
SIRim PROJECT 9128

Analysis of Spatial Correlation of
Hydraulic Conductivity Data from
the Stripa Mine

A. Winberg

Conterra AB Göteborg, Sweden

November 1991

TECHNICAL REPORT
An OECD/NEA International project managed by:
SWEDISH NUCLEAR FUEL AND WASTE MANAGEMENT CO
Division of Research and Development

Mailing address:
Box 5864, S-102 48 Stockholm. Telephone: 08-665 28 00



ANALYSIS OF SPATIAL CORRELATION OF
HYDRAULIC CONDUCTIVITY DATA FROM THE

STRIFA MINE

Anders Winberg

Conterra AB
Göteborg, Sweden

November 1991

This report concerns a study which was conducted for the Stripa
Project. The conclusions and viewpoints presented in the report
are those of the authors and do not necessarily coincide with
those of the client.

A list of other reports published in this series is attached at
the end of the report. Information on previous reports is avail-
able through SKB.



Abstract

Hydraulic conductivity data from the Stripa mine were analysed to establish the
characteristics of spatial variability. In addition the univariate statistics were
calculated. Data on different supports were analysed; 10m data, variable section
length data (l-7m), and the latter variable section data deregularised to lm data. The
analyses of data from boreholes with orthogonal orientations indicated an apparent
anisotropy in the geometric mean hydraulic conductivity, with a one to two order
higher mean conductivity in the east-west direction than that of north-south. The
analysis of spatial variability on a 10m support revealed weak spatial correlation,
whereas that based on the data deregularised to lm data showed finite, well develop-
ed spatial correlation with practical ranges of c. 10m. The covariance structure of
hydraulic conductivity, as opposed to that of the calculated geometric mean hydraulic
conductivities, showed an isotropic structure. The established variograms constitute a
starting point for further data expansion and estimation by eg. stochastic continuum
simulations of groundwater flow and mass transport within the SCV block at Stripa.

Keywords:

Anisotropy, hydraulic conductivity, scale effects, spatial variability, univariate
statistics, variogram



Summary

Mass transport in fractured rock is controlled by the spatial variability in the velocity
field, which in tum is dependent on the heterogeneity of the hydraulic conductivity.
One way to describe the heterogeneity is to establish the covariance structure of the
hydraulic conductivity in terms of a variogram.

Hydraulic conductivity data from the Stripa mine on different supports (10m, l-7m
and lm) were analysed with regard to univariate statistics and variography. The
analysis results were discussed eg. in terms of scale effects, geometrical effects,
geological and tectonic effects.

Calculated geometric mean hydraulic conductivities (10m) are varying between -12
and -9.5 (logK). Variable section data deregularised to lm support show geometric
mean values between -11 and -10. No variance reduction for the 10m data is
observed compared to the lm data. Analysis of the calculated geometric mean
hydraulic conductivities show evidence of an apparent anisotropy in the east-
west:north-south:vertical. The noted ratios are 100:1:1 and 10:1:1 for the 10m and
lm data, respectively.

Spatial variability on a 10m support reveals weak signs of finite spatial structure, ie.
well developed variograms. Where possible to infer, the practical ranges are on the
order of 3O-5Om. A more stronger pronounced spatial correlation is noted for the
variable section length data from the SCV site deregularised to a lm support. The
variograms show that data are correlated within 10m, ie. a factor 3-5 shorter correla-
tion length. In addition, spatial correlation inferred from boreholes of varying orienta-
tion indicate an isotropic covariance structure. To add to the knowledge of spatial
correlation on a smaller support, 2m data from two vertical holes from the Macro-
permeability site were added to the analysis.

Fracture statistics as inferred from logs of boreholes at the SCV site sustain the noted
differences in geometric mean hydraulic conductivity established between boreholes
trending west and north, respectively. In addition, the appearance of the correspon-
ding variograms correlate well with the variability in fracture frequency in the
corresponding boreholes.

The near isotropic covariance structure established for the lm data from the SCV
block constitutes a starting point for further data expansion/estimation (krigipg)
and/or simulation of groundwater flow and mass transport within the SCV block
using stochastic continuum techniques.
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1. INTRODUCTION

Mass transpon in fractured rock is controlled by the spatial variability in the velocity
field which in tum is dependent of the heterogeneity in hydraulic properties. One
way to describe the spatial variability (heterogeneity) is to establish the covariance
structure of the material property. The modelled covariance structure in the form of a
variogram can be used in eg. stochastic continuum methods (Winberg and Cvetkovic
1990) to address uncertainty in mass transport in fractured rock.

The varied geometry of the holes at Stripa, and particulary the large number of
horizontal boreholes will provide a valuable complement to the analysis of spatial
variability of data from vertical and subvertical holes at eg. Finnsjön (Winberg 1989).

2. SCOPE OF WORK

The scope of this report is to infer the characteristics of spatial variability of the
hydraulic conductivity data available in the database of hydraulic conductivity data
from Stripa. These data are presently not available in the SKB database GEOTAB
which contains data from most of the SKB test sites.

The main hypothesis to be tested in this study is whether spatial variability has a
format which is possible to describe in terms of a variogram, and secondly, if so, is
there is any significant difference in spatial structure between data from boreholes
with different orientations. If there is a difference, thirdly, discuss differences on the
basis of differences in lithology and fracturation.

Jointly with, or rather preceding the variography, conventional summary statistics
have been applied to the data sets to supply valuable information for defining the
subsets but also to help in the evaluation of differences in the hydraulic charac-
teristics of the analysed boreholes.

The analysis has been performed using the software package GEOSTAT-Toolbox
version 1.2 supplied by FSS International (Froidevaux 1988).

3. DATA ANALYSED AND MADE ASSUMPTIONS

The analysed data comprises hydraulic conductivity data in 10m sections from
boreholes Nl, El and VI (Carlsson and Olsson 1985). In addition 10m data from the
F-series boreholes at the "cross-hole site" have been analysed. Further, data from the
boreholes at the SCV site; N2-N4, Wl and W2, C1-C3 have been analysed. The lat-
ter holes have been tested with a tool that allows variable section length. The section
lengths in this case varies from 1 to 10m (Holmes 1989, Holmes et al 1990).
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Figure 3.1 Relative location of boreholes used in the study (from
Holmes 1989).

The available data is compiled in Table 3.1 as distributed between the analysed
boreholes and measurement scales (section lengths used). The relative location of the
boreholes included in this study is shown in Figure 3.1.

The variable section length data from boreholes W1-W2, N2-N4 and C1-C3 decon-
vulated (deregularised) to lm data have also been analysed accordingly. To study the
spatial correlation of short section data in vertical holes, data from boreholes R4 and
R9 at the Macropermeability test site (BMT) have also been analysed.

In the study, each population, single borehole or pooled population, has been
assumed to be statistically homogeneous. No distinction has been made between data
from fracture zones or data from the normally fractured rock mass.



4. STATISTICAL AND HYDROLOGICAL CONCEPTS

4.1 General

This chapter describes many of the definitions used in the hydrogeological descrip-
tion of hydrogeological characteristics of the bedrock.

Further a review is made of the summary statistical parameters used in the con-
ventional statistics employed to the data. In addition a brief description is made of
'he technique used to describe the spaäal variability and characteristics of the data
(variography).

Table 3.1 Data as distributed on different measurement scales and boreholes.

Borehole

El

Nl

VI

Fl

F2

F3

F4

F5

F6

N2

N3

N4

Wl

W2

C\

C2

C3

R4

R9

Section length (m)

10

10

10

10

10

13

10

10

10

1-7

1-7

1-7

1-7

1-7

1-7

1-7

1-7

1

1

1

1

1

1

1

1

2

2

Number of data

22

9

42

19

23

27

28

28

23

80

46

71

102

93

46

39

29

199

184

212 I

140

140

143

143

92

10

11



4.2 Hydraulic definitions

The parameter which is subject to the present study is the hydraulic conductivity (K).
The analysed hydraulic conductivity data have been measured either with "long time"
(=2 hours) constant rate or constant head injection tests in l-7m or 10 m test sections
evaluated on the basis of steady state theory, or "short time" pulse and slug tests and
constant rate and head tests in l-?m or 10m (F3-F6) section test sections evaluated
with transient state theory (Black et al 1987).

Rather than using the absolute value of the hydraulic conductivity in the analysis, a
transform of K has been used. Often the logarithm of the parameter studied show a
higher degree of spatial structure than the absolute value itself. Common geostatisti-
cal practice is to use the natural logarithm (In K) of the parameter studied (de
Marsily 1986) but in order to conform with common hydrogeological practice and
also to obtain an improved readability the base 10 logarithm (log K) has been used
throughout this report. In places also the logarithm of transmissivity (log T = log
KL), i.e. the logarithm of K multiplied with the section length L, has been used for
reasons of easy comparison.

The definition of hydraulic conductivity as inferred from double packer tests in
boreholes implies that the measured flow is averaged over the section length used.
The downhole tool has a lower physical limit with respect to flow which defines the
lower measurement limit of the hydraulic conductivity. With given physical charac-
teristics of the used tool this implies that the measurement limit of longer sections is
lower than that of shorter section lengths. The measurement limit of 20 or 10m
constant head injection tests is typically 1-1014 m/s (logK=-14), whereas that of the
varying section length is HO'13 m/s (logK=-13) at the lowest.

In the analysis, no distinction has been made with regard to the hydraulic units often
defined for a typical SKB study site.

4.3 Descriptive statistical tools/parameters used

As already stated the conventional statistical methods have been employed to support
and supplement the description of the spatial variability. The different measures used
may be divided into; (1) measures of location, (2) measures of spread and (3)
measures of shape (symmetry). In the analysis use has predominantly been made of
the former two types of measures.

Measures of location

The foremost used measure of location used in this study is the (arithmetic) mean
defined by Equation 4-1. Since the parameter studied is the logarithm of the hydrau-
lic conductivity (log K) what we are in reality observing is the mean of log K. The
arithmetic mean of the log is synonymous to the geometric mean of the hydraulic
conductivity (log K = E [log K|). Throughout the report the geometric mean and
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mean hydraulic conductivity area used with identical meaning.

N

(Eq. 4-1)

Further the quartile concept is used where the first quartile (Q,) refers to the cumu-
lative proportion of data and the value at which 25% of the data are below this value-
Correspondingly at the third quartile (Qj), 75% of the data are below this value.

The median M consequently refers to the second quartile (Q2) with an even 50% of
the data above and below. If instead 10% increments is used in subdividing the
cumulative proportion we obtain the quantiles of the distribution

The minimum value {min) and maximum value {max) of the studied populanon are
also used.

Measures of spread

The classical measure of spread is the variance (a2) defined by Equation 4-2, which
is used throughout this study. The standard deviation (o) of the parameter studied is
obtained by simply taking the square root of o2.

a) b) c)

Figure 4.1 Coefficient of skewness. Examples of histograms of
populations with a) positive skewness (S>0), b) symmet-
ry (S=0) and c) negative skewness (S<0) (from Winberg
1989).



Th* second measure used is the interquartile range (IQR) which is the difference
between Qj and Q,. This iatter measure is a good compliment to the variance.

mf {Eq. 4-2)

Measure of shape

One measure of shape is the coefficient of skewness (Z) defined by Equation 4-3. The
relevance of S is questionable when the distributions are highly skewed. The concept
is visually exemplified in Figure 4.1.

i N

L HogKmfilo* (Eq. 4-3)

Another measure of shape maybe more applicable and relevan' to the data analysed
in this report is the coefficient of variation {CoV) which may be a useful measure of
asymmetry of positively skewed distributions whose minimum is zero. The coeffi-
cient of variation is defined as CoV = o/m and is in the report, where presented,
expressed as a percentage.

The primary advantage with the use of the above described summary statistical
parameters are that they constitute very condensed and portable descriptors of the
studied population.

The disadvantages may be that the information is too condensed to grasp the essence
of the population studied. In these instances some additional graphical description,
eg. a histogram of the data may provide necessary insight.

Not to be forgotten is also the very strong impact on the some parameters, eg. the
mean, variance and coefficient of skewness, by extreme values in the data. Again the
histogram is an invaluable means to fully appreciate the population studied.
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4.6 Spatial variability - the variogram

4.6.1 The random function model

The property :; (eg. hydraulic conductivity K) as distributed over a site (area or
volume) S, appears as a spatial function x(u) of a set >f coordinates u e S. Each
value x(u) is interpreted as a realization of a random >ariable (RV) denoted X(u).
The set of values {x(u), u e S ) is then interpreted as a particular realization of
dependent RV's:

also called a random function (RF), which is a function of the location u (Joumel
1987). The study of spatial dependence between any two values x(u) and x(u') then
breaks down to the study of the pattern of spatial dependence between two corres-
ponding RV's X(u) and X(u').

4.6.2 Spatial description

The spatial dependence between two RV's with an interdistance defined by the
vector h = u'-u may characterized with different measures. These include the
covariance and the correlogram (Joumel 1987, Isaaks and Srivastava 1989). In this
study we use the semivariogram, in the following for convenience, but incorrectly,
denoted variogram, defined by:

2y(h)=E{[X(u)-X(u+h)}2} (Eq. 4A)

which is estimated by:



The choice of this subarea A of the domain S over which separate statistics or
averaging will be performed is governing the stationarity of the studied RF. In the
intrinsic case stationarity implies that within the subarea the spatial correlation is
dependent only on the interdistance h between studied points u and u \ not on their
actual locations. In addition the expected value is constant, independent of location u,
i.e. E{X(u)} = m (Journel and Huijbregts 1978).

The variogram y(h) which is half the squared difference between the paired data
values with interdistance h corresponds to the moment of inertia around the u=u'
diagonal in a h-scaner plot of the data pairs (Isaaks and Srivastava 1989). The shape
of the h-scanerplot tells us how continuous the data values are over a certain distance
in a particular direction. If the data values are very similar they tend to plot close to
the diagonal. As the data values become less similar, ie. with increasing distance or
lag h the cloud of data points on the h-scatter plot becomes more fat and more
diffuse and the value of the moment of inertia increases, and so does the variogram.

0 0 t • 0 ' !> c O 3 0

Figure 4.2 Graph of variogram models most frequently used in
geostatistical applications, a) model in hT, b) spherical,
c) exponential, d) gaussian, e) cubic, f) linear with sup-
erimposed spherical model ( from de Marsily 1986).



The variogram is conseciently a measure of deviation and as already stated an
increasing function of the interdistance | h | for a given vector h. The distance j h ]
where the spatial (auto-)correlation ceases to exist, ie. where the variogram reaches a
5/// value C is called the range (a) of correlation, cf. Figure 4.3. Ideally, the sill
value C equals the population variance o2. Beyond | h | = a the RV's X(u) and
X(u+h) are uncorrelated, which does not necessary entail that they are independent
(Joumel 1987). If the spatial correlation is equal in all possible directions the
resulting variogram is said to be isotropic. If on the other hand the range of correla-
tion varies with orientation the variogram is said to be anisotropic. A variogram
calculated for a spectra of orientations, eg. data from all available orientations of
boreholes in an area is denoted an omnidirectional variogram (Isaaks and Srivastava
1989).

A number of different variogram models have been presented over the years in the
geostatistical literature. A compilation has been made by de Marsily (1987). A
graphical representation of the various variogram models is provided in Figure 4.2.

At any given scale, say that of the range, there may be a discontinuity at the origin
of the variogram called the nugget effect. The nugget effect composites and quantifi-
es the contribution of all scales of spatial variability smaller than the shortest
available experimental interdistance between samples. This component also include
possible measurement errors.

If the scale of measurement is confined to an interval within which the variogram is
flat the variogram is said to constitute a pure nugget effect. Sometimes a pure nugget
effect may be difficult to distinguish from a noisy variogram with structure (Journel
1987).

An experimental variogram which at large distances h increases proportionally to
h | 2 is not compatible to the intrinsic hypothesis (Journel and Huijbregts 1978). This

type of increase in the variogram most often indicates the presence of a drift, ie. a
non-stationary mathematical expectation; E[X(u)] = m(x). If the drift component is
filtered out, the spatial characteristics may be inferred from the residuals.
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Figure 4.3 Definition of characteristics of a variogram.



Table 5.1 Summary statistics for boreholes El, Nl, VI and F1-F6 (10 m sections)

Borehole

El

Nl

VI

Fl

F2

F3

F4

F5

F6

m

-10.15

-12.12

-12.14

-10.41

-10.84

-9.54

-10.11

-9.65

-9.87

1.89

0.39

2.57

0.88

1.06

1.33

0.91

1.28

0.96

-11.15

-12.56

-13.47

-11.04

-11.70

-10.12

-11.00

-10.33

-10.51

M

-10.70

-12.13

-12.57

-10.32

-11.13

-9.52

-10.19

-9.46

-10.51

Q3

-9.11

-11.64

-11.52

-9.76

-10.50

-8.95

-9.74

-8.74

-9.36

IQR

2.04

0.92

1.95

1.27

1.20

1.17

1.26

1.58

1.15

CoV

13.5

5.1

13.2

9.0

9.5

12.1

9.4

11.7

10.0

N

22

9

42

19

23

27

28

28

23

m = arithmetic mean of logK = geometric mean, Kg = 1CT
Qn = nth quartile
IQR = interquartile range = Q^ - Q}

N = number of data

o2 = variance of logK (base 10)
M = median of logK
CoV = coefficient of variation = o/m (%)
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Y

Figure 5.1 Layout of boreholes at the SGII site at the 360 m level and associ-
ated geology (from Carlsson et al 1981).
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5. ANALYSIS OF DATA

5.1 Analysis of data from the SGU site

5.1.1 General

Three boreholes are located at the so-called SGU site at the 360 m level in th, ipa
mine. The boreholes constitute one vertical (VI) and two near horizontal (El a
Nl), trending east and north, respectively. The core logging of the boreholes is
reported elsewhere (Carlsson et al 1981, Carlsson et al 1982). Data on borehole
specifics is provided in Appendix A, and a schematic view of the boreholes is
provided in Figure 5.1.

In the reporting of results, Carlsson and Olsson (1985) present three hydraulic
conductivities; from the injection phase, from the recovery phase and in the form of
a pseudo-stationary value. In the following only the value based on the injection
phase is presented. It should however be indicated that the difference between the
different values is limited.

5.1.2 Hydraulic conductivity - summary statistics

The summary statistics for the hydraulic conductivity data in El, Nl and VI are
given in Table 5.1. The results indicate mean values of log K (geometric means)
of -10.15 and -12.14 for El and VI, respectively. The mean value for Nl is -12.12
but is based on a limited amount of data (N=9), the variance is in this case very low
(0.39). The variances of data in El and VI is 1.89 and 2.57, respectively.

5.1.3 Experimental variography

Experimental variograms have been produced for the injection phase hydraulic
conductivities. In the case of borehole Nl, the number of data was too limited :o
produce any meaningful results. In the case of data from El, cf. Figure 5.2a, a fairly
well developed variogram, spherical in shape, is obtained. The nugget effect is
insignificant and the sill of c. 3.0 is 60% higher than the population variance. The
practical range is on the order of 60 m.

The variogram based on data from VI, cf. Figure 5.2b, has a similar (exponential)
appearance to that of El with the exception that the nugget effect is higher. As is the
case of El the sill value is higher (c. 20%) than the population variance. The
practical range is on the order of 50-60 m. Before assigning a mathematical model to
the variograms a critical scrutiny of cmomalous contribution to the variograms at each
individual lag should be explored. This has not been performed here because of time
constraints.
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Figur SJ Schematic 3D representation of the fan-like F-hole
array at the cross-hole site (from Black et al 1987).

5.2 Analysis of data from the cross-hole site

5.2.1 General

The six boreholes at the cross-hole site are denoted F1-F6. They constitute a fan-like
array of boreholes collared at an extension of the old SGU site, cf. Figu e 5.1 and
5.3. The geometrical data associated with the holes are given in Appendix A. Fl, F3
and F5 all have an inclination of 10* whereas the remaining hole- have inCi[nations
varying between 20* and 40*. The holes were drilled to facilitate geophysical and
hydrological cross-hole investigations to test developed methods to obtain a three-
dimensional understanding of crystalline rock mass. A description of the hydrogeolo-
gical work is provided by Black et al (19°7). A description of the core logging of the
six holes is presented by Carlsten and Stråhle (1985).

5.2.2 Hydraulic conductivity - summary statistics

The summary statistics of data from the individual F-holes is given in Table 5.1. The
mean values of the holes are within a factor 20. There is a weak tendency that the
near-horizontal holes have a somewhat increased mean hydraulic conductivity. The
variances are generally very low, between 0.88 and 1.33. The higher variances are
noted for the holes with high mean conductivities indicating a proportional effect
(Isaaks and Srivastava 1989).
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5.2.3 Experimental variography

The variograms calculated from the data in boreholes Fl to F6 are presented in
Figures 5.4 and 5.5. Analysis of the variograms, which have not been filtered in any
way, reveal weak signs of finite structure. This applies especially for data from
boreholes Fl , F3 and F5. The latter holes are subhorizontal, fanning out in different
directions, essentially sampling subvertical fractures. The observed practical ranges
are on the order of 30-50 m. The remaining holes to a larger extent sample also
subhorizontal sets, which might explain the appearance of the remainder of vario-
grams which have a more pronounced nugget effect.

In the variogram based on the F5 data there is evidence of a hole effect indicated by
the depression at a lag distance of c.60 m. This indicates that data at an interdistance
of 60 m are more similar in magnitude.

5.3 Analysis of l-7m data from the SCV site

5.3.1 General

The data from the SCV site originates from two different phases in the Site Charac-
terization and Validation (SCV) experiment. The layout of the different holes is
presented in Figure 5.6. The first phase includes data from the bounding subhorizon-
tal westerly oriented holes (Wl and W2) and northerly oriented boreholes (N2-N4).
The analysis of these holes were used to make predictions of the hydrogeological and
fracture characteristics of the fan of C-holes (C1-C3) which cross-cut the target
volume of rock with different geometries. The geometrical specifics of the different
boreholes are presented in Appendix A.

The holes have been hydraulically tested with varying section lengths. The logs of
hydraulic conductivity vs. depth are provided in Appendix B. This implies that the
data set subject to study is not statistically homogeneous. The longer section lengths
should be given more weight than the short (lm) sections in the statistics based on
logK. One way to circumvent this problem is to analyse the statistics of the log
transmissivity logT, whereby the length of the test section is introduced as a multi-
plier to the hydraulic conductivity. No other weighting scheme has been applied.

5.3.2 Hydraulic conductivity - summary statistics

The calculated geometric mean transmissivities are ail varying between -10.03 and -
9.32, ie. within a factor 5, cf. Table 5.2. The variances span between 0.6 and 2.7.
There is a tendency that the westerly oriented boreholes show a somewhat increased
variability. Considering the varying support of these data, the summary statistics are
of limited value.

In order to overcome the problems with varying support, without resorting to
weighting, the data were divided in two populations; 1) section length < 2m, and 2)



Table 5.2 Summary statistics for boreholes W1-W2, N2-N4 and C1-C3 (variable section length)

Borehole

Wl

W2

N2

N3

N4

Cl

C2

C3

TSiT

-9.98

-9.32

-9.92

-9.94

-9.91

-9.78

-10.02

-10.03

a2

1.53

2.66

0.99

0.75

1.95

1.27

1.39

0.56

Qi

-10.85

-10.38

-10.62

-10.50

-10.95

-10.51

-10.96

-10.35

M

-9.96

-9.28

-9.96

-9.91

-10.04

-10.00

-9.95

-10.03

Q3

-9.10

-8.23

-9.31

-9.57

-8.96

-9.25

-9.27

-9.51

IQR

1.75

2.15

1.31

0.94

1.99

1.26

1.69

0.84

CoV

12.4

17.5

9,9

8.7

14.1

11.5

11.8

7.5

N

102

93

80

46

71

46

39

29

oo
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Figure 5.6 Layout of boreholes at the SCV site (from Holmes et al 1990).



section length 3-7m. In the case of data from Wl and W2, no subsetting was done
since most of the test sections arc c. lm. The resulting summary statistics for the
subsets are presented in Table 5.3. Where the number of data wa« insignificant in a
statistical sense, no calculations were made.

The results in Table 5.3 compared to those in Table 5.2 show the relative
weight of data with short section lengths. In Table 5.2 the short section data influen-
ce the results with equal weight. In Table 5.3 we see that the longer section length
populations tend to have a lower mean value and in most cases also a lower variance.

5.3.? Experimental variography

The fact that the data to be analysed have varying support imposes a problem. At this
stage no deregularisation was performed, instead the transmissivity data were
analysed "as is". However, a "mean" support or measurement section was assigned to
each borehole population based on the appearance of the logs in Appendix B. The
resulting variograms are shown in Appendix C. The variograms are generally
distinguished by a tendency towards a "pure" nugget effect, ie. the variogram is
horizontal and the data are spatially uncorrelated. The data in boreholes N3, Cl and
C3, however, appear to be more spatially correlated. The practical ranges are in this
case on the order of 50 m.

In order to suppress the effect of varying support, variograms were also produced for
the subsetted data from the N and C holes, ie. 1) data with section lengths < 2m and
2) data with section lengths 3-7m. The resulting variograms for the data sets with a
meaningful number of data are reproduced in Appendix D. As can be seen in the
case of boreholes N2, N4 (< 2m, 3-7m) and C2 (3-7m) the subdivision did not help
to improve the spatial correlation. In the case of N3 and Cl (3-7m data) the spatial
structure is maintained, whereas it is lost for the subsetted 3-7 m data from C3.

The lack of evident spatial structure was also noted for the 20m hydraulic conductiv-
ity data measured in coreholes in the Brändan area, Finnsjön, Sweden (Winberg
1989). This fact was attributed to the fact that the 2m data showed correlation
lengths on the order of the larger section length, ie. c. 20m. Thus, any spatial
structure beyond 20m was bl'jrred by the choice of larger section length over the
scale of measurements, usually 200-300 m.

A hypothesis posed in the context of the SCV data is whether the same conditions
applies for the data in the W-, N- and C-series boreholes, ie. that the correlation
length of deregularized data over smaller section lengths have a correlation length
equal or close to the maximum section lengths used in the hydraulic testing of the
holes.

To test this hypothesis, focus was put on the data deregularized to lm sections,
produced for the W-, N- and C-series holes (Holmes 1989, Holmes et al 1990, Black
et al 1991). To create this data set, use has been made of overlapping and integral



Table 5.3 Summary statistics for N2-N4, C1-C3 (subsets of data)

Borehole

N2

N2

N3

N4

N4

Cl

C2

C3

Subset

3-7m

< 2m

3-7m

3-7m

< 2m

3-7m

3-7m

3-7m

logT

-10.34

-9.65

-10.26

-10.67

-9.39

-10.47

-10.35

-10.40

0.58

1.02

0.53

1.17

1.82

0.36

0.71

0.68

Qi

-10.93

-10.35

-10.64

-11.64

-10.19

-11.14

-11.22

-11.40

M

-10.35

-9.72

-10.13

-10.75

-9.48

-10.49

-10.22

-10.14

-9.81

-9.08

-9.83

-10.19

-8.31

-9.98

-9.73

-10.00

IQR

1.12

1.27

0.81

1.45

1.88

1.16

1.49

1.40

CoV

7.4

10.5

7.1

10.1

14.3

5.7

8.2

8.0

N

32

48

29

29

42

20

22

13
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part measurement to calculate a continuous log of lm data in each hole. Naturally
this leads to assignment of repetitive low conductivity values over longer section
with low hydraulic conductivity. This effect may overemphasise spatial continuity
and has to be taken into account. The following chapter will present the results of the
analysis of the data deregularised to lm sections.

5.4 Analysis of lm data from the SCV site

5.4.1 General

Analysis of SCV hydraulic conductivity data deregularised to lm sections has been
performed on data from individual holes as well as data sets consisting of pooled
borehole data sets of similar geometry.

5.4.2 Hydraulic conductivity - summary statistics

The summary statistics of the lm data from the SCV holes is reproduced in Table
5.4. The calculated mean values span over one order of magnitude. Noteworthy is
also the somewhat increased mean conductivities in the westerly boreholes (c. -10)
compared to the northerly ones. The mean conductivities in the inclined C-series
holes are on the order of that calculated for the northerly holes.

The calculated population variances are somewhat less in the northerly holes when
compared with the westerly. The variance of the C-hole data is on the order of that
of the data from the northerly holes.

To study directional effects on the basis of larger populations the data from the W-,
N- and C-series holes have been pooled together in three populations. The summary
statistics based on these populations are presented in Table 5.5. It should be
emphasised that the bearings and inclinations of the C-holes are not identical, cf.
Figure 5.6. Notwithstanding this fact, the C-hole data have been pooled together
since the data represent a more complete sampling of the occurring fracture sets
within the SCV block.

The calculated mean hydraulic conductivity of the W-population is a factor 5 higher
than the N-population. The C-series population has a somewhat lower mean than the
N-population. The calculated population variances show a strong element of correla-
tion between variance and mean value, ie. a proportional effect.

The histograms and cumulative distributions of the W-, N- and C-populations are
shown in Figures 5.7 and 5.8, respectively. The overall impression of the populations
are that they are near lognormal. However, a more detailed scrutiny reveal more of a
bimodal distribution of the data in the W- and N-populations, and even three-modal
in the case of the C-population.



Table 5.4 SCV site - lm data - summary statistics (individual boreholes)

Borehole

Wl

W2

N2

N3

N4

Cl

C2

C3

m

-10.23

-10.01

-10.60

-10.89

-10.95

-10.84

-11.02

-10.89

G2

1.48

3.30

0.90

0.85

1.84

1.09

1.22

0.96

QJ

-10.96

-11.43

-11.25

-11.41

-11.92

-11.43

-11.73

-11.66

M

-10.35

-10.08

-10.70

-10.85

-11.28

-10.92

-11.00

-10.85

-9.40

-8.80

-10.05

-10.52

-10.15

-10.54

-10.55

-10.15

IQR

1.56

2.64

1.20

0.89

1.77

0.89

1.18

1.50

CoV

11.9

18.2

9.0

8.5

12.4

9.7

10.0

9.0

N

140

140

199

184

212

143

143

92

N)



Table 5.5 SCV site - lm data - summary statistics (pooled populations)

Population

W1,W2

N2,N3,N4

C1,C2,C3

All

m

-10.12

-10.82

-10.92

-10.69

2.40

1.25

1.12

1.56

-11.02

-11.51

-10.55

-11.44

M

-10.21

-10.85

-10.90

-10.80

Q3

-8.96

-10.26

-10.49

-10.07

IQR

2.06

1.25

1.07

1.37

CoV

15.3

10.3

9.7

11.7

N

280

595

378

1253 S i

Table 5.6 SCV site - lm data - summary statistics (reduced pooled populations)

Populauon

W1,W2

N2,N3,N4

m

-9.78

-10.31

a2

2.36

1.67

Q,

-10.78

-11.26

M

-9.77

-10.50

Q>

-8.70

-9.49

IQR

2.08

1.77

CoV

15.7

12.5

N

202

221
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Table 5.6 show the summary statistics of reduced W- and N-populations, cf. Section
5.4.3. The resulting mean values are a factor 2 and 4 higher than for the initial
pooled populations, respectively. The calculated variance for the N-population is
somewhat increased which is also reflected in the coefficients of variation (CoV).

5.4.3 Experimental variography

Experimental variograms based on data deregularised to lm sections have initially
been produced for the following three types of populations;

1) Individual boreholes
2) Pooled populations
3) Complete SCV pooled population

The experimental variograms for data from individual holes in the W-, N- and C-
series are presented in Appendix E.

The variograms for the pooled W-, N-, and C-populations and that based on all lm
data from the SCV site are shown in Figures 5.9 and 5.10. There is a tremendous
difference between the variogram based on the W- and N-population, cf. Figure 5.9.
The data from the W-holes result in a variogram which show a high degree of
continuity with an associated high nugget. This could also be interpreted as a pure
nugget effect since the nugget is 60% of the total sill. The variogram of the N-
population on the other hand show a high degree of variability. The nugget is zero
and the total sill is 1.0. In both cases tlie total sill (Co+C,) is 80% of the population
variance, cf. Section 5.4.2. The inferred practical ranges of the modelled exponential
variograms are 10 and 8.5 m, respectively.

The experimental variogram based on the C-population is similar to that of the N-
population. The total sill is c. 1 which is 90% of the population variance. The range
of the spherical model is 10 m, cf. Figure 5.10a.

The variogram based on all 1253 deregularised data is very similar to that of the N-
and C-populations, cf. Figure 5.10b. The total sill of 1.21 is close to 80% of the
calculated population variance. The practical range of the exponential variogram is 9
m.

As previously mentioned, ft*, deregularisation scheme and the underlying testing
methodology used may overemphasize the continuity of low-permeable sections in
the rock. The testing philosophy stated that when a 10 m section had a hydraulic
conductivity less than 10" m/s, il was assumed to have a minimal hydraulic signifi-
cance, and no further testing was warranted. This means that as long as ten lm
sections of a borehole may have been assigned identical low hydraulic conductivity.

This problem may be treated in different ways. One way would be to randomly
distribute the lm data from a uni-conductive 5 or 10m sections below the cut-off
values, ie. 1010 and 10" m/s, respectively. This calls for a fair understanding of the
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underlying distribution function. In the case of the SCV data, a lognormal model
seems to be a fair assumption. In addition it would call for a large number of simula-
tions with subsequent statistical and geostatistical analysis. A more tractable alterna-
tive is to use a scheme where the parameters of the distribution function is updated
after each simulation and the simulation is carried out iteratively until some stated
convergence criteria in the parameters of the model is met. Then the statistics and
geostatistics is carried out on the last realization.

None of the alternatives discussed above have been pursued within this study due to
time constraints. Instead the probable extreme towards the other (more variable) end
was investigated. The analysis was performed as follows; the data files with data
from the W- and N-holes were revisited and all clusters of (identical) data more than
two in a sequence were deleted, leaving only the "top" value.

The resulting univariate statistics of the two populations which were reduced with 28
and 53%, respectively is discussed in Section 5.4.2. The large reduction in the case
of the N-population is compatible with the almost one order of magnitude lower
mean and a half an order of magnitude lower first quartile in the case of the N-
population.

The resulting experimental variograms are shown in Figure 5.11. Obvious is the
complete loss of structure observed for the variogram based on the reduced W-
population. The variogram based on the reduced N-population show a still higher
degree of variability than the original population. An approximate range in the latter
case is on the order of 4-5 m, ie. a reduction with a factor of 2 compared to the
initial variogram. The total sill of the N-population variogram is c.1.3 whereas the
pure nugget of the reduced W-population is 1.85, in both cases close to 80% of the
calculated population variances, cf. Table 5.6.

30m

30m

» R L 8 4 ' !> ' • . " '

Figure 5.12 Layout of radial boreholes drilled from the Macroper-
meability test site (from Gale 1981)
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5.5 Analysis of 2m data from the Macropermeability test site

5.5.1 General

One of the "drawbacks" of the analysis of the hydraulic conductivity data from
Brändan presented by Winberg (1989) was the fact that the vertical and subvertical
holes only informed about the spatial continuity in the near vertical direction.

That was one reason to pursue a study on Stripa data which offer a larger variability
in borehole geometry, and particulary offer a large amount of data from near hori-
zontal boreholes underground. However, a close scrutiny of the Stripa data reveal
that no short section data exist from vertical holes. This applies also to the SCV site.

In order to add to the understanding of spatial continuity of short section hydraulic
conductivity data at Stripa, it was also decided to analyse data from the two short
vertical holes, R4 and R9, drilled vertical down at the Macropermeabiliry drift, cf.
Figure 5.12. These holes have been subject to hydraulic testing in 2m sections, in all
21 sections have been tested (Gale 1981).

5.5.2 Hydraulic conductivity - summary statistics

The data from R4 and R9 have been analysed as a pooled population, ie. ali 21 data
points. The univariate statistics indicate a geometric mean hydraulic conductivity of -
9.82 and a variance of 0.59.
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5.5.3 Experimental variography

The experimental variogram calculated is based on two times the support of the lm
SCV data. The variogram, cf. Figure 5.13, has been fitted with a spherical model.
The nugget is insignificant and the sill value of 0.63 is compatible with the calcu-
lated population variance. The range of the variogram is 10m.

6. DISCUSSION

6.1 General

The discussion of results will cover how the calculated geometric mean hydraulic
conductivity and the inferred spatial continuity is affected by; a) varying measure-
ment scale, b) geometry of the boreholes, c) geology and tectonics of the site, and
d) the statistical assumptions made. Finally, the potential use of the obtained
relationships is discussed.

6.2 Scale effects

The analysis of 10m hydraulic conductivity data from El, Nl and VI show geomet-
ric means varying between -12 and -10. The variance of the data varies between 0.4
and 2.6. Correspondingly, the 10m data from the F-series holes at the crosshole site
vary between -10.8 and -9.5. The calculated population variances vary between 0.9
and 1.3.

Analysis of data from the SCV site deregularised to lm show geometric means vary-
ing between -11 and -10. The calculated variances span between 0.85 and 3.3.

A comparison between the two scales (supports) show that the increase in geometric
mean for the lm data is nearly inversely proportional to the decrease in support. A
similar proportional increase in variance can not be observed.

In a study of the heterogeneous Culebra dolomite at the WIPP site in New Mexico,
Beauheim (1988) noted that in a system where fractures have heterogeneous distribu-
tion, continuity and connectivity, a change in the test volume will result in different
average hydraulic properties over that volume. A representative elementary volume
(REV) as defined by Bear (1972) may not be defined. The average properties may
either increase or decrease as the scale of testing increases, depending on how
fracture geometry, conductivity and connectivity vary within the volume studied.

The correlation lengths of the 10m data in El and VI are on the order of 50m. The
F-series borehole data from the cross-hole site indicate practical range;, on the order
of 3O-50m.
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The variograms based on the variable section length UogT) data from the SCV site
show very weak signs of spatial correlation. The holes that do show spatial correla-
tion, N3, Cl and C3, are dominated by 3-7m (test section) data. The oractical ranges
are, where possible to infer, on the order of 50m.

The variograms based on variable section length SCV data deregularised to lm
sections show a much higher degree of spatial continuity with well developed
variograms with practical ranges on the order of 10m.

The analysis of spatial continuity thus show weak signs of correlation for the 10m
hydraulic conductivity data. The spatial continuity of the data deregularised to i»T
sections is more pronounced and well developed with practical ranges on the order of
10m.

6.3 Geometrical effects

Univariate analysis of data from the tri-axial array of boreholes at the SGU site (El,
Nl and VI) show a two orders of magnitude lower geometric mean in the vertical
and northerly directions compared to that calculated for the easterly direction. Thus
an apparent anisotropy in hydraulic conductivity exists, though inferred from only
three boreholes, with a ratio of 100:1:1 (east-west:north-south:vertical). A correspon-
ding analysis of the lm data from the similarly bounded SCV block show a similar
pattern but with a lesser degree of anisotropy (10:1:1).

The spatial correlation as obtained from the SCV site and the neighbouring Macro-
permeability test site show more of an isotropic (1:1:1) pattern. Thus, a correlation
between the noted anisotropy in geometric mean hydraulic conductivity and that of
the covariance structure of the rock cannot be observed. A correlation between
anisotropy in hydraulic conductivity and anisotropy in correlation structure of
hydraulic conductivity is to be expected, and have been used by eg. Neuman and
Depner(1988).

The isotropy in spatial correlation between the vertical and the east-west direction is
also supported by analysis of the 10m data from El and VI. Thus support for
isotropy is obtained at two different scales.

6.4 Geological and tectonic aspects

In this section we will try to correlate the observed average hydraulic properties and
evidences of spatial correlation with the existing geological and tectonic information.

A first observation is the noted hole effect observed for a lag of c. 60m in the data
from borehole F5 at the crosshole site. This hole effect is compatib'e with the inter-
distance of fracture zones interpreted at the cross-hole site (Black et al 1991).
This is a sole observation which is not observed in data from other holes. The reason
for the lack of geologically interpretative power on these scales is that most of the



35

boreholes are less than 300 m iong, thus providing limited possibility for interpreta-
tion of repetitive geological features, eg. fracture zones.

The general geology of the SCV block is described by Gale et al (1990). They state
diat much of the control of the geological framework within the SCV would be ex-
pected to be controlled by the high frequency and long extent of east to northeast
trending fracture zones observed outside the block. On the contrary, core data and
crosshole geophysics show several north trending fracture zones cutting through the
block.

Appendix F (Gale and Stråhle 1988) shows pole plots of the normal of the fracture
planes observed in the N- and W-holes. Obvious in these plots is that the westerly
boreholes essentially sample a north to north-northeasterly trending fracture set,
whereas the N-holes sample more varied geometries of fractures including traces of
a subhorizontal set.

Appendix G (Gale and Stråhle 1988) shows logs of the frequency of fractures (sum
of open, sealed and induced fractures) and RQD for the N- and W-holes. It can be
assessed from the graphs that the fracture frequency of the W-holes >s much more
erratic than that of the N-holes. The variogram of the W-population which is close to
a pure nugget effect could thus, in part, be explained by the appearance of the
fracture log. The fracture log of the N-holes still show a fair degree of variability,
but superimposed on a more continuous variation which can explain the obtained
variogram with definite structure, however still with high variability and
consequently a short range.

It is also obvious from the graphs that the average fracture frequency in the W-holes
is higher than that of the N-holes. Although a clear correlation between fracture
frequency and hydraulic conductivity has not been proven (Neuman 1987), the noted
differences in fracture frequency support differences in calculated geometric mean
hydraulic conductivities.

6.5 Statistical assumptions

The analysis has been performed on populations of the random function logK, either
as single borehole or pooled populations, where the random function has been as-
sumed to be statistically homogeneous, ie. stationary and ergodic (de Marsily 1986).

The assumption may be considered questionable since the borehole data contains
both data from the naturally fractured rock mass and data associated with fracture
zones transecting the block. It could thus be argued that a subdivision in each
borehole should have been made accordingly.

The number of statistical populations, or rather the number of averaging areas, to be
considered is closely related to the number of data needed to infer a variogram
model. A physicist would argue for "as many" populations "as possible", whereas a
statistician probably would respond as "few as possible". The answer to this problem
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is that most often the demand for physical resolution must find a compromise with
the statisticians demand for enough data to facilitate statistical inference with an
acceptable spatial resolution to comply with the physicists demands.

A further subdivision into a rock mass and a fracture zone population has not been
pursued within the scope of this study. It is however expected that an analysis of a
pure rock mass population, data associated with fracture zones (FZI index >2 (Black
et al 1991) excluded, would provide essentially unaltered correlation lengths. The
population variance and the total sill value of the variograms would decrease some-
what, and so would any noted nugget effect.

A further analysis of subdivided populations should be the focus of any subsequent
analysis.

6.6 Use of established relation-hips

Mass transport in fractured rock is to a large extent controlled by the spatial variabil-
ity in fluid advection that is due to heterogeneities in the hydraulic properties of the
rock formation. The magnitude and directional dependence in this heterogeneity in
the Stripa bedrock is mapped by the established variograms presented in this report.

The near isotropic correlation structure on a lm support for the SCV site could be
used, and regularised to a convenient support to facilitate either data expan-
sion/estimation (kriging) or simulation. With the use of stochastic continuum
techniques the uncertainty in mass transport could be addressed.

7. CONCLUSIONS

The results of the statistical and geostatistical analysis of hydraulic conductivity data
from the Stripa Mine has revealed the following features;

1) Calculated geometric mean hydraulic conductivities on a 10m support
are varying between -12 and -9.5 (logK). Variable section data dereg-
ularised to lm sections show geometric mean values varying between
-11 and -10. No variance reduction for the 10m section data is observed
compared to that calculated for the lm data.

The inconsistencies observed in the calculated statistics as a conse-
quence of the averaging process are attributed to the fracture control of
the hydraulic conductivity of the Stripa granite, which entails that an
REV is difficult to define for the analysed data.
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2) The analysis of calculated geometric mean hydraulic conductivities for
individual holes and pooled populations show evidence of an apparent
anisotropy in the east-west, north-south, vertical direction. The noted
ratios are 100:1:1 and 10:1:1 for the 10 and lm section data, respective-
ly. It should be emphasized that the inference is based on a limited
amount of data and that the indicated ratios do not necessarily reflect
the major axises of the three-dimensional hydraulic conductivity ellip-
soid.

3) The analysis of spatial variability on a 10m scale reveals weak signs of
finite spatial structure, ie. a well developed variogram. The noted
practical ranges are on the order of 50m, where possible to infer. The
analysis of data of variable test section length deregularised tc lm sec-
tions, however, show a much stronger element of spatial correlation.
The observed practical ranges showed that the lm data are correlated
within 10m, ie. a factor 5 shorter correlation length than that possible to
infer for the 10m data.

The assumption that the lm data may suffer from a overemphasised
continuity of low-permeable sections was tested by extracting all but
one value in each cluster of identical data of low hydraulic conductivity.
The resulting variogram showed a practical range of 4-5 m. Thus it can
be assumed that the true correlation length of data deregularised to lm
lies within the interval 5- 10m.

The spatial correlation as inferred from boreholes of varying orientation
indicates an isotropic covariance structure.

4) The fracture statistics as inferred from the boreholes at the SCV site
sustain the noted differences in calculated geometric mean hydraulic
conductivities between the W- and N-series borehole data, although a
rigorous relationship has not been established in this study. In addition,
the appearance of the variograms based on the data in the above men-
tioned boreholes correlate well with the variability in fracture frequency
as inferred from fracture logs.

5) The univariate statistics and modelled experimental variograms on a
l-2m support presented in this study constitute a starting point for
further analysis and modelling of paniculary the SCV site at Stripa. The
relationships obtained may eg. be used in stochastic continuum simula-
tion schemes of groundwater flow and mass transport within the SCV
block.
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