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Abstract
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The behaviour of the differences of the proton-proton and proton-antjproton cross-
sections is studied with the help of the U-matrix method in the presence of the C-odd
partnei of pomeron.
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1 Introduction
One of the most important results obtained in the expirements on hadron-
hadron scattering is the discovery of the continuing growth of the total
cross-sections in the high-energy region . The data recieved at IHEP ,
CERN-ISR , FNAL and SppS-colliders suggests that the maximal allowed
growth of the total cross-sections , saturating the Proissart bound , is
possible :

Vtot ~ b g 2 S, (1)

at s —• oo.
Besides that , the measurement of the differential cross-sections has

shown that at— i = Q2 ~ 1 -j- 2 the differential pp-cross-section is by an
order of magnitude higher than the proton-proton one and has the form
of a "shoulder " instead of a dip . The recent experiments at SppS reveal
that the geometrical scailing is violated: the ratio of the elastic to the total
cross - sections a^jat<A , which remained constant for a long time , increases
from 0.175 at y/s - 53 to 0.215 at y/s = 900 . Due to this fact the modern
models take into account not only pomeron , which leads to the asymptotic
equality of pp— and pp-cross-sections , but also its crossing-odd partner
named "odderon" . Since the last one dominates in the region of high t, its
presence must lead to different dependence of particle-particle and particle-
antiparticle reactions on the scatteing angle ; moreover , it may provide
the constancy and even the growth of the difference of the total pp— and
pp—cross-sections &<Ttat = otot — afot. For instance , in the scenarios of



the "maximal" odderon it grows with the maximal rapidity allowed by the
general theory of scattering :

A<7 t o t~logs. (2)

Lately the interest in the models providing the maximal growth of Aatot

has been considerably renewed since they predict the increase of the ratio of
the real to the imaginary part of the forward amplitude p(s, 0) = ~^Y(sb) '""
the effect recently reported by UA4 Collaboration [1] .

However , it has been argued in [2] that the account of the ampli-
tude unitarity in the framework of the eikonal parametrization permits to
achieve at most constant , but not growing , Aotot , This constancy is ob-
tained only when the leading pomeron and odderon trajectories are degene-
rate . If the pomeron lies above the odderon , Aatot vanishes as s& , fl < 0 .
Certainly , it is interesting to find out if it is possible to achieve the maxi-
mal odderon in another parametrizations of the scattering amplitude . For
example , the approach using the generalized reaction matrix preserves the
unitarity of the amplitude [3] and is very convenient for the explicit treat-
ment of our problem . In this work we shall calculate the total and elastic
cross-sections with the help of the U-matrix formalism ; after that we shall
make a comparison with the results of the eikonal representation . It will
be shown that both approaches give the coinciding predictions about the
behaviour of the total cross-sections at s —* oo . However , the II-matrix
leads to a constant difference of the elastic cross-sections Дае/ while the
eikonal Acrei and Acrinei grow with the same rate ( as log* ) , but have
opposite signs , and their contributions vanish.

2 General properties of the U-matrix

In the high-energy region the scattering amplitude F(s,t) can be written
with the help of the generalized reaction matrix ( U-matrix ) , arising
from the single-time formulation of the two-body problem in QFT [4] .
The essential feature of this theory is the introduction of the quasipot.cn-
tial , which is the analogue of the usual quantum-mechanics potential for
the relativistic case . Unlike the Bethe-Salpeter equation , the choice of
boundary conditions using the quasipotential can be made in a rather sim-
ple way ; moreover , due to the non-conservation of the number of tln>
particles in quantum field theory , the effective potential is complex , and



its imaginary part must have definite sign to satisfy the untarity condi-
tions . There exists a simple relation between the analytical properties
of the quasipotential and those of the scattering amplitude , which al-
lows first to make the analytical continuation from s— to t—channel for
the quasipotential and after that go over to the analytical continuation of
the amplitudes without any extra restrictions on the behaviour of Regge
trajectories .

According to [5, 6] , in the centre-of-mass system we can write the fol-
lowing singletime equation:

F(p, q) = U(p, q) + ^ ^ / du^U(p, k)F(k, q) , (3)

where F(p, q) is the scattering amplitude , p = к = q , p(s) = J3'4™2 .
The U-matrix , just like the amplitude , contains all the nessesary infor-
mation about the scattering process . It can be shown that non-Hermitian
part of the U-matrix appears due to the presence of inelastic channels ; if
we introduce the symbolic notations , in which Eq.3 is written as

F=U+iUDF, (4)

and the amplitude unitarity condition as

F - F+ = 2iF+DF + 2iH (5)

( here H is the inelastic contribution ) , then

U- U+ = 2i{l+W+D)R(l-iDU). (6)

Passing over to the impact parameter space we get

?rd^ (7)
and

/ f / ^ ( b ' S ) / = T (8)

where U(b,s) is the Fourier-Bessel transform for U(s,t) :

U(b,s) = —J9 y/^tdy/^iU(s,t)J0(by/^i). (9)
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To close this section let us say a few words about the description of
Regge poles in this approach . Suppose that not F(s,t) but U(s,t) is pro-
portional to sa(t), where a(t) is the pole trajectory in the complex angular
momentum plane . A crossing-even ( crossing-odd ) pole a±(<) is thus re-
lated to the matrix

U±(s,t) = -9±U*>a±{t) , (10)

where g± > 0 are real constants and £±(i) are signature factors . Such
choice makes the conditions of the amplitude unitarity explicit just from
the beginning and helps to avoid procedures of the additional unitarisation
for superhigh energies . If it is nessesary to take account of several Regge
poles , the resulting U-matrix must be the sum of the U-matrices for the
individual poles .

3 Pomeron and odderon in the U-matrix
method

For a long time , just till the early 70's , the collider data seemed to demon-
strate the tendency of the particle-particle and particle-antiparticle total
cross-sections to the same constant limit satisfying the well-known Pome-
ranchuk theorem . Nevertheless the results obtained at Serpukhov and
later at CERN-ISR clearly indicated that in the new domain of energies
the total cross-sections began to increase again ; soon it was found that
the differential pp—and pp—cross-sections as well had different, behaviour .
Since such growth does not depend on the sort of the colliding particles , it
is natural to suppose that in the asymptotical region the main contribution
is provided by the Pomeranchuk pole , or pomeron ; moreover , the trust-
worthy description of <r£* ar»d a^ must also include its crossing-odd part-
ner , or odderon ( see early references in [7] ) .

From the point of view of QCD the pomeron-odderon structure of the
amplitude directly arises from the hypothesis of the"gluon dominance" [8] .
The asymptotical interaction must occur due to the exchange by some num-
ber of gluons in a colourless state , because the contributions from the quark
exchanges fall down like a power of s. The reggeization of crossing-even
exchanges leads to the pomeron and of crossing-odd ones — to the odde-
ron . At the same time the introduction of odderon does not contradict the
basic QFT principles , and a priori nothing forbids the maximal growth of
4



basic QFT principles , and a priori nothing forbids the maximal growth of
Aartot , namely as log s .

The scenarios with such saturating increase of Acrtat are named " the mo-
dels of the maximal odderon " : for instance , in [9] the form of the ampli-
tude , chosen on the base of motto "Strong interactions must be maximally
strong" , provides both the saturation of Aatot and the increase of p(s,0) .
On the other hand there exists a number of models with the "minimal"
odderon [10, 11] , which predict A<Ttot —» 0 ; in one of these approaches
[12] it is even possible to verify the value of p(s,0) and show that the spe-
cial parametrization of the experimental cross-sections gives the reasonable
values of p [ 0.136 instead of 0.24 ] . Certainly , Aatai in reality may also
tend to some constant . Let us now see , which alternative is realized in
the U-matrix treatment of the amplitude .

Suppose that the main contributions into the high-energy amplitude
are made by one pomeron and one odderon . Of course , there arises
a question if the really existing singularities have such simple structure
or not . For instance , in the perturbative QCD using the "leading log"
approximation , pomeron and odderon appear as two- and three-gluon
bound states ; in this case pomeron must consist at least of two Reg-
ge poles [13] . Nevertheless this calculation implies that the odderon
trajectory lies above the pomeron one , which is incompatible with the
amplitude unitarity . Besides that , the presence of several Regge poles
does not differ , in principle , ( as a consequence of the U-matrix addi-
tivity ) from the case of the non-coinciding pomeron and odderon and
has no influence on the qualitative behaviour of the leading term in the
asymptotical expansion : it is still determined only by leading poles .

If the pomeron and odderon trajectories are linear and correspondingly
are written as a±(i) = 1 + A± + at'±(t) , where Д ± > 0,a'± > 0 , by the
direct calculation of Eq. 9 we get

' А ^

H e r e A+ = я„|Й-д+)'Л- = S ^ f e r ) ' 5 = «exp(-«f),B±(«) = 4a'±logs.
One can note that the logarythmical behaviour of B±(s) provides the

saturation of the Froissart bound : it follows from Eq. 11 that the effective
radius of the interaction bmax ~ log s and otat ~ b^nax ~ log2 s. r



The pp— and pp— forward amplitudes look like

0) = j M bV2j 1 _ ( £ / + ( 6 ) 5 ) ± Z 7 _ ( f e 5 ) ) (12)

We can as well denote

F+(s,0) = F»(s,O) + F°(s,0) = ^ / M ^ I ^ , (13)

and obtain the equations

8тг3

0M = at* + °ш = —ImF+(s, 0) (15)
g 3

A^ot = o&t - fffat = —ImF-(s, 0). (16)
s

The unitarity of F p ( a)(s, 0) leads to the inequalities Д + > Д_ , a'+ > a'_ .
In this case the behaviour of the intergrands in Eq. 13 and Eq. 14 at fixed b
and growing s is different : it tends to a constant in the first equation and
infinitely vanishes in the second one . This gives some reason to suspect
that Aatot does not grow in the "asymptopia" ; let us prove that for a spe-
cial choice of the parameters a^ = a'_ — а', Д+ = Д_ = Д, B±(s) = B(s).

4 The calculation of Aatot

It can be shown that Acrtot grows more rapidly if the trajectories are degen-
erate rather if they do not coincide ; moreover , it is argued in [15] , that
this degeneracy may appear in QCD as a result of the quark confinement .
Then

From Eq. 12 we come to

(18)



After the s tandard substitution this integral is easily calculated and we
get

а$] = 47riie{B(s)log(l + Х+щ^~**)}- (Щ

Denote

as s —• oo . Now we can pick out the growing te rm l o g ( A H ^ ~ 5 A ) and ex-

pand the remaining summand into the series of (д ±*д s ~ A j . After the cal-

culation of the real par t we find t h a t

JAlog2s + log( 4 c /^ g)logs +

+ — cos(60 T arctg(-r=-))s~A log2 s) - 2тга'{в0 ^ arctgi-^) -
P\ A+ > «• A+

—^-sin(6o : Farc^ T ^)s" A logsU. (20)
PA Л+ J J

This , in its t u r n , implies

atot ~ 3 2 7 r a ' A l o g 2 s (21)

and

, , 1 6 O ! .О ,7Г .

А ( r f A brcosfAb
р\ 2

) 2 i ( j A ) - A l . (22)

As we have expected , the presence of the pomeron with the non-zero
intercept Д leads to the saturating growth of <7<ot . However , the odderon
provides only constant А<7ш ; we also notice th'at Aatot —> 0 if A_ —> 0 ,
i.e. t h e difference of the total cross-sections is really appearing due to the
odderon .

5 The calculation of the total elastic cross-
sections

Prom Eq. 8 and Eq. 17 we get the expression



(23)

After the substitution z = zoe~B",zo = —j A ^j~s A , Eq. 23 takes the
form

fiSr|]j^F. (24)
Since the integrand has no singularities in the integration region , Eq. 23
is easily calculated when s —* oo .

Finally we get

tod = 4 7 Г ( 4 " ' 1 о ё s + ^ - { c o s ( 0 o =F arctg^) - 2}«"A log2 s -

. (25)

d = 4 7 Г ( 4 " 1 о ё s +

The difference A<rinej = <7̂ ,e/ — afne[ vanishes in the high-energy limit:

s 4-

( ) s i n { l
PA 2

with the help of Eq. 22 we find

A)s
x 2

)2i{lA)-Al; (26)

Acrei = A(Ttot - Aaine( = 16тга'arctg—-. (27)

In addition , asymptotically ae\ ~ log2 s.
This relation implies that the saturation of the Froissart bound aris-

es due to the elastic scattering ; though <Tjnei continues to rise , we find
<feil<7tot -+ 1 . which is in accordance with the demands of the general field
theory .

6 U-matrix in comparison with eikonal

The cross-sections found in Sec.4,5 were previously obtained with the
help of the eikonal approximation [2],[14] . We must emphasize that
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both methods give coinciding predictions about the behaviour of <rtot and
Acrtot , while the description of the scattering mechanisms is not the same .
Though eikonal Acrtot also tends to constant when the leading trajectories
are degenerate , the inelastic difference Acrine/ still grows as log s ; at the
same time Acrei increases with the same rapidity but with opposite signs ,
so their contributions into Aatat compensate each other . In the U-matrix
treatment Аа^ falls down as a power of s ; that is why even the constant
Aatot arises at the expense of the elastic reactions . This fact does not seem
surprising since in the eikonal parametrization one obtaines aei/atat —> | ;
at the same time the U-matrix approach always provides creifcrtat —* 1. We
shall as well observe t h a t , unlike the eikonal picture where all Дст depend
on A± parameters only through their ratio A_/A+ , in our case Д(7ше/ is
wholly determined by A_ and p\ . For the realistic choice of the intercept
A « 0.1 -5- 0.2 the signs of A_ and A(Tinei are to be the same , according
to Eq. 26 . Moreover it follows from Eq. 22 that the information about
the asymptotical signs of Acrtot and dA<Ttot/ds is sufficient to make definite
conclusions about the signs of A+ and A_ .

The same speculations can be conducted in the case of non-degenerate
trajectories . Certainly , we cannot get the exact expressions for the values
concerned since we have to take into account more than one exponential
piece each time . However , the upper estimates show that Aatot falls down
if the pomeron lies above tha odderon ; namely Aaiot ~ s^, (3 < 0 , which
is rather compatible with the eikonal predictions.

To conclude we stress that all the results of this paper concern the
asymptotical behaviour of the cross-sections . Of course the functions in
question may have extrema at finite energies . For example , it can be
seen from Eq. 22 that in the used approximation dA&tot/ds has two zeros ,
which satisfy the quadratic equation for log s . These zeros are log s = 0
and logs = ^ , which for so « 1 GeV correspond to s ss 1 GeV and
s Й е» к е " т e2 0 GeV ; due to this Aatot rnay temporarily grow at
current energies . These speculations are on no account strict but the fact
is that even in the one pomeron-one odderon model Acrtat may increase
within a finite interval, though slower than log s . However , if the collider
energies have already reached "asymptopia" ( though the experimental
values of aK\jat(A are still suspiciously far from 1 ) , then the measurement
of the elastic scattering may become critical to choose between U-matrix
and eikonal parametrizations .
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