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Abstract

Magnetic field line diffusion in a plasma is studied on the basis of the non-linear boundary layer
equations of clissipative, incompressible magnetohydrodynamics. Non-linear steady state solutions for
a clans of plasma parameters have been obtained which are consistent with the boundary conditions
appropriate for reconnection. The solutions are self-consistent in connecting a stagnation point flow
of a plasma with reconnecting magnetic field lines.

The range of the validity of lh« solutions, their relation to other fluid models of reconnection, and
their possible applications to space plasma configurations are pointed out.

1. introduction
Recomiection of magnetic field lines is a phenomenon of particular interest in space plasmas in the

vicinity of the Sun and planetary magnetospheres and in the context of laboratory plasma confinement
configurations. E. g., the sudden release of energy in solar flares and geomagnetic substorms as well
as the transfer of solar wind plasma into the magnetosphere is often explained in terms of magnetic
reconnection.

Plasma acceleration in current layers has been first studied by Sweet (1958) and Parker (1963). In
these models the resistive dissipation of magnetic flux heats the plasma which, in turn, is sqeezed out
in narrow-angle regions by the enhanced pressure.

Due to the usual extremely high magnetic Reynold's number in cosmical systems, this process
is very inefficient when considered on a global scale. Petschek (1964) proposed a model where the
resistvity is important only in a small 'diffusion region' which allows for the reconnection of magnetic
field lines. Excited large amplitude magnetohydrodynamic (mhd) waves then lead to effective global
energisation and acceleration of the plasma.

In ti>e present paper wo giw a solution of Hit; non-linear mhd boundary layer equations which
looks promising to fill the gap between the ideal mhd wave solution and the diuipative central region
which provides the necessary reconnection of magnetic field Unes.

2. The Model
We look for a planar boundary layer solution of the viscous-resistive, incompressible mhd equations.

If we assume the y-axis normal to the boundary, the governing equations are
| I jn

" +nv <M*v + iMv» + ^ {AyAry - AcAn) = " ¿J (1)

Vm An + iffgAy - i>yAt = -cEo. (2)

Here we introduced the Stoke's functions i>(x,y) and A(x,y) for plasma flow and magnetic field,
v = V x 1>ex, B = V x Aet, if and vm ~ c2f4*(r are the kinamatic viscosity and the magnetic
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Figure 1: Velocity and magnetic field for vfvm = 0.1.
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Figure 2: Velocity and magnetic field for vjvm at 1.
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diffusivity, £ 0 is a constant electric field in the ̂ -direction and P(x) — p + B%/8ic is the total pressure
which is assumed to be known in boundary layer theory (Schlichting, 1951).

We look for a self-similar solution of the type

where Bo is some constant magnetic field at infinity and Va = Boj^/Arp the corresponding Alfven
velocity. Equations (1) and (2) may then be written with a = v/vm as

<p" + /<&' = 1 (6)
<?" + /?' - 2 /V - 0. (7)

where we have put S^/L = vmfVa and CEQ — ~{bjL)VaBo. If we define Mo = Vo/Va as the Alfvenic
Mach number of the asymptotic inflow velocity Vo corresponding to the electric field EQ = —VOBQ/C,

it follows that Ma = S/L with 6 = vm/Vo, the resistive scale length. The Alfve'nic Mach number may
be related to a magnetic Reynold's number, Rm = vm/VaL, defined through the Alfven velocity Va

and the scale L, by Ma - l/y/Rm.
The set of non-linear ordinary differential equations (5-7) is solved numerically with the boundary

conditions

(8)

/(oo) = ^(oo) = 1, (9)

sucht that / , <j> and <p assume constant values at infinity for y/6 -*• oo. The solutions for a = 0.1
(low viscosity) and o = 1 (high viscosity) and constant total pressure, dP/d i = 0, are displayed in
Figures 1 and 2.

3. Results
The top panels of Figures J and 2 show that there exist steady state solutions which assume

constant values at infinity (the edge of the boundary layer). The corresponding stream- and field lines
(V> = const, A = const) are given in the bottom panels and show a quarter of a configuration which
is expected for magnetic reconnection. The inward convected field lines are reconnected at the origin
and set up a stagnation-type plasma motion. Remarkebly, the plasma is accelerated solely by the
acting Lorentz force, i. e. the tension in the reconnected field.

Enhancement of viscosity broadens the boundary layer but gives essentially to the same result.
The solution is limeted in iiie x-direction by

\

because we neglected the left-hand term in equation (5). This conditions gives values oix/L ~ 0.2. At
these values the outflow velocity is approximately half of the inflow Alfven velocity and it is expected
that Petschek'i mechanism takes over where large amplitude mhd waves become important.
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