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I. INTRODUCTION

The most commonly used approximation in the study of beam-beam
interaction is the “"strong-weak” oase, namely, the case where the
particles in one of the beams (called the weak beam) are perturbed by
the beam-beam force. This force usually causes blowup of the
transverse béam size with consequent loss of luminosity, and imposes
severe limitations on the performance of a colliding beam storage
device. The synchrotron radiation in ee storage rings may, however,
improve the sjituation, for particle distribution is determined by the
balance between the quantum fluctuations and radiation damping on the
one hand and the beam resonant terms on the other hand.

In the present paper we study the dissipative particle dynamics
in ee storage rings 1in the presence of linear synchro-betatron
coupling, via nonzero dispersion at the interaction point. In a real
machine there is an absorbing boundary, such as the vacuum chamber.
Mathematically such a boundary is expressed by the equality between
the beam size and the aperture of the vacuum chamber. Particles
diffusing as a result of the stochastic photon emission would be
absorbed at the walls. Much attention is paid in Sec. IV to the exit

(escape) time, needed for the above process, called the beam lifetime.

II. CANONICAL TRANSFORMATIONS AND THE FOKKER-PLANCK EQUATION

Our starting equations are the following stochastic equations of

motion
@ _ M . EEE = M <M >+ E(s) H U=(x,2) (2.1a)
ds  3p, ' ds Ju v v . e :
gt . ak o< >+ E(s), (2.1b)

x g as = 3¢ty
where the Hamiltonian of an electron with rest msass -e and charge e is

taken in the form {11:
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with the curve length s as an independent variable. The curvature of

the design orbit is denoted by K; * being the total energy and

K=§A},A',A=] is the vector potential of electromagnetic field. The

quantitaies <ﬂt>, <HH>, HU and HH in formulae (2.1) are defined in
i

terms of the original Hamiltonian H and the mean and fluctuating parts

of the radiated power as follows [2]:

]
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<ﬂu>_ T P ; <HH>—Clp 87 N (2.3a)
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e =, ; n,s=p chy T (2.30)

where p 1s the total momentum, ¥ 1s the Lorentz factor and ([3)

r, . 535r ho
¢, = 5= K(s) ; c,= ———3 K(s) , (2.4a)
im ¢ 2al3 m
2
e
re=—3 - (2.4b)
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Furthermore E(s) is a centred, Gaussian Markov process having the

formal properties:
<E(s)> = 0 ; <E(s)E(s)> = &(s-s). (2.5)

The bracket <...> wmeans the expectation value of the expression

entering it.

Here we consider the horizontal motion of an electron, where the

contribution from synchrotron motion is realized via non-zero

dispersion. Applying the non-canonical scaling transformation

he)
-

- ; -got=t =3 h= — (2.6)
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one can write eqs. (2.1), taking the azimuthal angle $ as a new

independent variable instead of s, in the form:



x= Qg_ ; gg +<np>+np§(¢), (z.7a)
ap_

. 3_; ' . 3;

Sl ; h=- o= +<nh>+nh§(4), (2.7b)

where ﬂ’, pos and E: are the relative velocity, momentum and energy of

the synchronous particle respectively, and
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<N >= cg i H <nh>_ n4£3 3 (2.8a)
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2, - -
2 H 2 o
me- ——— P | n=— —= ’;?, ,  (7.8b)
PVR b e, Ve ge °
~ RH
H= ——— (2.9)
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The dot in egs. (2.7) means differentiation with respect to §} and R
stands for the mean machine radius.

We are rrady now to perform four canonical transformations
§ucce5$1ve1y, from the variables (2.6) to the action-angle variables
iJ],di} and IJ Y A ’ Three of them are linear in the old and new
canon;cal var iables, so that there are no serious difficulties in the
utilization of the basic rules of ;to calculus. We first write down
[ry:

(i) The first canonical transformation thh a generating function

134

{
F ‘x,p 2T, n,&]-xp +x {n+ —ﬁ|+nR¢ R (2.10)
4
where
- X~ : - 1
X=X ; P =p_ : o=Tt+R} ; n=h- — , (2.10a)
B!
(1)

x . dF,
H=H+ — (2.10b)

at

(ii) The second canonical transformation given by the generating

function
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(2.11)

(2.11a)

(2.11b)

generating

(2.12)

(2.12a)

F;"lx,p_,u,n;¢}=p“{x~wn'* —éﬂ - 2 teon
with
S -~ . ) - e - -
X=x-Wrj 5 N B o=p+ . ‘WPH ’ n=n ,
)
T
H=H + e
3
where ¥ is the dispersion, satisfying the differential equation
z . s oo 3]
dy 2z PP U
— = + Gy = KR ; G=K R +R — |-
< P ax
d as t dazzz0
(111) The third canonical tr ansformation, whose
funct ion is
I . P x e
F J4X.p,0,ﬁ;0 = — EEE + on
e
with
x B L X b B
x= 2= e=p VB - B iog=e ;0 mEn,
Vs 2rVE
Y
= daF .
H=H+ —
a4

The well-known g-function

2
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(2.12b)

1s a solution of the equation (1,3]:

Equations (2.7) are transformed straightforwardly to give
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(2.13b)

(2.13c)
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n=- 5T <N >0 B (2.13d)
dao
where
- B
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The last canonical transformation needs some more work for 1t 15

nonlinear in the canonical variables. From the generating function [1]

; . Y : _ (ﬂu):
S X , ;== —tgg -r ——
14 '“i AU’“: ¢} 2 94 2 tgus (2.14)
we find
- v,'——_
X = 14 2J cosg H P = -F 2] sing ., {(2.1%a)
i /Fng_ i L~
Ay = )/ —— cosu : = -V 223 sinx (2.159b)
A s H 5
- = as
¥=n+ -, (2.15¢)
ad
where
in
R RDoap
= *% v ; = = ; v E o= oEerT o,
ek % v 3 *.7 B Sozn | B
2
2 AED k R
A= ——— COS} B ag=0-¢
5 5

€. 2na’R%

The quantity AE 15 the total energy gain per revolution, k is the
5]

-2
harmonic acceleration mode and lrxn—y‘ (mM being the momentum

compaction factor). Next we represent the action and angle variables

as functions of X, P, an, T) and utrlize Ito formula for the change of

variables (see e.g. [4]). Note that

[ 2, pt . P
ix +p ) ; o= v - xi— arctg‘;J

and trerefore

1 2 1 2
4] = XdX + PdP + S(dX)"+ =(dP) (2.16a)
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Substitute now egs.

2 x-p?
P__,(ap) + x——dedP
43" 43

(2.16b)

(2.13a,b) intoc the last two equations and use the

basic rules of Ito stochastic differential calculus (4]):

fd}” = 0 ;

E°43” = a3 . (2.17)

7
The calculations are straightforward but tedious, giving the following

final result:

J =- & +<n >+n E,(a) , (2.18a)
v o
% ( )
.= C;T +<n 2 B (2.18b)
*»
where
(o3 /rz‘]._ T T
<an' >=— |g¢ ]’,’ 5 cos¢ - 1' 233 g Bw sing <1 > - V 203 sm¢<r1 o+
B =~
= 9,
2E| Rt 2 “h : (z.192)
23 ——
"=y )/ —B_ cosd - l/ 283 E . “' sing [l -V 283 sine 1, (2.190)
L i r 3 - ‘ r— i
< ! EELDE / 5%— g + gglcos¢ <nh> - A; 5%_ cos¢<1 >+ 5::2¢ *
* s, V% - [
‘IWLITL . \ le . R
L -, | _ Yooszel. ¥, o4 c
"‘iﬂ Bnp R+B l'lh 23 "P R+B ﬂh "h' (2.19¢)
. - ]
n;",= ysing | Z}B" g + %‘!Jcos¢ m -/ %— cos M . (2.199)
LZEJN x / V
with the equations
2 .,°.2 "2 Iy
Js= E—SE%%—:Q— ; as=-arctg UA (2.20)
(Ad)
in hand one can obtaln exactly in the same manner similar stochastic

differential equations for the

They are:

longitudinal

action-angle wvariables.



L (s _ds)
J.= 3“: +<nj >+ o (d) (2.21a)
¥ {z) tsh .
2 iy ey (), (2.21b)
where
R — /23 Aw‘n; m
(nj >=—i ZRJ: cosus<ﬂp>— V —i— sxna’<ﬂh»+ 5 — + CT (2.22a})
23
0o lV3T cosa 1 - 3/ —= sing Tl (2.22b)
i % s p v A A o
—_— cosy i\u‘iﬂzsin%ﬁ HESiDQ(‘l
<n(5)>= " / L sing <0 >- 5 Moo+ p s b 5
14 1 235 s p VEXS: h 4J; 4AJ5
Wﬂpﬂhc052u, -
- e (2 22c)
H
Vo cosol
i{g) A E
no=y /= sing 1 - — no . (2.22d)
H 2J H ;——— h
! s I Z3%)

It is well-known [4] that the stochastic process, governed by the
equatiors (2.18) and (2.21) may be equivalently described by a
cort esponding Fokker -Planck equation for the transition probability

Pin PR B ;¢}, whiich reads as
PR s £ 5

42 ] Il a¥ 4] 37 i e
2. <n 1>]P]— 20L& ”>]P.|" LA n'ntte s
a4 P g Ve, T TN 2 e e Ve e T
a5 foa )1 G (kY
— m, + = T n s (2.23
auiaJk( L J 2 3J. SN A | PJ )

where 1=(x,s), k=(x,s) and summation over repeated indices is implied.

We recall that each of <fi >, 4nh>, np and nr may be found explicitely
P d

tirom (2.8), (2.9) and (2.2), using the canonical transformations

2.10-12) arnd (2.14) with the result:

3 . —
°Pas |y Varg— 2, }
<HF>= — I8 2AJ= sinus+ ¥ —E; !sin¢ + goose || , (2.24a)
c ) .
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Since we are interested mainly n

cgui tibe ium on the scale of the dampang times,

reelatively cshort revolution time scale as

aynch ntr o and betatron oscillations. In the

1etain terms with sfow varfation in the angle

(sin¢ + ﬁcos¢2]

S1Nk
5 kS

L, (2.24b)

(2.24¢)

J

-1 (2.240)
the establishment of
we may aver age over the

well as the phase of

averaging procedure we

var iables (the resonance

tetms) in the original Hamiltonian % and drop such terms ari1sing from
the diffusion part of the Fokker-Planclk equation (2.23). After some
simple algebraic manipulations one obtains the result:
- b
Jp 3 l’a .1 e i ek ] |
5T T +5. P - £ -2q J +2 Fi+
& ?o. L.,J il EER Ll . 4B
+ 1 (2.25)
5 .
where the approximation I has been
P
used and the following notations:
o Rp- |
1 z - 1 Pas Wi =
—— afl =-25 ; — -"" =2& .,  (2.26a)
c 3 +
.3 s "R
027: poi ~4 A 2" s P =4 2.26b
4 sl a, ’ / 3 = qs » (2.26b)
13 £ E P
2 2
oy
X =L g,
es” @ B + g N (2.26¢)
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as
2 =20 (2.26d)
= o
R
n
i i 19 e
have been introduced ‘"..,“¢= o Jd&...]. The Hamiltonian X with
27
o
account of the linear synchro-betatron resonance via nonzero

dispersion W1 at the interaction point 1s well-known to be (11

s — . .
: H+A-.-"_JJ'_V- v wav |9 +20 73 T cos e ra -mpse |, (2.27)

wher 2
2 2 IS
L+ Al
8, I
Av = — ¢ ; dvo=m 5 EL (2.28a)
s £ -
5
1+3° ¥a g
H i,
ﬂs= — — & , (2.28b)
<2V .
5 cxl
and E. 1s the well-krnown beam-beam parameter [10]. The resonance
condition 15 written as
VRS e mde s omre [y

One can remove the explicite j-dependence 1n eq. {(2.25) applying the

canonical transformation [1]

© ]

E,?{ot".,ot._.\] R

) = {ot ACTRUE S T S (2.30)
with
J =J 5 J =J -3 ; a=g +g ~mi+d, 5 a=-g . (2.30a})
», = 3 > % a z ir 5 HS
The result is .
%? == %;( w* Q;—cosa;P{~ . !{G +Fsina| J— i:~[GiP|+Bn i—g +
A s’
. _d ldq”J P]* BA,_,[BJP] , (2.31)
aJi&J5 aJ’
where
I S e
w=E,+& +& ; F[J 3 J:zl) Va (J -3 ] . (2.32a)
1 "« 7s A ¥ 5 EAN IR ¥
; G ‘J J:—zu J +2 lq -q ] ., (2.32p)
[ SAUNE 1 o s - £

10



3.3 i= —l— + - [J J ]: l + ] - . .32
Bal 27 5! 2“ N s ‘ ’ nJ, <« s 2 .qx quJx q:Js (2 ©)
J 3 -3
® v 5
Wwe really want to obtain an equation for the particle
distr ibution function
n
i . . l. P B
VIJE,J5;¢J= 5 Jda Pla,Jx,J:;&J , (2.33)
o

holding in the limit, when the machine working point [Vx'v:J is far
enough from the linear synchro-betatron resonance examined here.
Recently a brilliant renormalization method has been developed by
Y H.Chan (5] 1n which the probiem of small denominators does not
exist . For our purposes, however, it will be sufficient to utilize the

projection operator technique [4], which is just an abstract

formulation of Haken's principle of adiabatic elimination ([&].

LII. THE PROJECTION OPERATOR TECHNIQUE

Let us now rewrite eq. (2.31) in the form
3P [L L L ]P , (3.1)

where the differential operators L L and L are defined as follows:

= J 3
=—qy S pLA—
Ll- W 7a + Bu 2 (3.2a)
Ja
L =- 1:')—;F—cosa d— - Fsina aﬁ R (3.2b)
SN da 33
¢ 4 L
~ E ﬂ .,
L= —Gd‘ . LG; Bﬂzzq J + —d—4qny* i—ﬂ - (3.20)
c?Jch 335 dJ aJ. dJ 335
Given an arbitrary function of the angle a fla; ) the projection

operator Pu may be introduced according to the equation

11



2n
;uf(a;e)= }da f(a;3) . (3.3)
=]
Next we briefly sketch out some useful properties of the operators,

defined above

PL=LF- S S T 3.4
Fipgrf=0  Fuf=0 5 Flge=LF (3.4
1041 L1 )e
ihe exgenfunctxons and the eigenvalues of L are qlJ .J ’e vE
and —x[xu*vB l respectxvely, where g and  are arbitrary functions
of the actions J“ and Js, so that
N wa . e
L‘ge =—v'1m+v8“]ge . (3.5)

The distribution function ¥ [see eq. (2.33)) with account of (S5 3) may

Ye wrlitten as

-Fp H Y= (1—% }P =p-¥ . (3.6)
a [}

ihe projection of the Fokker-Planck equation (3.1), using eqgs. (3.4)

JIVES
A LV
‘e s 3.7a
¥ L l'3 ( }
. . = 1
aT - *l T ]‘ S Coa
o= 1-F S A T 3 7b
ar L Aoty L. (3 70}
1he above equations are linear in ¥ anag T and their solution may be

found 1 a convenmient fotm, applying the Laplace transtorm, whach
eas1ly lends itself to perturbation expansion.
The Laplace transform for an arbitrary function 2(3}), defined

acceording to
00
- {
sy = JZ(e)e a3 (z.8)
o

may be disseminated without any effort to operators and abstract

vectors. Thus eqs. (3.7) take the form

S"i';(s) ¥ oo H(s) + L 'I/(S) + Yoy , (3.9a)

12
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F“ ) o - b - e
(s) = ILI.‘*gl—T'JI.”*-L,;IT"(S) +L¥S) + To) . (3.90)
o as 23] <

s
For the sake of simplicity we presume that
T(oy = o . (3.10)
The meaning of the latter equality 15 that the initial distribution
does not depend on the angle var iable a. One can immediately obtain
the formal solutiron of eq. (3.9a), which reads as
R P R L -
sts)=-T L Lo le® s Lt skor - Gan

¢

1t was pointed out at the end of Sec. II, that the working point Iis
talen to be far enoughy from the exact resonance, 1.e.

yeooL 2 Kl
PwtB o - (3.12)
Ad.
K 1
Theretore we are allowed to expand the expression [- - e- ; n eq.
-1 22l . “
(3.11) 1n a power series 1n s +. B ; . Up to the first orde: we
ha e
T S P P -
s¥(s)--F L.L, L.Y(s) L Vis)+¥oy . (3.13)
The «traightforward calculaiion gives
- H
T x
—'“Lh 5 N (3.14)

wher e

Substituting (3.14) into (3.13) and carrying out the inver e Laplace

transform one finally obtains

", : 1 P e 1
;_; . ‘ih—-l.[-’ue_ lzJ g vl ! i'_:i.i“‘q J +z,}1.-J|+ _
aJ__'-' - a3, ® ER T RN
v a” [ - .
i RO (3. 16)
a3,

Note that the Fokker-Planck equation (3.16) describes the long-

t ime behaviour of the dissipative dynamical system under

consider at ion.



THE HORIZONTAL BEAM LIFETIME

Iv.
old action

To proceed further in our study we revert to the
and represent the Fokker -Planck equation (3.16) as

S

variables J and J,
3% _ [Zlaﬁ g2 ] ]. 2 ;‘[; 3k, aR ] L
- + £ loon J 42 Pr- a2 -2 J +2 -4
Eree FER S uJ. 29 (¥ v izl T s # a7
+ 1 - [[4q J +B}‘I’] [58’1/]+ = 2y (4.1)
2 2LV e T /?J'?J 2L
aJ ad
Ed
Next we note that
ﬁ‘.J:-:'Js_.] % 2“0 l.q:-:Js‘qu'-:,J (4.2)
where
e
5
U°= (4.3)
we
Moreover the stationary point of the determimistic part of eq. {(4.1)
is given by
U : u - \
J =.q_.+ilq4-ql : J _—_?_5.-+A_(3_.!q¢ql. (4(4)
=d o 20, = 51 ’ zd X 2% D
] o [ fud
Substituting the expressions (4.4) 1nto the diffusion tensor of eq.
(4.1) and introducing the new variables
= - . = - .5
u Ji de H v J; Jsd (4.5)
we find that the standard two-dimensional Ornstein-Uhlenbeck process,
defined by the equation
3V 3o o) a0 i Eu 37 aE'U E:z %7
e S lo2g Y- ol vV}+ = 5= R - + — (4.6)
Bl Ju -2, (VA a 2 30_ il Fuav 2 BVL
15 the first approximation to our problem. Here we have used the
following notatjons:
; N
B =aq J J&[J s ,'= a_i.“q *2u q (q +39 ]*l—l ‘q AL ] ] s (4.7a)
(4.7b)

. T R Yo
B1E=:RZ-.’1=B [.J:-:d’J _]— f[ﬂq:-:qs+uol.q:-:+qs,]h]

14
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. ) r . N . .
o | _ 1 2 { 2‘ 2
R PO LS LR !_ [ 4q:‘2uaqst3qx‘qs]‘un.qx+qu - (4.70)
o

The sear ch for an orthogonal transformation
it I 3 I

1

COSX Sinx
= O* = * ’ (4.8)
1 v -sinx COSX v

[

3

c
c

diragenalizing the diffusion tensor of eq. (4.6) gives the result:

- B |
2
B la,+a, |’
2 H‘ uo 4qxqs+“c.qx qs
tg2s = = > — =7 (4.9)
117~z Ju *ZHq -q;]
The transformed Fokler -Planck equation reads as
. . . 8 i, B i
4 i ) 3 y o1 2w iz 3
L an 2 fon y V|- E-1- 'b]* JRaRa Y ¢ ) 4.10
a1 Ju -2e 0, | Fvl BCC A 2 ' 2 =z ( )
g S 1 Ju’ av
: 1
wher e
/— - S
B = LB +5 ../ a8 .im .n 17 (4.112)
o2 u Tz ST Tz : :
r r ———— a
Y PP N P Ll
Bao™ 2% e ¥ ARt P J - (4.11p)

One 1s given the opportunity to learn almost everything about the
particie distraibution, governed by eq. (4.10) for the theory of
Ornstein-Uhlenbeck process is well developed. Details may be found 1n
the excellent guides on stochastic methods [4,7] available.

Here we concentrate our attention on the beam lifetime problem.

The separation ansatz for ¥ an eq. (4.6):

-Ad
T(u,v;§) = ¥(u,v)e (4.12)
leads to
) . . R 2 2 B 2
po == & ]-ﬁ_[_ J_liﬁ__‘_’ S 230
Ao = 3u[ 2u0u0{ avt 20‘DVU * 2 .2 * 12 gugv * 2 .27 (4.13)
du av

Obviously A 1s inversely proportional to the lifetime 8 for a certain
eigenvalue problem of e¢g. (4.13). The boundary conditions and the
geometry of the domain ( are specified as follows (see the Figure

pbelow):

15



v
2
A
2 sd
T‘\\ 22y
an
_de u
7 »
Q LB -3
283 wd
~Jsd
1. The probability currents:
1 [ v 30',
=-2p ut— =R L L2 L .

S =2 et S¥y a0 M vl (4.14a)
im 3 A

S =-2¢ vi- ~|B _Z- 4 L 4. 14p

v, % 2[ 12 30 e dv! ¢ )
should vanish at the boundaries u=-J 4 and V== d (reflecting
LS 3

boundaries).

2. The probability density U vanishes at the boundary

ap” a” ag”
4+ =y = = . Z2 = —= -3 - —J 4.15
u ] 5 o 26 d g Vsa ( )
{absorbing boundary), where A 1s the horizontal aperture of the vacuum

chamber .
Integrating eq. (4.13) over the domain &, having 1n mind the

boundary «onditions (4.14) and (4.15) we obtain

1

1 5 10 ¢ v w7
S 4 PV B, & en f*i}dvj
ik

1 Ju i Qv Idu E v

1 dG ~ ) (4.16)

tdudv

J
o
{

-

It has been proved by Matkowsky and Schuss [8], that the stationary ~“

distribution
-1

VEt[u,v] = ﬂcexp[-Zuogrﬂ uf , (a.17)

where



" n
. il 1l -
- i -1 1 22 1
vl s e g : S TR T5 0 S SR TR UM
iv il = -F R ST
12 11
may be used as an approximation to ¢ 1n formula (4.16), nevertheless
1t does not satisfy the boundary condition ' =0 at d{i. Moreover

went 2l and fFreidlin have shown [7?] that 1f there 1s a point on the
boundary o, wheire 1he maximum of the stationary distribution %:t 1S
attained, particles escape from that point with almost unit
probability  In our case such a point does exist and it 15 easily

checled that 1ls coordinate- are:

£ +r &
i1
U = e m— T N v = . (4.19)
a £ o
whier ¢
g ln
e L ; E TR (4.20)
? N L
a2nd obviously u ¢rv =7, This fact allows us to carry out the
kad o
integration of the numerator of the r .h.s. of expression (4.16) by
Laplace's method. Noting «hat the Jenominator of (4.106) is

propor tional to nLE“/BN by a factor quite close to unity, we obtain

P Bd 1. oy
l:J-x= A2 -1[9 ‘I!lﬂ'h;.}":’:.—*‘ 7
e ! ¥
j 2w u]
o
* exp{— | (4.7

V. CONCLUDING REMARKS

We have studied the dissipative particle dynamics 1n ee storage
rings in the presence of linear synchro-betatron coupling. A
systemat ic method for adiabatic elimination of the angle variables,
using the projection operutor technique has been presented.

The effect of the linear synchro-betatron coupling 15 quite

apparent from eq. (4.4), showing thit the stataionary transverse and



longitudinal emittances are enlarged by a value of pogq-*q‘}/2mn
Moreover, the synchrotron radiation has a stabilizing actloﬁ oﬁ the
resonance, for the effective resonance detuning 1s m=al+6_+5i [see
eq. (2.32a)}].

Finally we have derived an expression [see eq. (4.21)) for the
hor izontal beam lifetime. It 1s worth noting, that an exact formula
for the beam lifetime may be obtained, using the eigenfunctions for
the boundary value problem (4.13), which are expressed 1n terms of
Hermite polynomials [details may be found 1n Ref. 4)].
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encouragement and support and Prof. E.A.Perelstein for very
careful reading of the manuscript and for many stimulating
discussions.
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UeHoe C.W. E9-91-293
OvccunaTveHan AMHaMMKa YacTUL B €€ HAKONWUTENLHbLIX KoNbUax
B NPUCY TCTBUWU NUHENHOI CMHXPO-6eTaTPOHHON CBA3N

Wccnenosano BAvAHKE CUHXPOTPOHHOMO MW3NYYEHWUA HA AWHAMUWKY 4acTvy
B €6 HAKOMUTENsHLIX KONbUAX B NPUCYTCTBUM NUHEMHONA CUHXDO-BETaTPOHHOMN
cenan. MpeacraeneHa cucTemaTvyeckan npoueaypa aavabaTnyeckoro HUCKmo-
YEHWA YrNOBbIX NEPEMEHHbLIX MNPW NOMOLLM METOA3 NPOEKLIMOHHOMO onepaTopa.
MonyuyeHo BbipaXkeHUe ANA BPEMEHW U3HW NyYyKa B rOPW3OHTaNEHOM HaNpaB-
neHuun,

Pa6oTa BbinonHexa 8 Nabopatopum aaepHeix peakuuin OUNAN.

Coobimenne O6venMHeHHOro HHCTHTYTa AAEPHBLIX HCCrenoBanmis, lly6Ha 1991

Tzenov S.I. E£9-91-293
Dissipative Particle Dynamics in €& Storage Rings in the Presence
of Linear Synchro-Betatron Coupling

The influence of synchrotron radiation on particle dynamics in ee storage
rings in the presence of linear synchro-betatron coupling has been investigated. A
systematic method for adiabatic elimination of angle variables, using the pro-
jection operator technigue has been presented. An expression for the horizontal
beam lifetime has been derived.

The investigation has been performed at the Laboratory of Nuclear Reaction,
JINR. .
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