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ABSTRACT

The gauging of the Virasoro and w-infinity algebras are discussed from the point of view
of BRST symmetry. Both algebras are realised as “Russian formulas™ for the curvatures built from
the generators of the Lic algebras and the corresponding gauge fields. The generalized curvatures
are used to determine the gauge invariant Lagrangians as well as the anomaly structures of the
conformal two dimensional theory and the w-—gravity.
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1. INTRODUCTION

The two dimenstonal conformal field theory has the Virasoro
algebra as the underlying syametry. The classical string action
is a typical example of a theory invariant under the Virdsoro
algebra. Its invariance and its conformal proprerties are most
clearly exhibited in terms of Beltrami differential /1-4/, In
this parametrization the BRST algebra factorizes in two inde-
pendent and separate structures, which implies that the ghast
Legrangian is a sum of a holomorphic and an anrtiholomorphic terms
and the action for the string can be expressed only in termgof
Weyl invariant quantities,

However, any attempt to treat the spin two gauge field ,

i.e. the Beltrami differential, on the same footing as the higher
spin fields, which occur in the w-gravity, does not have any
future,since there are no higher -spin 2weibein fields and any
hihher-spin Beltami differential, with a similar geometric
interpretation as the spin~2 zweibein field.

On the other hand, in two dimension there is an alternative
formulation /5,6/ to describe the coupling of gravity to matter
which includes the auxiliary fields J and 3.. This alternative
formularion has two advantages: on the one hand , it can be quite
naturally connected with the gauging of the Virasoro algebra
and , on the other hand ,it does allow a natural extension for
the higher-spin gauge fields, Which can be treated on the same
footing as the spin 2 gauge field.

In this paper we shall adopt a very nice point of view,

advocated in some recent papers by Baulieu, Bellon and Grimme
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/7-11/. We shall consider the Lie algebras as the starting point
in our investigation, rather than considering them as special
invariance properties of a given Lagrangian, For a given'Lie
algebra we associate a gauge field and a ghost to each generator
of it and we build the corresponding BRST symmetry from a
geometrical constrain on the curvature called the "Ruasian for-
mula™, This can be donme very efficient if we use aPoisson bracket
algebra realisation of the Lie algebra, which is possible not
only for the Virasoro algebra but also for the w-infinity al-~
gebra. For using the Poisson bracket, in addition to the space
dependence is is convenient to introduce one (t) or two (t,u)
gdditional variables. It seems that a modification of the Moryal
bracketr /12/ could be used instead of the Poisson bracket to
obtain a realization of W-infinity algebra /13/.

The generalized one-form connection, constructed in the
standard way /11/, will contain the Beltrami differential and the
corresponding ghost for the Yirasoro algebra and the high spin
gauge fields and their ghosts for w-infinity algebra. This co-
nnection is the fundamental object of our theory and it can be
uged to build up the gauge invariant action, the possible ano-
malies and the Wess-Zumino action, For accomplishing these tasks
it is necessary to introduce the matter fields. Furthemore, the
gauging of left-moving and right-moving of w-infinity algebra,
cannot be achieved by simply adding gauge field times current
terms. The action in this rcase could be most conveniently vrit{in
by introducing ,once again, the auxiliary fields J and J, which

nust be eliminated at the end of the calculation.

2, THE BELTRAMI DIFFERENTIAL AND THE VIRASORO ALGEBRA
2.1. THE GAUGE FIELDS
The Virasoro algebra, without the central charge, contains

an infinite number of generators L_1 .L0 ,L which satisfy

p1reee
the following commutation relations:

[t A= amw) L s ~igam<s (1)

This Lie algebra can be realised very simple as a Poisson-bracket

algebra of functions an a one-dimensional phase space, with the

Poisson bracket defined as:
s
{t .}, =38 -30) &, (2)
for two functions f(t) and g(t). Taking a basic set of functions

Rm - tm+1 , (3)

we obtain the Virasoro algebra
{F‘n’ *n }t- (mon) Ry (4)

The BRST symmetry is realised , in the ghost sector, by
ggssociating a ghost e »ny -1 to each generator L" . In the ge-
neral matrix representation (1) the ghost fields are gathered

together in a Lie-valued ghost:
o
2. o
Cm -] L ¢

which is not very covenient for the followving discution since

' (5

n

{5) contains the unknown generators L" , However if we use the

basis (3) then the ghogt c(t) has a simpler form:

c(t) = gﬁ <, gl (6)




Ffor a general Lie algebra, the BRST transformation of the ghosts

€, associated to iﬁbre given by:

L} c.q'- —-'% fbca :,;h cc .

where the coefficients fabc are defined by

[+
[Ta 'TbJ = fap Te
with Ta the generators of the Lie algebra. This BRST tranafor-
mation can be rewritten in a simpler form if one introduces the
a

ghoat c¢= 'I‘a c

A
scm = ; I; . c] (7)
For the Virasoro algebra (4) the BRST symmetry takes the

following compact form

sc + g {c s )y =0 ., (8)

This BRST equation can be extended to include the gauge
fields asscciated to the generators L? . FPor the Virasore algebra
we have found convenient to associate a one-form Anb. Furthermore,
following Stora we add the gho#t number to the form degree and
assume all commutators to be graded by this total degree, The~
refore , we can combine the ordinary one-forms with ghost number
zero and the zero-form with ghost number one i.e. '1h =A" 4+ C".

. For the Yang-Mills fields associated with a given algebra
with the ghosts satisfying Eq.(?) we can write "the Rusasian

formula” :
i A ~ A
F-dA+Z[A,A]-F-dA+i[A.A] ,

where‘E’- d + s and A = A +# ¢ with A = A8 Ta is the Lie- valued

connection form., For the Virasoro algebra we claim that a similar

formula takes place i.e.

st A e — - ~ Y
dA+-2‘iA,A}t-dA+AtA-O- (9)
with
-
o~
A= é::l(ani-c“)t’"l . (10)

and EJ- d + 5 with d the usual differential.

Since the Yirasoro algebra is deeply related to the twe
dimensional conformal symmetry, it is natural to try to connect
the one-form A" with the complex structure of a Riemanrniaan
surface. Conformal classes of metrics orn a Riemann surface can be
parametrized by Beltranmi coefficientsjﬁt(z « Z ) which are smooth
complex-valued funtion of the complex coordinates ( z , z )} of
the surface, with specific transformation properties, The complex
coordinate { Z , Z } corresponding to the complex stucture para-~

metrized by the Beltrami differential are given by the relations

¢ 2= Adz +pdi] ond c.c. (11)
Here )and/gare smooth complex-valued functions of { 2 , z )

which satisfy:

(9 -/49)2 - 0 and c.c. (12)

(5-pd) A= (U)X and c.c. (13)

The infinitesimal diffeormorphism generated by the vector
field f-)-f( z,z ).)+ §—( 2,z )@ can be obtained with

the Lie derivative L§-3' if’a d +d 1§9 acting on 2
gZ-LﬂZ-ifgdZ-{A(dZ+/udf)] ({-D)-
SDCfepfr=re (14)
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with ¢ = §+/LE.. By evaluation the variation of dZ in two ways

S (d2Z2)=4d (é.Z ) we can get the induced variation of//A.

,f/u, -[3-/a9+ (27/14,)1c . (15)
If we identify ¢ in (14) and (15) with the ghost vector
field of two dimensionsal diffeomorphism, we can identify
Egs. (14) and (15) with the definition of the BRST differential

5
aZ =Nc¢

s U= [é;%;u9+ (ébt) le . (16)

The nilpotency of s requires

sc-cﬂ?c . (17)
Now the equation (9) for ghost number zero and one and for

t =0 gives:

+a vVl %0 aw

Comparing Egqs, (18) and (17) we can easily see that a poasible

solution of these equations 1is :

Afl - dz +/Ldi : ('.-1 . c 3
Lo (3}(2) iz i ¥ «Je . (1%

The rest of the one-forms A" and the ghosts <™ can be
can be found out by imposing the validity of Eq. (9) for all
values of t /11/ ., On the other hand , we can solve Eq.(9) by

making a gauge choice

(z ,Z ,t ) ¢ z, z. t ) (20)

With this choice Eq. (9) yields

9‘\’_ 9’\-' . DN-IQN
§;lAE' = fﬂ9t AE ; 5?; c = érz [

equations which have the obvious solution

N
A =dz +dz As (z+t, T ) +c (2+t, z) =

-et‘gi[ dz +dEp+ c] (21)
2.2 VIRASORO INVARIANT LAGRANGIAN

s
. From the field A one could construct an invariant Lagran-
L

gian if one looks for a twa-formggi which is d-closed and it
is defined up to Eiexact terms, The ghost zero part of«gris

a possible BRST-invarianE}Lagrangian. The only possible candidate
built only from A is III-, whiEP nevertheless i{s not ;;closed
siﬁce : satisfies Eq.(9). Here I iz the complex conjugate of

f . Therefore, in order to build up an invariant Lagrangian we
must couple :'to a nev field , the matter fields,

The matter fields are zero-forms,which cannot contain
ghosts. For our purpose the starting_ point is the equation (11)
In two-dimension, there is a possibility to describe the coupling
of gravity to matter field , which includes two auxiliary fields
J and 3 /5/ . The matter field in this approach is described

by a scalar field, which we will take to be a single real scalar ?ﬂ

. We will suppose that the realfield / and (J , J ) are connected
by_thé equation

di&- Ja~ly 3 I"l (22)



i.e. the field HPPI and/ptare related by @
J -9((9-/33
I-;V—-/(J

The auxiliary field J could be considered as the first

(22")

term in a set of zero forms J(") whth n3 -1, which ve assemble

into:
R~

’I_ Z tn+1 J(n) (23)

n=-1

and the equation (22} can be extended for the tilde fields as:

—
dy - J A +JA {24)
~ 2
. Applying d to this equation and using 4° =0 we get
o~ A — b
(d J )A +J (d A) + c.c, =0 {25)

The action of the BRST symmetry on ?f‘ and J can be read off
from Eqs.(24) and (25) . The equation {24) can be fulfilled
whether one imposes the condirion for vanlshing of the curvature

of 3 :
~~ = .
de}A.J)L_-o. (26)
Witﬂ‘the-gauge-choice (Zlf‘éq: (56) yields

J = J(z4t ,z ) (27a)

and

9 9&;--./
2 .2y T=T @ a . 27b
(- n @, Az (27b)

For t=0 eq. {(27b) coincides with eq. (13) i.e. we can identify
J with ) snd ¢ with Z + Z .
- —
With J and A, it 13 quite easy to construct a BREST inva-

riant action as the real two-fora

KL=(JA)(TX) (280
Ope can indeed verify that

~N
1L =0
~J
which proves that the ghost zero part ofJf is a BRST-invariant
tvo-form. Now whether we take into consideration eq. (22) the
c¢lassical Lagrangian,obtained from (28) for t=0 has the usual

form:

4 s -
k) -37;-}1( Qf?-/u?y) (2 F-/ufgp) 29
In fact, in the gauge ve have considered, t occurs only
through z+t and after integration, the action does not depend on
it. Therefore, the Virasoro gauge theory reduces rather naturally
to the two dimensional conformal field theory,

2.3. VIRASORO COVARIANT ANOMALIES, THE WESS-ZUMINO ACTION

In this formulation of the Virasoro gauge field theory
the general forms of the consistent and covariant anomalies
can be determined rather straightforwardly. Besides, the
Wess-Zumino action has a simple form and-can be calculated very
easily. As it is well known, in the BRST formalism, an anocmaly
for the ¥irasoro aslgebra ia a two-form with ghost number one,
A covariant anomaly is an anomely which has a covariant form and

therefore it is well defined on the whole Riemann surface.

10
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Thus ,in order to find an anomaly.onﬁvpust look for a general
(i.e.including the ghosts) three form A,_,‘ satisfying dA3-0.A
solution of this equation was proposed by Baulieu,Bellon and

Grimm/11l/and it has the form

nJ s a2
ALr%
J=A A A (30)
where a dot means the derivative with respect to t.Ia the

~
gauge (21) 133 has its ghost one part given by

A e ./u)--gcgz/u dzAd% (31)
for t=0,which is the diffeomorphism anomaly obtained in a
factorized form /2,3/.

The form of JQ is not well defined on the whole Riemann
surface since it does not have an covariant form under a
conformal charge of coordinate zf~)z'(z).

To obtain the covariant form of the anomaly, we might
follow the algebraic approach proposed by Abud, Ader ,Gieres and
Noirot /14, 15/ . However, we have found rather difficult the im-
plementation of these ideas for the Virasoro algebra. So , at
this point we will just follow the general prescription for the
covariantisation on a generi Riemann surface. In fact, the ano-

maly (31) is equivalent to

c/%-cgiu_ dz 4 dz (31"

and it involves the third order differential operator93. This
expression is not well defined on a generic Riemann surface since

the integrand does not transform with the Jacobian upon passage

11
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from one coordinate chart to another. In fact the modified expre-

ssion

"~
d‘],-c[93+(R9+9R)]/a— (32)

with R, a projective connection, given by

R-gzlnA-g(anA)z , (33)
transforms with the the Jacobian and represents the covariant
anomaly. We believe that this form of the anomaly can beobtained

by using the general algebraic methods for the covariant anomaly.

Since the Virasoro algebra is c¢losed connected to the
general coordinate transformations , which define a non-commutatie
ve group, the conatruction of the associated Wess- Zumino action
Tepresents a serious problem, However,for the factorized anomaly,
the p;gblem is simpler. This factorized anomaly could be obtained
from 03 by using the standard procedure /17/. In fact we have to
k111" the anomalyﬁ.by enlarging the space of fields. We shall
1ift the whole construction from the Riemann surface M to M X
[.0,1] by considering a family of Beltrami differentials/uu
such thsat /CO-O and/al-/u, and a family of the "Goldatone field"
Cfu which takes its values in the group of diffeomorphisms and
(’00- identity and (fl -?ﬂ. The field Tand the differential are
replaced in this case by

v e ~
A=A +adu; d e " 4 + du .

to
The function a is determined from Eq.(9) written in terms of
the new fields anddifferentials. The Wess- Zumino action for the
Virasoro algebra (30) is the ghost zero part of the thre-form
AS (X\P) with K‘P“rthe field obtained from r by the action of the
diffeomorphism 4.(. If we integrate out the auxiliary variable u,

one finds the following form of The Wess-Zuminc action:



,f-jdzl\ '3 5,.;."’321:1%"9 -/(len )

which takes the

r

form given by Polyakov /18/
X~ Lazn dE/ngln/\

if)ﬁis restricted by the condit101/¢¥10
It is

(34)

worth pointing out that the form (34) of the WZ
y
can be written with the one-form A apd so called "half Liou~

ville field" L /13/ .The field L is a matter field 'which has
the first term in the ¢ expansion just ln)\ R with).define in(13)

and which fulfils the equation
dl + 43 L- Dt A =0

With this definition we can find out, by a simple inspec-

tion , that the two-form
~
L=--La7%2 , (35)
~ o~
satisfies the equation di-ﬁg i.e. its zero

action for the Virasoro algebra.In fact

ghost part is the W2

» It is easy to see
that that the ghost number zero ofJi colncides with (34),."

3. W-INFINITY ALGEBRA

3.1, The fields

The "1+4n algebra is an extension of the VYirasoro algebra
on the one hand , and a limiting case of the W-infinity algebra,

on the other hand /18/ ., It caa be written in the following

simple form:

i h - i+]
[ L7 WLy” 1= [ (44D)m - (341)a] L (36)
This algebra admits an algebraic interpretetion, as
the algebra of smooth symplectic , area -preserving , diffeomor-
phisms of a cylinder. This can be easily be seen considering

a set of functions/19/ :

13

“ﬁ£ﬁ+i oI% ’R+1
on a cylinder Slxﬂ!. with Osxe2¥ , -% < 3 « + = , These functi-

ons form a complete set 1f ~oo¢m ¢+ oo and 12-1 .The symplectic

structure 1s generated by the Poisson bracket

{e o) 22 22

Magl aé &D Pr (37)
and the area preserving transformations are generated bnyﬂs {A‘xﬂ]
9#-1,2) wherelﬂis an arbitrary function ., One can see that the

basis gum!} satisfies the wl*&algebra:

i J} - - 143
{um e [ (i+l)m ~(j+1)n ) Uen (38)
The ghost sector of the BRST symmetry for this algebra
can be constructed in a similar manner with the Yirasoro case,

Here we shall use the hasis

LI R

i

instead of U~ and we define the ghost

o
n+l i+l n~i

c= Z‘ t [ €y
' i u,«.:-r i
with € the ghost associated to the generater Ln .
The Virasoro case (8) can be extended for the w—infinity
algebra in a straightforwvard way. The BRST symmetry of the ghosts

has now the form

4
sc + z {c . s]l.u =0, (39)
This equation can be extendedto include the gauge fields

associated to the generators Ln1 . We can assemble all these

fields into a power series

—y
A
n+l 1+l n-1i
AO - Z T u Ai
. i u‘t'-‘-t‘ 1 h
where An 1s a one-form attached to the generator Ln s which con-

tains the gauge fields. Moreover, for the complete one-form




P o

A -A0 + C .
it has been proposed /11/ the equation
A ot 4 o~ A
dA+-{A.Aj =0, (40)
2 t,u
~
where 4 =4 +s . This equation contains eq.(39) for the ghost
number two.
As in the Virasoro case, we can chose a special gauge
-1
and identify the physical gauge fields. If one identifies Ao as
the Beltrami differential, then the equation (40), which is equi-

valent to the BRST symmetry for w-infinity algebra, has the so-

lution/11/ :

oo
'X =ydz +2z u£+1 ( Al(z+t) dz + C]Fz+t) ) (41)
where Al_igziae complex gauge field, coupled to the gpin-(1+2)

conserved current in the w-gravity, and €g is the corresponding

ghost. The BRST transformations for these fields can be obtained

from eq. (40) and are given by
g =1

— .
sh, = 2 Ej + 1) Ay ey g ° (2 -3+ 1)cy q aAjl
=0
2 + 1
SCE = E (j + 1) Cj ac’.'j
i=0 *

3.2 Action for W-gravity,

There are a relative small number of realisations fer
w-infinity algebra by gauging it, in comparison to the more known
¢lasses realisations of Virasoro algebra, despite the kindship
between the two. Gauging this algebra we obtain W-gravity. As in
the Virasoro case, & BRST -invariant action cannot be construc-
ted only with the field :’. However, the auxiliary fields J

and } and the scalar field?’are introduced here in a different

manner. For w-gravity ,we replace eq. (22) by

L T T e LAl

~ Land _n:..—
d? =A(J)+Aa(J) (43)

where

o

~

A‘( J) = 1?u-j,t,z,f ) =Jdz + %;;1 (dz"AR +cx)J1‘1 .

From this equation we can obtain the BRST transformations of
? and J and ,furthermore, the relation between these fields

since this equation is equivalent to the following ones:

o . .
°f- g—-l (o¥ ) gl ) (44)
o
J -D?ﬂ— -, hy T
T -3 = 2
3 -9?0- y I Tt (45)

The BRST transformations of the aurxiliary fields J and T;

and the compatibility of eqs.(45) can be obtained from egq. {(43)

™)

A 2
by using the nilpotence of d i,e, d =0, In this way we obtain

~ ~
a4J -QA( J ) and c.c.

and
71 = f:l [a1) alJ'QH%i) Ay

It 1s worth while to point out that eqs.(45) could be
considered the equation of motion for the auriliary fields J and

-

J, given by the action

i’.--i(%ﬂ)(aﬁm ] +(5(m 3 +(2)T -

P 1 2 = = fe (46)
fa-1 {—%( AlJ +31J ) .

which describes the coupling of the gauge fields Al to the spin-
{((1+2) conserved current (9t‘0)1+2

16 -



3.3,W~anomaly

The Lagrangian (46) can be extended to describe ¥ As for the Yirasoro algebra, we shall find , by ifnsvection
gravity /22/ . If one replaces 1ni the scalar field fand the a ’é’-closed form , which depends on Al and ey - It is easy to
auxiliary fields J and J with a set of scalar fields thar take verify - that the loocking for three-form can be chosen in this case
their values in the Lie algebra of SU(N), then ,although the fl as f11/ :
entire w-algebra is realised as a syametry, it is really oniy the : : ~ A

- AS = A i}h (49)

gauge fields Al , £ eN-1 that play an essential role . The rest
[ The closeness of £§3 can be verified by using eq.(40)
of the gauge fields canbe set to zero by means of additionsl ~
In the gauge (41) the ghost part of £l3 for twu=0 takes the
symmetries of the Lagrangian, that are of the Stueckelberg type.
: simple form
Therefore, in this case the remaining fields give rise to a ! 2 2 -
‘ Az = (A Fc_y -c_(FA_, ) dzpMdE (50)
non-trivial gauging of the U“ algebra.
which is invariant under holomorphic coordinate transformations.
The BRST invariance of Jigiven by {(46) can be checked
However this part of the anomaly is just the first term in a much
by using the BRST transformations of the fields Al.fﬂand J .
more complicated expression obtained by Hull /20./ and K. Li and
Nevertheless, it is desirable to obtain an action which is d-clo-
Pope /21/.
sed and the ghost zero part Justéf. For this we will introduce
A possible solution of this problem seems to be connected

1 w .
2 new one-forag to the definition of trace for the auxiliary variables t and .

Do
t+1 In order to get rid of these variables we must add a “trace"

Z“l (Az 4z +c€ )T-J (47)

which seems to be the "integral” of A(J) . The action which is

PR
J) =~ Jdz +
< in front of the anomaly,which means either putting t=u=0 after do-

ing all differentiations with respect to them, or integration in
d-closed and has the ghost zero part just L has the form

a special way over t and u. If one wants to follow , as close

~ § ~ ~ ~ ~ ag possible , the Yang-Mills case, we shall try to write the
£ =7 AUY AQY - [ MIIBU) +A(DB(I) ] (48)
o~

Indeed ,on the one hand + the ghost 2ero part of X is

ancmely in a w-infinity basis . Since in the YM case the anomaly

4( c ,A ) ig written as:

o
b f [ 33 (1 ~]Z Ay st }a) +Z -—(AtJ +A91£+2 | A e A oTr (e 6D = e 6 Tr(r® 1)
If we take into account the f;igtions (45) .this Lagran- ' it seems natural to try to write our anomaly in the same form. Wieh
gian boils down to (46). On the other hand L is d-closed , fact : a suitable definition of the trace ,ve can suppose that
which can be verified by a direct computation and the use of the : : b i Eij 56
form of dJ. } . - .

Therefore the anomalydﬁzl takes the form

18
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1 - v 2+ 1
AZ E a, (AR. 3 c

1= -1

321 &) dazAaz

2 2
with a, are certain coefficients. This form of the anomaly has tﬁe same

form as the one given by C. Hull 20/ . However the form and the

interpretation of these anomaly structures deserve further study.
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