5/122011215

1

NiiEFA - P-B -- 0836.

НИИЭФА П-Б-0836

НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ Электрофизической аппаратуры им. Д.В.Ефремова

А.М.Астапкович, В.В.Кокотков, А.Б.Минеев

О СЦЕНАРИИ РЕЖИМА ПРЕДЕЛЬНЫХ ПАРАМЕТРОВ ПЛАЗМЫ (**Q ПЭ**-РЕЖИМ)

Препринт

москва цнииатоминформ 1989 /IK 621.039+533.9

лоталкович л.М., Кокотков В.Б., Минеев А.Б. О сценарии режи-Ча доодольных параметров плазмы (903 - режим): Препринт 1-0336. - М.: ЦНИИатоминформ, 1989, 12 с., с ил., цена 7 г.

Одчим из наименее изученных режимов работы токамака является изследование поведения плазмы при одновременном приближнии к пределам по параметрам $\mathbf{q}_{,<n_{e}>v}$ в. Как показывает совработка проектов типа INTOK, реактор-токамак должен ра-

В рассте приведени босбенности и разработаны варианты оценариев выхода на режим предельных нараметров на установке масштаба 7-10, рассмотрены требования к источникам частии, чеобходимые для достижения такого режима.

> С Центральный научно-исследовательский институт информацыи и технико-экономических исследований пс атомной науке и технике (ШИМатоминформ), 1989 г.

W-28

1

Предварительная проработка опытных термоядерных реакторов типа / MTOR показала, что в плазме должны быть одновременно достигнуты параметры

2,5 - 3; *Ш* ~ 15; С_{іў} ≽ I (изображены 9 ~ 2,5; в виде овала на рис. I).

Здесь 9 - запас устойчивости на границе шнура; - параметр в скейлинге Тройна для β ($\beta = 0.013^{I}/a\beta$); *Ш* - параметр в соотношении для максимальной концентрации плазмы ($h_{e_{max}} = MB/MOR$); $C_{e_{e}}$ запас по зажиганию. Единицы: I – MA, $a, R - M, B - T, n_{e} - 10^{20} M^{-3}$.

 $h_e = \frac{M}{10} \frac{B}{R}$ В = 0.01 0 <u>Т</u> более дорогой. Te /10

Рис. І. Овал, соответствующий значениям параметров, требуемым для опытного peaktopa

Лостижение больших значений

в принципе может сделать реакторную установку более дешевой, меньших -

Как показывают эксперименти на токамаках, в рамках отдельной установки не достигнуто требуемых значений сразу по нескольким из указанных нараметров. Имеются отдельные достижения:

g = 3; g_I = 2,5; Ш = 15 на разных уста-HOBRAX (CM. DMC.2)X.

Более продвинуты (в плане комплексной проверки достижимости предельных значений указанных выше параметров) эксперимени PBX. На них удалось одновременно достичь ты на D-WD $q_{I} = 2.5;$ g = 3; $\mathcal{U} = 5$ (рис.3). За исключением \mathcal{U} и C_{ij} это уже близко к значениям параметров, требуемых для спытно-го реактора, но получены они при невысоком уровне тороидального поля ($\mathcal{B} = 0, 8-0, 9$ Тл). При этом уровень средней концентра-ции электронов плазмы порядка (0,3-0,5). 10^{20} м⁻³ в $\mathcal{D} - \frac{1}{3} \mathcal{D}$ и РВХ достигался без pellet инжекции (газонапуском).

Наибольший отрыв данных эксперимента от реакторных требований наблюдается по параметру С; или по имеющей тот же смысл

Данные Shot ' св по установкам JET (6), T-IO (г), ASDEX(д), TEXTOR (е) представлены Р.Н.Литуновским, по $D - \overline{B}$ (в) использованы из /3/, по TFTR (а) – из /4,5/ x

величине $N_{c}(0)T_{i}(0) L_{E}$ (ниже параметр NTt ; здесь $N_{c}(0)$, $T_{i}(0)$ – значения концентрации электронов и температуры ионов на оси плазмы; L_{E} – энергетическое время жизни плазмы). В экспериментах на токамаках JET и TFTR получено $NTt = (I-3).I0^{20}$ кэВ.с.м⁻³. В форсированном режиме предполагается достичь на этих установках $NTt = (5-I0).I0^{20}$ кэВ.с.м⁻³, а для зажигания $C_{ig} > I$ требуется по оценкам $NTt > 50.I0^{20}$ кэВ.с.м⁻³.

ł

Таким образом, достижение $C_{ij} > I$ и исследование термоядерного горения переносится на компактные установки типа СІТ либо на полномасштабный реактор типа INTOR или ITER.

В то же время комплексной проверки одновременной достижимости параметров $q_{T} = 2.5$, g = 3, $\mathcal{U} = 15$ на токамаках еще не проводилось. Можно показать, что такая проверка значительной части требуемой для реатора информации в принципе осуществима на небольших установках с параметрами:

 $a \sim 0,3 - 0,5$ M; $B \sim 2 - 8$ Tn; $< T > \sim I$ K9B, В частности, на проектируемой установке T-IOC.

Ниже режим с комплексной проверкой достижения максимальных значений q_1^{-1} , h, h, h и исследования характера удержания при предельных параметрах назван $q^n/3$ – режимом (рис.4).

Основная особенность qub – режимов – одновременное применение мощных источников частиц (газонапуск + pellet – инжекция) и энергии; проверка работоспособности систем, воспринимающих потоки частиц и энергии, – камеры и дивертора.

Одна из важнейших задач 946 - режимов - согласование источников частиц и энергии, необходимое в реакторе, но почти не исследованная экспериментально (особенно при pellet -инжекции).

Отметим, что исследование 943 - режимов на ряде установок с увеличивающимися геометрическими размерами и тороидальным полем В может привести к созданию экономичного термоядерного реактора. При Таком увеличении размеров и поля возрастают

<T>, nTt и значение Cig

Рис.2. Достигнутые в экспериментах на ряде токамаков значения параметров (сплошные кривые) в сравнении с требуемыми для реактора (пунктирные кривые)

Пс мере приближения к предельным значениям q_1^{-1} , β , \mathcal{U} энергетическое время жлзни плазмы должно уменьшаться. Фактически исследование \mathcal{T}_E и является одной из основных задач

9 к в -режима. При предварительной оценке предельных параметров плазмы предполагалось, что Т_Е при выходе на ^с ¹β режим определяется комоинацией скейлингов - неоклассичесі [¬]о и Кайе-Голдстоне.

Возможны различные варианты выхода на режим предельных параметров. Предполагается следующий сценарий.

Рис. 3. То же, что и на рис. 2, для токаманов PBX и N- T L

I. q_{\min} достигается к моменту выхода на плато тока. Увеличение концентрации $N_{\ell}(t)$ обеспечивается газонапуском. Из представлений об оптимальном газонапуске /I/ выбрано на стадии подъема тока $N_{\ell}(t) \sim \Gamma(t)$

2. При 9 = 9 ний концентрация плазмы увеличивается с помощью pellet -инжекции до и = исмая с одновременным включением дополнительного награва.

3. Выход на предельные /> происходит за счет управления вкладом мощности нагрева.

Такой сценарий описывается диаграммой

quin - quin " max - quin " max B max

В табл. I приведены параметры сценария для установки класса T-IO с ЭЦР нагревом. Следует стметить, что удержание плазмы в 9^M/S -режиме может быть хуже, чем в обычных, а мощности 5 MBT недостаточно для достижения предела по /З из-за увеличения тепловых потерь. В таком случае постижение параметров

4

9 му -режима проде при уменьшенном значении тороидального поля в плазме. Параметры такого сценария при В=3 Тл приведены в та табл.2. Расчеты этого сценария проведены при мощности ЭЦР 3,5 МВт, т.е. с резервом на ухудшенное удержание.

При разработке сценариев достижения 94/3 — режима использовалась программа SCENS, основанная на двухкомпонентной модели энергетического баланса плазмы (см./2/).

Сделаем несколько замечаний по параметрам 9n/3 - режимов, приведенных в табл. I, 2.

a). Значение $\mathcal{E}\beta_{j}$ ($\mathcal{E} = \frac{\alpha}{R}$) составляет $\mathcal{E}\beta_{j} \simeq 0.5$, что не очень велико и меньше уже достигнутого в эксперименте (TFTR : $\mathcal{E}\beta_{j} \simeq 0.7$).

6. Время обмена энергией между электронной и ионной компонентами ~ 10-20 мс существенно меньше энергетического времени жизни плазмы, поэтому Те ≅ Т; , а значение мTt (при параболических профилях h и T) масштаба (1-2).10²⁰ кэВ.с/м³ на уровне мTt на крупнейших существующих токамаках.

в. Эффективная частота соударений в $9^{n}\beta$ – режиме не слишком мала 0, I < v_{e*} < I из-за больших h и умеренных T.

г. Сравнительно небольшие значения температуры плазмы приводят к тому, что требуемые параметры pellet - инжектора не слишком велики.

Условия слабого возмущения концентрации плазмы при pellet – инжекции, баланса частиц и торможения pellet а в центральной области плазмы позволяют оценить параметры pellet of:

частота инжекции $f \sim 15-20$ Гц, радиус pellet $\chi_{pc} \sim 0.7-0.6$ мм.

скорость pellet U ~ I,5-I км/с,

при этом на протяжении разряда (\simeq I с) необходима инжекция 15-20 реше 'd

Параметры таких инжекторов pellet лежат в уже освоенном экспериментально диапазоне (кроме частоть +). Разработка же pellet – инжекторов, работающих в частотном режиме, составляет часть общей стратегии движения к установкам масштаба интор, ИТЭР.

д. Задача согласования источников частиц и энергии, как уже отмечалось выше, – одна из основных при исследовании 9⁻¹/3 – режимов. Она осложняется тем, что характер поглощения как вво димой мощности нагрева (например ЭЦР нагрева), так и pellet зависит от плотности.

Рис.4. Сплешная кривая поясняет идеологию 9пр - установок

По мере увеличения плотности плазмы область поглощения энергии и частиц (при фиксированных параметрах источников) будет перемещаться по шнуру. Это может потребовать изменения во времени рабочей частоты источника ЭЦР нагрева и параметров рание – инжектора.

 с) Оценки показывают, что скорость сукачки газа из дивертора в режимах, указанных в табл. I, 2, масштаба IO м³/с; средний тепловой поток на стенки камеры ~ 0,2-0,3 МВт/м²; в дивертор ~ I,5-2 МВт.

Стадии	Лавина	Кулон	Быстр ый подъем	Медле повъ	нны ^н Платс өм тока	Платс доп. нагрева	
Время, с	0	2.4e-3	4.8e-3	0.073	0.40	0.62	I.40
Тороидальное поле, Тл	4	4	4 1	4	4	4	4
Tok, A	0	ISe3	28e3	0.3e6	0.8e6	0.8e6	0.8e6
Плотность, м ⁻³	G	0.33e18	3eI8	2.IeI9	I.0e20	I.4e20	1.4e2U
Радиус плазмы, м	Ĺ.	0,3	0.3	0.3	0.3	0.3	0.3
Большой радиус плазмы	1.8	I.6	I.6	I.6	I.6	I.6	6.1
Напряжение на обходе, В	-	-	31.2	18.5	7.03	0.377	G.204
Гемпература электронов, кэВ	C	8 a- 3	IOe-3	0.275	0.467	I.56	2.83
Вытянутость	1	T	I	I	I.6	I.6	1.6
Активний поток, В.с	υ	0.027	0.053	0.212	0.809	I.02	I.16

Сценарий 9 пр - режима

· · · · · ·

.

and the second second

Продолжение табл. І

Стадии	Лавина	Куло	н Быстры ^и подъем	Меди полт	иенный Плат -ем тока	о Плато доп. наг	рева
Индуктивный поток, В.с (в линейном приближении)	0	0.50	0.113	1.21	2.84	2.84	2.84
Запас устойчивости	-	-	40.2	3.75	2.5	2.5	2.5
Бета тороидальная , 3	-	-	I.5e-6	2.4e-4	2.Ie-3	9.5e-3	I.7e-2
Бета токовая , В.		-	0.07	0.095	0.299	I.37	2,46
Эффективный зарад			I	3	I.5	I.5	I.5
Рабочий газ	дейтерий						
Мощность ЭЦР нагрева, Вт	0	0	0	0	0	5e6	5e6
Скейлинг	Неоалкаторный					Неоалкатсрн Кея-Голдстс Н-мода	ый + на,
Время удержания по скейлингу			0.003	0.011	0.170	0.153	0,153

•

Таблица 2	Спонарий 4 5 - режнина, в = 3 Тл							
Стадии	Лавина Кулон		Быстрый Медленный Плато подъем подъем тока			Плато доп. нагрева		
Время, с	0	2.4e-3	4.8e-3	0.073	0.40	0.62	1.60	
Тороидальное поле, Тл	3	3	3	3	3	33	3	
Ток, А	0	19e3	28e3	0.3e6	0.5506	0.5506	0.55e6	
Плотность, м ⁻³	0	0.33eI8	3eI8	I.4eI9	8.0eI9	I.0e20	I.0920	
Рациус плазмы, м	0	0.3	0.3	0.3	0.3	0.3	0.3	
Большой радиус плазмы	I.6	I.6	I.6	I.6	I.6	I.6	I.6	
Напряжение на обходе, В	-	-	31.2	18.6	4.32	0.323	0.201	
Температура электронов, кэВ	0	8e-3	10e-3	0.285	0.354	I.34	2.15	
Вытянутость	I	I	I	I	I.6	I.6	I.6	
Активный поток, В.с	0	0.027	0.053	0.208	0.804	0.984	I.19	
Индуктивный лоток, В.с (в ли- нейном приближении)	0	0.050	0.113	1.2I	I.95	I.95	1.95	
Запас устойчивости	-	-	30.I	2.82	2.73	2.73	2.73	
	1							

CUDESDATA JAG - DOWERS & - 3 PT

Продолжение табл.2

1

Стадии	Лавина	Кулон	Быстрь полъем	1777 1	Медленны [#] подтем	Плато тока	Плат лог.	о Напреза	
Бета в	-	-	2.6e-6	2.9e-	-4 2.2e-	-3]	[.Oe-2	I.6e-2	
Токовая бета , Б.	-	-	0.07	0.07	0.384	1]	L.76	2,77	
Эффективный заряд			I	3	I.5]	E.5	I.5	
Рабочий газ	Дейтерий								
Мощность ЭЦР нагрева, Бт	0	0	0	0	0	3	3.5e6	3.5e6	
Скейлинъ	Неоалкаторный				1	Неоалкаторный + Кея-Голдстона, Н-мода			
Время удержания по скейлингу			0.003	0.00′	7 0.148	8 (0.115	0.115	

ЗАКЛЮЧЕНИЕ

11

В работе рассмотрены характеристики режима с комплексной проверкой достижения максимальных значений величин q_{I}^{-1} , п , β ($q_{I}\beta$ – режим) в токамаке масштаба T-IO. Предложены сценарии выхода на такой режим.

Основная особенность 94 – режима – своеобразный "проточный" режим работы с мощными источниками частиц и энергии и мощной системой откачки газа из дигертора. Особую остроту в этом режиме приобретает вопрос согласования источников частиц и энергии, вводимых в плазму.

The summary of the second s

СПИСОК ЛИТЕРАТУРЫ

- I. Ноткин Г.Е. // Физика плазмы. 1985. Т.П., вып. I. С.62.
- Астапкович А.М., Кокотков В.В., Минеев А.Б. Модель энергобаланса плазмы в токамаках. - М., 1989 (Препринт/НИИЭФА ЦНИИатоминформ: 1989).
- 3. Grouber R.J. et al. Experimentally interred ion thermal diffusivity profieles with Doublet III tokamak: Comparison with neoclassical theory // Nucl.Fus. 1986. V.26, No 5. P.543.
- Murakann M. et al. Confinement studies of neutral beam heated discharges in TFTR // Plasma Physics and Controlled Fusion. 1986. V.28, No 1A. P.17-27.
- Hauryluk R.J. et al. TFTR Plasma Regimes 11 Int.Conf.on Plasma Phys.and Cont.Fus.Res., Kycto, 1986, IAE-CN-47/A-I-J.
- 6. Bol K. et al. High Beta Plasmes in the PBX Tokamak. Plasma Phys.Lab, Prienstan, Univ., PPPL-2327, 1986.
- Новости термоядерных исследований. Вып.1(47). М.: ШНИМатоминформ, 1988. С.24-28.

Александр Михайлович Астапкович, Вадим Викторович Кокотксе, Анатолий Борисович Минеев

О СЦЕНАРИИ РЕЖИМА ПРЕДЕЛЬНЫХ ПАРАМЕТРОВ ПЛАЗМЫ (Q n з -РЕЖИМ)

Редактор В.Л.Гусева

Подписано в печать II.12.89 г. Т-18208. Формат 60х90/16. Офсетная печать. Уч.-изд.л.0,5. Тираж I30 экз. Зак.№ 15/444. Индекс 3624. Цена 7 к.

Отпечатано в НИИЭФА