécessaire d'exprimer la fonction de Hamilton dans le
système de coordonnées approprié. Dans ce rapport, on tire la fonction
relativiste de Hamilton en coordonnées curvilignes (le système de
coordonnées fondamental pour l'optique ionique), coordonnées cartésiennes
et coordonnées polaires, formes convenant pour résoudre des problèmes en
optique ionique et physique des accélérateurs avec et sans l'aide de
l'algèbre différentielle.
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ABSTRACT

The symbiosis of differential algebra and the Lie-algebraic formulation of optics
provides a set of very powerful tools for analyzing and understanding the orbit
dynamics of complex accelerators up to very high orders. In order to use these tools
effectively it is usually necessary to express the Hamiltonian in the appropriate
coordinate system. In this report, the relativistic Hamiltonian is derived in
curvilinear (the fundamental coordinate system for ion-optics), Cartesian and polar
coordinates, in forms suitable for solving problems in ion optics and accelerator
physics both with and without the help of differential algebra.
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1. Introduction

The development of differential algebra (DA) [1] coupled with the Lie-algebraic for-
mulation of optics [2] has revolutionized our ability to compute and analyze ion-
optical systems up to very high order. In particular, these methods provide us with a
very powerful way of computing and analyzing the orbits both in beam lines and in
circular accelerators such as synchrotrons, storage rings, and the superconducting
cyclotron. These methods are especially well suited to the analysis of resonances.

The Lie-algebra formulation is intimately connected with Hamiltonian mechanics and as
a consequence requires that the coordinates be truly canonical, a condition that is
not satisfied in formulations that use the position and its derivative as coordin-
ates, for example (x,x'), or (x,9) etc. (such as the code TRANSPORT). Thus, it is
best to integrate Hamilton's equations directly.

The generation of the high-order Taylor-series map (the usual aberration expansion)
is very efficiently computed from Hamilton's equations with differential algebra, but
the Lie map is not. Fortunately, DA provides, through its ability to compute high-
order derivatives with high accuracy, a powerful tool for converting the Taylor-
series map into a Lie map when necessary. Finally, for DA techniques to be used, the
equations of motion and the electromagnetic potentials must be in analytic form.

In order to solve problems in optics, and especially if we want to use the Lie-
algebraic formulation, it is necessary to express the Hamiltonian in the coordinates
most suitable to the problem. Furthermore, the coordinate system is different if we
are solving the equations directly in terms of Lie polynomials or via the Taylor
series with the help of DA. To this end, the relativistic Hamiltonian is derived in
several different forms, specifically in curvilinear (the fundamental coordinate sys-
tem for ion-optics), Cartesian and polar coordinates, that are suitable for solving
problems in ion optics and accelerator physics.

The equations of motion of a relativistic charged particle moving in an electromag-
netic field are obtained most elegantly by expansion of the relativistic Hamiltonian
in a curvilinear coordinate system [3]. The Hamiltonian, as a function of the time,
t, in a Cartesian coordinate system, expressed in MKS units, is:

H = e<p + c{m2c2 +(p-eA)2>1/2 (1)

where <p and A are the scalar and vector potentials of the electromagnetic field
respectively and e is the charge of the particle; m is the particle mass and p the
momentum vector. In a circular accelerator such as a synchrotron or cyclotron, <p
could describe the RF accelerating voltage. The magnetic field is [4]

B = V x A (2)

and the electric field is

E = -V<p - | f . (3)



In ion-optical and accelerator systems, the Hamiltonian is transformed such that the
independent variable is "s", the distance along the central ray, rather than the
time, t, (see Fig. 1) because the positions and properties of the focusing elements
are logically a function of s rather than t. It is also usual to use a curvilinear
coordinate system as shown in Fig. 1. Here the radius of curvature p is not necessar-
ily constant and the local coordinate system is defined in terms of the local radius
of curvature.

2. Curvilinear Coordinates

Curvilinear coordinates are the natural coordinate system for optics because the map
has a standard form with a standard interpretation. The curvilinear coordinate sys-
tem based on the central trajectory can be defined by [5,6]

r = r (s) . (4)
o

A local orthogonal coordinate system can be defined by unit vectors found by differ-
entiating the reference vector (4). Thus

dr
A . , 0 , , - .a(s) = ^ (5)

where a(s) is the unit vector tangent to the curve at , and

(6)

where K(S) is the curvature of the central trajectory and pis) is the unit vector
perpendicular to a, called the principal normal [6]. Here we define the curvature,
K, in such a manner that it points along the radius vector. This is opposite to the
usual definition used in differential geometry, but is consistent with the definition
used almost universally in ion-optics. A third unit vector y(s), orthogonal to both
a and Js, can be defined as

y ( ) = a(s) x 0(s) (7)

which completes the coordinate system. The plane defined by a and 3 is called the
osculating plane. Eq. (6) is the first of three differential relations, called the
Frenet-Serret formulas [6.5], which are given by:

fc (8)

ds
K(s)a(s) (9)



(10)

where w(s) is the torsion of the curve (again with a sign convention that is opposite
to that used in differential geometry). For a plane curve u(s) vanishes. The radius
of curvature, p, and the radius of torsion, T, are related to tc and w by

p = 1/K and T = 1/w . (11)

The position of any point in space, not too far from the central or reference trajec-
tory, is given by

r(s.x.y) = rQ(s) + x#(s) + yy(s) . (12)

The point defined by (12) is seen from Fig. 1 to be unique for points whose distance
from the central trajectory is less than p.

We now use a canonical transformation of the type [3]

F (P.q.t) = J" PO(s.q) £ P-r(s,x,y) (13)

where P is the momentum vector in Cartesian coordinates, q is the position vector in
curvilinear coordinates and t is the time. From (12) and (13), we see immediately that

(14)F3(P,q) - P- fro(s) + x£(s) + yr(s)l .

Hence the desired canonical momenta in curvilinear coordinates are, by virtue of
(14) and the relation 13],

dF 8Q

p l
given by

= P-f[l + K(s)x]a(s) + w(s)[xy(s) - y#(s)]l (16)



Note that

- Px
2 + P* + P 2 = P J • P j • P2 »9)

and

(1 + K(s)x)p = p + w(s)(yp_ - xp ) (20)

where p is the component of momentum in the a direction. In a similar manner, we

transform the components of the vector potential A. We obtain by inspection the
results:

As = A- J"[l + ic(s)x]a(s) + u(s)[xy(s) - y#(s)]l (21)

A - A-Jl (22)
X

A = A-y (23)
y

If we impose midplane symmetry, then w(s)=0 which simplifies (16) and (21) consider-
ably. The Hamiltonian in terms of the new coordinates is found from the transforma-
tion [3]

BY
H = H + 5-2 = H (24)

since F is independent of t. Hence, the new Hamiltonian is just the old Hamiltonian
3

(1) in terms of the new variables:

f 2 2 1 f I2
H = e<p + c<m c + | p - eA + o>y(p - eA ) - ux(p - eA )1 "*' » s x x y y

,1/2

+ (p - eA )2 + (p - eA )2J- . (25)
xx y y I

3. Change of Independent Variable

The variational principle (3], from which the canonical transformations are derived,
states that



I >ndV H * ] - 0 .

If we introduce the notation

(26)

(27)

then (26) becomes

I
o

(28)

(29)

and the apparent asymmetry between t and the coordinates q has been removed. Clearly,
we may now define any coordinate, say q , to be the independent variable; then -p

m m
becomes the new Hamiltonian. As was stated in the introduction, it is logical to use
the distance, s, along the central trajectory as the independent variable. If we
assume midplane symmetry (w^o) and solve (25) for p we obtain

= - P = -e
I

XH
e<p

1

1 2 2 r i 2 r i 2 !*
- m e - p - eA - p - eA \ \ .

L x XJ L y y.i J
Here, and in the development to follow, we have chosen the sign of the radical such
that the "time" is positive. Hamilton's equations in terms of the new variable, s,
become

(31)

t

x'

r

_ an

- 92*.

ap *:

an
o " a t

an
x " a x

, _ _ dH
v " a y

where ' stands for d/ds.

The advantage of this formulation in curvilinear coordinates is that an expansion of
the Hamiltonian in a Taylor series automatically results in equations of motion that
generate the "correct" form for the first order (paraxial approximation) as well as
for the higher order aberrations: that is, they are relative to the central or refer-
ence trajectory. Furthermore, when it is applied to beam transport s;ystems, synchrot-
rons, or storage rings, comprised of discrete elements, K is usually either zero or
constant, greatly simplifying the equations of motion. Finally, the magnetic field of
dipoles, quadrupoles and higher multipoles is usually referenced to the optic axis,
or design trajectory whether or not the sharp cutoff approximation (SCOFF), with or
without fringe-field correction elements, is incorporated.



Unlike the canonically conjugate variables, (x,p ) and (y,p ), the variables (t,p )

are not differential quantities, but represent the total time-of-flight and the total
momentum of the particle, respectively. If we evaluate Hamilton's equations, (31),
for the Hamiltonian (30) on the central trajectory, where by definite jn

x = 0 , p = 0
X

y = 0 , p = 0
(32)

and where we assume for the purposes of this discussion that A is time independent,
but that <p may be time dependent, we find that

where the quantities in { ... } are just those giver, in (30) and the expressions are
to be evaluated under conditions (32) with p =p , the central or design energy. For

situations where the particles are not accelerated (̂ >=0), we see that p'=0 and p =

constant. In this case

f = p. = l/vc (35)
ds

where vc = constant is the velocity of the central trajectory.

2 4 -. 1/2
m C ' . (36)

This equation can be integrated directly with the result

t°= s/vc . (37)

If <p*0, then we must solve (33) and (34) for t and pc, where p is no longer con-

stant. Now we define a new set of variables



X. = X

v = y

= p o -
(38)

This transformation to the new variables is canonical and can be obtained from a gen-
erating function of the type F [31:

F (q,?>) = xp + yp +[t - tcHp + pc] (39)

where q are the old coordinates and T are the new momenta. The relationship between
the new and old coordinates is found from the general relations 13]:

2

~dp~ ' Pi = I q
(40)

and the new Hamiltonian is found from

K = K + ds
(41)

Thus one finds the relations

T = ^ 1 = t - tc (42)

P n = P.,. + P .
0 i 0

(43)

and the new Hamiltonian becomes

K = -eAs - [1+KxH
( P > 2 2

- m c - - [v
at (44)

— [p + pC] if p c = constant,
v

where we have substituted the "old" coordinates p and p from (38). If differential

algebra is used in the solution of the equations of motion, the transformation (38)



from the coordinates (t,p ) to (x,p ) is made automatically and we would use (30)

rather than (44).

4. Scaling

It is a fairly common practice to scale some or all of the variables. A very common
scaling, especially when <p=Q, is as follows:

T = CT, pT = pT/P c ̂

X = X , p = p /P°

y = y , py = py/P

(45)

where [8]

| P

c 2

r.<= n c | P 0 2 2

P = eBp = m e
c2

2 £ c
+ E c 2= i /2mc2£ c
+E c (46)

and E° is the kinetic energy of the central particle; P° is clearly the mechanical
of the central trajectory and 7°^= l/v'd-p ). The new Hamiltonian is found

) ()immediate!} by dividing (44) by P , where p is defined in (45) and A=A/P . Hence

I

I2

1 - fp - A ] - — [pc + p 1 .
xj [ y yJ 8 C L ° TJ

K = -A -[1+KxW
c 2P c 2

- A (47)

Since pc = -H = mc2yc (see (28)), we see that

(48)

so that the first term in {...} (47) reduces to [91

p2 = (49)

where we have used the identity y (1-/3 )=1. (Remember that H = the total energy,
K=-p and K is dimensionless.) On substituting (49) into (47), we obtain the final

form of the new Hamiltonian,



K = -A - (I-MCX
[ , r~ ~ i 2 r~ ~ i 2 ) 2 P T i

U + 8 ) - P - A - P - A M - - — + - L . (50)

Note that although p is a canonical coordinate, S is not canonical even though it is

frequently used in accelerator physics; it provides a convenient short-hand notation
but must be used with care. The last term in (50) can be neglected as it never enters
into Hamilton's equations. That this scaling produces a new set of canonical vari-
ables (45), can be seen from the fact that

pdq - K ds pdq - K dsj . (51)

The variational principle [3] gives

S f][ pdq - K ds) = 0 (52)

with q, p and s fixed at the end points, and

5 P ° | pdq - K ds) = 0 (53)

with q, p and s fixed at the end points. From (53) we have that

ds dp
(54)

ds dq

for each pair of canonical variables.

This scaling is not very useful if the particles are undergoing acceleration, except
perhaps at the end point, where one would scale by the final momentum. Scaling by a
constant is often used as a method of improving the accuracy of the results.

5. Cartesian Coordinates

In the fringing field region of dipoles, one usually works in Cartesian coordinates
because the angle of bend through the fringe-field is usually very small. The equa-
tions of motion for a dipole can be written in Cartesian coordinates, in principle,
for the whole magnet as well as just for the fringing field region.



10

It is clear from the discussion in the previous section that (30) and (44) are auto-
matically valid in Cartesian coordinates if K=0. Furthermore, if we restrict our-
selves to cases such as a quadrupole or the fringe-field region of a dipole where the
curvature is sufficiently close to zero, then (44) is in fact the correct final form
of the equations. If the curvature is not zero, it is clear that (30) is still cor-
rect if we write

i
P + e<p)2 „ „ ,- T2 r -,z)z2- [p - eA 1 - |P - eA 1 I[ x xj [ v yj JH = -Pz = -eA_ - 4 | - ^ _ _ | - m V - I P.- eA.j - |P..- eA..| \ (55)

where P and A are now the momentum and vector potential, respectively, in general
Cartesian coordinates, not necessarily referenced to the central trajectory; P =-H as

before and the independent variable is now Z.

As before, we are interested in trajectories in the vicinity of the design or ref-
erence trajectory. In order to obtain the equations of motion for these trajec-
tories, we introduce the variables:

( 5 6 )

t = T - T c .

Y - Y c ,

As for (38), the transformation to the new variables is canonical and is obtained
from the generating function

F2(Q,p) = (X-Xc)(px+P^) + (Y-Yc)(p +Pp + (T-Tc)(pt+P^) (57)

with
d¥ 3Y

where Q represent the old coordinates X, Y, T, and p the new momenta p , p , p .

{Note: our use of O.P for the old coordinates and q,p for the new coordinates in this
instance is opposite to that used in Goldstein [31.) The new Hamiltonian is given by

2
H = H + T== . (59)

Hence,



l i

;- eAy] J

r V pv>

where we note that the canonical coordinates of the central trajectory are Z depen-
dent. The scalar and vector potentials are also expressed relative to the central
trajectory so that

<p • ?(x + Xc, y + Yc, t + T°;Z) (61)

A = A(x + Xc, y + Yc
: t + TC;Z) . (62)

The coordinates of the central trajectory are found by solving Hamilton's equations
(see (3D) with the Hamiltonian (55). If DA is used to generate the map, this trans-
formation to the coordinate system with its origin on the central trajectory is done
automatically.

There are two important differences between (44) and (60). First, a solution of
Hamilton's equations for (60) will not lead to the "correct" Taylor series if the
curvature of the central trajectory is finite, because Z cannot normally be tangent
to the central ray at both the initial and final points. A coordinate transformation
will have to be applied to the results. Secondly, if the bending angle is suffici-
ently large, the solutions of (60) will be doubly or multiply valued—not a pleasant
situation.

6. Cylindrical Coordinates

In a cyclotron, it is most natural to work in a cylindrical coordinate system because
this best represents the symmetry of the magnetic field including the dominant error
terms in the magnetic field. Furthermore, it is usual to represent the field in a
Fourier series based on a polar coordinate system. As was the case for a Cartesian
system, the canonical variables will not be in the "correct" optical coordinate sys-
tem in the radial plane.
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In cylindrical coordinates, we define the direction vectors of the orthogonal coord-
inate system as shown in Fig. 2. Although we could write down the relativistic
Hamiltonian in cylindrical coordinates by analogy t j the non-relativistic case [3],
it is perhaps safest to derive the canonical momenta directly from the Lagrangian.
The relativistic Lagrangian for a charged particle moving in an electromagnetic field
is [3]

L = -mc2/l-/32 - ey> + v A (63)

where

and

z2]L[p2 + pze2 • z2] (64)

= p , v Q= p0 , vz = z . (65)

Hence we obtain the momenta canonical to p, 9 and z:

_, 2
oL me p . irss

— = — + eA (66)
2 P

p - 5 t = - " i l l e ! | + ePAe (67)9 ** C ? ^
3L me z . , -„ ,

p = — = + eA . (68)2 * ^ ? =2 z

The Hamiltonian can now be written immediately as

[ v eAJz+ [pH = e<p + c^m2c2
+ |P#.- eAj~* |pQ/p - eAj~+ | p , - C A J T . (69)

As in the previous cases, we want to change the independent variable, from t to 9 in
this case, because the magnetic field is to be represented as functions of p and 0.
Using the methods of section 3, we find that

i

((p + e<p) 2 2 F I 2 f I 2 ) 2

H = - pn - -epAo - p\ - m c - p - eA - p - eA \ \ . (70)
v& * e n c [pp p\ [pz zj r

This equation is the equivalent of (55) and would be suitable for finding the coord-
inates of the central or reference trajectory. If DA is used to solve the equations
it is already the correct form of the Hamiltonian.
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If DA is not used, we must once again transform to the local coordinate system. In
order to obtain the equation for trajectories in the vicinity of the central trajec-
tory we introduce the variables:

T = t - t°, PT = pp- p^

x = p - pc

z = Z PZ "Pz

'.ID

Here we have assumed midplane symmetry and placed the origin of z on the midplane.
Following (57), we find that the generating function for the transformation is

(p - PC)(PX+ • (t - tc) (72)

with the new Hamiltonian given by

H = H +
de •

Hence,

(73)

2 r n

- [PZ-«AJ

dpc

(74)

As before, we must express the potentials relative to the central trajectory. They
are of the form:

= <p(x + p c , z, x tc;8) (75)

A = A(x + p , z, T + t ;9) . (76)

The extension of (74) to the case where midplane symmetry is broken is trivial and
follows directly from (60) and (61) and (62).

Once again it must be emphasized that although the variables in (74) are canonical,
they are not in the correct curvilinear system in the radial plane and a coordinate
transformation is required for the map to have the "correct" meaning. In a cyclotron,
scaling of these equations by the momentum of the central trajectory is not very use-
ful because of the acceleration (see section 4), except perhaps at the end point.
Scaling by a constant could, of course, be used as a method of improving the accuracy
of the results. Finally, if there is no acceleration (pc is constant), we see that
scaling by l/pc reproduces (44) with the appropriate change to the definition of A .
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7. Conclusions

The relativistic Hamiltonian for a charged particle travelling in an electromagnetic
field has been derived in the usual curvilinear coordinate system used in ion-optics
as well as in Cartesian and polar coordinates. In all cases, the Hamiltonian is
expressed in a form in which the particles near the central or reference trajectory
are expanded about the central trajectory. This is essential for the calculation of
the Lie map or the Taylor series map, except when differential algebra techniques are
used in the solution of the Hamiltonian. In the latter case, the DA automatically
makes the transformation. The map must ultimately be expressed in curvilinear coord-
inates in order to have its "standard" interpretation. This can be done by a coordin-
ate transformation. In a similar manner, the electromagnetic field must be expressed
in analytic form in a way that can be expanded about the central trajectory if we are
to use the DA techniques.
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a)

central trajectory

b)

Fig. 1 (a). Curvilinear coordinate system used in computing ray trajectories. The
local orthogonal coordinate system (x.y.z) is oriented such that (i) x is in
the bending plane and directed along the local radius vector p, (ii) z is tan-
gent to the central trajectory, and (Hi) y is the upward-pointing vector per-
pendicular to the (x,z) plane. (Note the system can be either right-handed or
left-handed, depending on the direction of the curvature.) The coordinate of
the ray is given as a function of s, the distance along the central trajectory
from the origin of the system to the local system, (b) Coordinates used to
specify the propagation of a beam bunch of length 2x through a section of the
optical system; x = t - to, where to is the time of flight along the central
trajectory and t is the time of flight of the "off-axis" particle.
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Fig. 2. Cylindrical coordinate system used to describe the orbit dynamics of a cycl-
otron and in some cases a dipole magnet. Here the local coordinate system is
such that (i) x is in the bending plane and directed along the radius p from
the origin; (ii) 0 is Derpendicular to pc but is not tangent to the central
trajectory, and (iii) z is the upward-pointing vector perpendicular to the
(x,B) plane. (Note the system can be either right-handed or left-handed depen-
ding on the direction of 9, but is right-handed here). The coordinate of the
ray is given as a function of 6, the total angle along the central trajectory
from the origin of the system to the local system. Also shown are the unit
vectors of the curvilinear system.
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