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1.INTRODUCTION

Recently, a lot of work has been done for understanding the

algebraic and Geometrical structure of the BRST 3ymmetry/l-9/. In

the Hamiltonian approach the BRST construction is basically in-

tended to accomplish the symplectic reduction, without modifying

the initial structure of the theory. In other words, in the BRST

construction we start with a symplectic manifold M, the phase

space , and a set of irreducible first class constraints G (a«l,
a

...,N) and if the constraints are sufficiently nice, we can

reduce M to lover-dimensional symplectic manifold M, by using

a standard construction, called the synplectic reduction. The

classical BRST construction provides an algebraic horciological

realisation of the syraplectic reduction.

The present paper deals with the BRST construction, consi-

dered as a transference problem in the general framework of the

homological perturbation theory/10,11/. In the informal terms

the basic idea is this; if a module P is a perturbation of a mo-

dule A, then a resolution of A may be perturbed to obtain a reso-

lution of P. We shall identify P to C ( M ) , the class of all

smooth functions defined on H, and A to C (M«), M_ being the ze-

ro locus of the set of the first class constraints. The perturba-

tion of the resolution of €;(>!„) is given by tiic vertical deriva-

tive and the homological pertubation theory(HPT) will give us

the BRST differential and the BRST cohomology of the dynamical

system.

We shall give, in this paper, a very nice and compact

form for the BRST differential s and of the BRST charge by using

a construction proper to the transference problem/12/, construc-

tion formulated by Barnes and Lambe. The transference problem

is a part of HPT/10,11/. This costruction allows us to build up

all BRST observables as well as to give a short proof of the
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isomorphism between the BRST cohomology and the cohomology of

the vertical derivation modulo the Koszul exact forms.

2. BRST CONSTRUCTION

Let M be the phase space of a dynamical system a n d j c j

(a.l fO be a set of first class constrainta i.e. a set of

functions on M satisfying:

,G.l-f .C Ga b a b c (1)

where f ,C are some functions, called the structure functions,
ab

The zero locus of G -0 is a submanifold MQ of M. For the first

class constraints {G J the Hamiltonian vector fields{Xa} asso-

ciated to these constraints form an involutive distribution

and they deteraine o foliation of M, the leaves of this foliation

being the "gauge orbits". The space of all leaves of H forms the so

called reduced phase space M.

In order to go from M to M we shall introduce two deriva-

tions: the Koszul-Tate differential and the vertical derivation

a. They are defined by:

ua-0 =G
a a

(2)

(3)

for an irreducible theory, with(lia, J ) a pair of ghost anda r
ghost momentum . It is easy to verify that 0 is nilpotent but d is

not, in the general case, Besidescand d anticomrautes i.e.

d.o + c,d=0. The Koszul-Tate differential has the remarkable

property to be acyclic i.e. any solution of the equation

6\JJ -0, with gh(cO )̂ 0 has the form u) - c> Jf . The ghost number gh

is defined to be +1 for Vfa and -1 for^a;and zero for f(q,p).

Thanks LJ this acyclicity of o one can introduce a contra-

cting homotopy I defined as

(4)P •/+ cT-T-l -T

where II is the projector on the space C °° (A~) ® [ ̂ a^ =B. A concrete form

of the honiotopyj is given in /13/ and this one is in addition

nilpotent.

The passage frosi M to M is accoaplished in two steps:

in the first we pass from M to M_ by using the Koszul- Tate

differential and its acyclicity and we show that the cohomolosy

of O is a resolution of C (HQ) i.e.

and in the second step we pass from M- to

cal derivation d and we show that

by using the verti-

where vertical cohonology is denoted by H^ (^n)-

In order to complete the BRST construction we must inte-

grate the two cohoraologies theories into one. In fact the purpose

of the BRST construction is to lift the vertical differential

d from (T (HQ) to the whole complex.

3. THE TRANSFERENCE PROBLEM

The BRST construction .formulated in this way can be deve-

loped by using HPT in a version known as the transference problem

/12/. In this version,the classical HPT is formulated as a fixed

point problem heading to new insights into the nature of its so-

lutions .

The main purpose of HPT is to offer when, a chain

subcoraplei B of a given chain coraplex A, can be changed
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in a way that reflects a change in A and preserves the inclusion.

If the subcomplex B is a retract of A, it is sometimes useful

to be able to transfer a change in the differential of A in

a way that preserves the retraction condition. The complex maps

f: B--> A , g: A—> B

such that they satisfy

r A— (5)

g.f-1 , f.g- l-(d.]f> + £ . d ) (6)

where d is the differential of A, form the Strong Deformation

Retraction data (SDR-data) /10, 11, 12 /. The chain homotopy &

can be chosen (or modified ) to satisfy the additional hypothesis

called the "side conditions"

8.f>«d>.f«<t>.£-0 (7)
With these SDR-data we can state the fundamental problem

of HPT the transference problem. Given SDR-data (5)-(7) and

a change in the differential from A or B, find new SDR-data i.e

new f ,g , <p . The conditions (5)-(7) can be replaced by the

following equivalent conditions /12/ :

(p :A-->A is a morphism of degree 1,

(8)

With Eqs.(7) satisfied, it is easy to show thatiT-1- (d.S

+ >̂ .d ) is a projection and hence we have the splitting A- ImIT+

+ kerTT andwithB- I n f we obtain again the SDR-data (5)-(7).

In these new terms, very convenient for the BRST con-

struction, the transference problem becomes: Given a homotopy

-5-

A ; (A ,d )—> (A ,d ) and a new differential §, find a splitting

homotopy $ j (A , £)~*>-(A , £ ) such that Im iT-Imtf , where V -1-

(d.<j> + <£.d ) and Tl'-l- ( | .<j)+(J>.£ ) .

Reformulated in this way the transference problem

has been solved by Barnes and Lanbe /12/ and the solution has a

remarkable simple form

<J>'- Z- o (_l)
n (db.t )Dp- (l+^).t ) ~ 1 . <f> (9)

with t -f -d-

All these results can be applied for solving the initial

transference problem. We shall not enter in into details,

which are not relevant for our construction. They can be found in

Ref./12/ where the transference problem has been treated comple-

tely from the HPT point of view-

4. BRST CONSTRUCTION AS A TRAKSFERENCE PROBLEM

It is very interesting to point out that the BRST construc-

tion can be reformulated to become a transference problem. First

of all we have to identify the complexes A and B with the Koszul

complex

A -C°°(M)

and the subcomplex B with

B - C^(M0

the differential of A with the Koszul-Tate differential and the

differential of B with the multiplication by zero. The transfe-

rence problem now means to change the Koszul- Tate

differentinlO in the BRST differential s, such that the new diffe-

rential on B is just the restriction of the vertical deri-

vation d. It is worth pointing out that despite the fact that
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the vertical derivation d is not nilpotent on A, it is on B

and therefore it is a differential there.

The chain maps f and g are, in this case , the inclusion

f and the restriction, respectively . The chain homotopy <j) is for

the BRST construction just the contracting homotopyHand Eq.

(6) is very similar to Eq.(4)« Moreover, it is easy to see that

the contracting homotopy fulfils the conditions (7).

In the following we will try to simplify the formulation

of the BRST construction, considered as a transference problem,

and we will omit all inclusions and restrictions, supposing that

we work, only on the Koszul complex. Thus, the first problem in

the BRST costruction is to find a BRST differential s, which

is an extension of the Koszul-Tate differential and which, res-

tricted at B, coincides to the vertical derivative d. a. other

words we are looking for a differential s such that

•b
and

s2 -0

(10)

(ID

We want to emphasize at this point that s must be a linear

and nilpotent operator, on the one hand and a derivation on the

other hand. In other words s must act as a derivation on the

product of two elements of the algebra A-

Using the general procedure, developed by Barnes and

Larade/12/, we have found that a solution of our transference

-7-

problem is:

(12)

i.e. a in Eq. (10) can be taken as
n

(12 1)- o - J . 3 n - ( - r d >n-1.d .
Besides the new contracting horaotopy P1 ia given by:

P ' - (1 +P d )~ P . (13)

which coincides to Eq.(9). The equation satisfied by r should be

modified and it becomes

s. P'+ f'.s -1- (14)

where

IT' - (1 + P.d fiTC 1 + P.d ) . (15)

Now , it is relatively easy to show that the linear ope-

rator s given by Eq. (12) is nilpotent. For this we shall use

Eq,(A) to calculate the commutator

[S, ( i+r.d )* ] - d+r.d)-
1[<(,rd] (i +Td r

1 -

— (l+Td)" 1 d ( 1 +Pd r 1 + ( 1 +Pi )" 1T d (1 + P d ) ~ <

The last term vanishes when one calculates s since ll is a

projection on B where d is nilpotent. Thus we we obtain eventu-

ally Eq.(ll).
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Now we have to show that the solution of our transference

i.e. the BRST differential s preserves algebra structure. In

other words we must show that s is a deriTation. This result

is far from trivial, since in Eq. (12) the contracting

homotopy V which is not a derivation. However, we shall show in-

ductivelly that 3 is a derivation for any n. This result has

been proved by Gugenheira, Lambe and Stasheff/15/, who have shown

that the basic perturbation lemma /10,11/ preserves algebra or

coalgebra structure in a general framework. Our proof has been

inspired by Stasheff's paper/A/ . For n-2 we can write

The right side of this equation is a derivation ans

he Koszul differential. Thus

For a general n+1 we can verify that

so is the Koszul differential. Thus s,, must be a derivation, too.

"n+1 > o ^ -"n+l " p+q-n+1 "p
Theright-hand side of the l a s t equation contains two kinds of

s +s ,s and of the form s . If
q q p Pterms: terns of the form s

s (j s n) are a l l derivations so are both t e ras . Thus the ritfrt-hand side

of (16) and 0 are derivations and so must be 3
n + 1-

The form of the BRST differential s can be simplified

further if we work only on the kernel of • • In this case s can be

written in a very elegant form

s - d + r . d )"•

and the nilpotence of s is o direct consequence of the nilpotence

of 0 .It is amusing to remark that in the general case one can

write s in a similar form:

-9-

+r.d> + r.d ylir.& us)
The last form of s can be used to prove the isomorphism

between cohooology of s and the cohonology of d modulo 0 . For

this purpose we shall introduce a grading given by the anti-

ghost number r{T^a )-0, r(i>
a)-+l , r<f(q,p))-0 . If sA-0

then A can be expanded as A« Art + A, +... with r(A )-n and we

u 1 n

A,
1

obtain an equation for A, and A. :

d Aj +dAQ -0.

i.e. we can define a nap H(s)—> H(d mod a ) by

This map is in fact a bijection , a fact that can be shown

by using the expression (18) for s. Given AQ as a solution of the

equation dAg +o Aj -0 one can improve AQ by higher order terns

Ag—>A» AQ+ "more" such that sA-O. In fact we can find a

compact form of the solution of this problem

A -( 1+P .d)"1; .A,

and it is easy to verify that

(19)

sA -A i0 + (i+ n ,d )• .-1
(I + r.d)

a "A0
since An does not contain any / _ and dAn --dA.. does contain

at least one J or G .

It is worth pointing oat that this isomorphism can be

obtained also from (14). In fact Eqs.(14) and (15) yield

H(s) - ImTT" = H(d m o d / ) •
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It should be noted that the BUST differential is not

unique since one has the possibilities of ambiguities . The form

of these ambiguities has been given , in the usual formulation

{ i.e. not as a transference problem) by Browning and Me Mullen

in /9/. However, in our opinion it is worth while to find out

where these ambiguities come from in the HPT. A partial answer

has been given in /13/ .where it has been shown that a possible

source of ambiguity is the definition of the contracting homotopy.

5.BRST CHARGE

The BRST differential s can be realised, in the exten-

ded phase space by a generator, the BRST charge Q and by

the Poisson brackets. The BRST charge is defined by the equation:

3F-[Q, F] (20)

where L»J means the Poisson bracket in the extended phase

space (q ,p;ty,v ) . The nilpotence of s implies

[Q.Q] -0 . (21)

We will argue below that s defined by (20) and (21) is

indeed the BRST differential, provided Q satisfies some initial

conditions. A solution of Eq.(21) has been given by Stasheff/

in/4,5/ and it has the form

with

Q - £ ; 0 Qj (22)

• \A G and Q , i s constructed inductively as

-U-

Qn+1 - - -T( [»n, R n] ) (23)

where R -Qn + Q, +...+Q . The grading which has been used in
n U 1 n

(22) is the anti-ghost number. A slightly complicated compu-

tation /5/ shows that the anti-ghost number of [Rn ,RnJ is

bigger than n+2,so for a finite dimensional phase space it even-

tually vanishes.

On the other hand, we can use the previous con-

struction to build up a BRST charge, which generates the sane

BRST transformation as (22) . We will now redefine Q by

'A
Q - (1+ T.d ) .QQ - Qo +Qj +... (24)

This new BRST charge has the first two terms identical to

the one given by (22) it is s-closed. Indeed, one can verify that

sQ -0

since s has the form (17) and QQ - p ( l /
a ^ a )£ ker (T . Therefore,

up to the well known ambiguities, which can be expressed as cano-

nical transformations/3/ .the BRST charge defined by (22)-(24)

coincides.

REMARKS. l.l-'e can use the sane construction to build up The

BRST invariant observables. Thus, if A~ is a classical observable

defined in the resticted phase space (q.p) such that L Ao> G
aJ

-V , then the corresponding BRST invariant observable can be

chosen as:

A - ( 1 + P . d ) .KQ - A Q + .

-12-
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The 6RST observable A is s-closed

sA-0 (26)

This can be verified by a straightforward calculation,

if one uses the eq. (18) for a and the equations fulfilled

by A 0 , o A 0 -0 and dA. + 6 A: - 0 with A - V v a 7 b .

In particular .the unitarizing Hamiltonian H used in

the path integral formulation of the theory has the fcrra:

H - ( 1+f.d f* . Ho +s f (27)

where HQ -H^ (q,p) is the Hamiltonian of the classical system and

\i) is the fermionic gauge fixing function /I/ .

2. The whole construction can be extended for the reducible

theories, where the constraints G are not all independent.

In this case we have to modify the definition of the Koszul-

Tate differential in order to assure its acyclicity. The rest of

the construction is the same . On the other hand this general

construction can be applied also in the Lagrangian formulation

for the systems with local irreducible or reducible

syraraetries/14/.

3. The same construction has been applied for the Hamiltonian

formulation of the anti-BRST symmetry for an arbitrary gauge

system with open gauge algebra/14 ,15 ,16 / . The slitting

of the BRST generator and of the BRST differential in a BRST

generator (differential) and an anti-BRST generator (diffe-

rential) occurs quite naturally in our construction, and it

ia closely connected to Eqs.(13) and (20).
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