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Abstract.

VVe analyse the effect of the separatrix shape on stochasticity onset and on diffusion in

the two waves system, and in particular the role of the separatrix angle at the X-point.

Introducing anharmonicity in the expression of the perturbation, we can adjust this angle,

and eventually have it go to zero. We show that, in this latter case, stochasticity appears

much sooner and that the diffusion coefficient is strongly enhanced. Applications to specific

physical problems are discussed.



1. Introduction

A large number of physical problems, among which magnetic turbulence in plasmas

[1], is concerned with the destruction of isolating torii due to the iteration of resonant

perturbations: islands can appear on rational surfaces, and their interaction leads to the

appearance of a stochastic layer in the vicinity of the separatrix [2]. However, isolating

torii can subsist for finite sizes of the islands [3, 4]. The destruction of the last isolating

torus, i.e. the onset oflarge scale stochasticity, has been the subject of many studies, both

analytical and numerical. All these studies concern the interaction of islands represented by

pure harmonic Fourier components. This representation (pendula type motion) yields for

an isolated (unperturbed) component, an island which intrinsically exhibits a finite angle

at the X-point of the separatrix.

However, some magnetic plasma configurations cannot be adequately represented by

such harmonic perturbation expansions. Indeed there ar° situations where the angle at

the X-point of the separatrix might tend to zero: this is the case when a singular current

layer appears in the vicinity of the separatrix. Two specific physical examples can be given:

two-ribbons flare configurations, and the ^ = I island in tokamaks responsible for the so-

called internal disruptions. This geometrical flattening of the separatrix can be intuitively

understood as a squeezing of the island by i.) forced flows of the external plasma in the

case of solar flares ii.) energetically favorable motion of the inner plasma core in he CHM»

of the tokamak problem [5]. Both situations are known to undergo unexplained catastrophic

evolution, namely flares and disruptions. \Ve propose to investigate whether ( l ie flat tuning

of the angle of the separatrix during the island evolution changes the threshold to law
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scale stochasticity. VVe think it is likely that a. wider class of applications does exist for

these results, and we will therefore study the influence of the separatrix shape in a very

general case.

2. Formalism and numerical results

It is well known that magnetic structures are hamiltonian flows. Interaction of two

magnetic islands in a slab plasma is conveniently described by the two waves Hamiltonian

which fundamentally represents the motion of an effective particle in two electrostatic waves

propagating in the same direction with different phase velocities. In the two waves problem,

the two perturbations are harmonic components depending on the pha.se in the form of cos(#)

and cos(0 - a.'/) assuming identical wave numbers. A simple and natural way to control

the angle at the hyperbolic point (i.e. at the X-point of the separatrix) is to introduce

anhaniionicity in the argument of the cosine. It can be shown that in order to fulfil l

this requirement the argument has to be an odd and nonlinear function of the phase. A

convenient form is the following perturbation: cos(0 sin(m0)) where o is the control
Hl

parameter for the angle and m is a positive integer. For a = O we retrieve the classical

hannonir perturbation, while for Q = I, the angle at the X- point of the separatrix goes to

zero. The two waves Hamiltonian then becomes:

„2
-tfU.J/.r) = y-£, COS(0,) -E,COS(0.>) (1 )

with 0i = (.r + :)- —sin( m(.r + ,-)) (2)
m

e-i = ( j - : ) - ^ S i U ( W ( J - : ) ) (:})

where .»• and y are conjugated canonical variables and r plays the role of "time".



The threshold for large scale stochasticity , ie. destruction of the last isolating KAM

torus, of the two waves liamiltonian [6] has been found by numerical [7] and analytical

[S] studios to be given by s > 0.68 where s is, as usual, the sum of the individual islands

half-widths divided by the distance between the two resonant surfaces (fig. l.a).

By numerical integration of the modified Hamiltonian of equation 1, we find that for

»? = 1 and a• = 1, the threshold for large scale stochasticity is below s = 0.60 (see fig. l.b),

while for the same s, with a = O, a large number of isolating KAM torii are still present (fig.

l.c): the effect of anhanuonicity is to lower the stochasticity threshold. This is true also

for m > 1: Figure l.d shows the case with m = 2, a = O, 9 = O.GO: although an isolating

region is still present, the stochastic region is clearly more important than in the harmonic

case (the stochastic theshold for »1 = 2. a = 1. is found to be s « 0.65. The case of the

m = '2 anharmonic perturbation is interesting as analytical results can be obtained.

3. Analytical approach

Let us consider the motion of the anharmonic pendulum at the separatrix. When EI = O,

the motion at the separatrix corresponds to the value HO = 1 of the constant unperturbed

hamiltonian. In this case the oscillations are governed by the equation :

l(^)2 = 1- cos((?--sin(m<9))
2 d: m

= 2sin2(-(0- — s i n ( m # ) ) ) {.{)
2 in

The integration of equation (4) seems to be impossible in a closed analytical form in the

general case. However, for HJ = 2 , with a = 1 . one can obtain an exact inlegralioji for an



approximate expansion of

(5)

(See Figure 2 to compare the two curves representing respectively the exact function

sin(-(0- -sin(20)) and its approximation on the interval {0, ~2ir} ). The integration of the

dti ft B
equation — ~ ±2sin3( r)(l + 2cos2(-)) leads to the solution:

4Sf] + 5 los ( tan(ï» - 072 arctan[v/2 cos(5)] = ±2U - -~o)

where :0 is a constant of integration which is equal to zero if the maximum of — is

obtained for : = Q. Equation (6) gives the "time" s as a function of the angle O. As it

is clear from this expression for 6 — O, z — -oo. while for O — lit, z — +<x due to the

contribution of the first two terms of the left hand side of equation (6). The second term

is fl ie usual logarithm term ( with a coefficient -); the first term has a different behaviour.
tJ

as it lends to infinity as a power law in both directions. This strong modification of the

infinite period of the oscillation at the separatrix when o = 1 might be at the origin of

the lower stochasticity threshold and possibly of the local increase of diffusion, as will be

developped in a forthcoming paper.

4. Further numerical results

This approach yields some insight on the effect on diffusion in the immediate vicinity of

the sépara trix. To obtain a crude estimate of the effect on the global diffusion coefficient, il

is necessary to use numerical integration again. Fig. 3 shows the average diffusion coefficient
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D for n<.j initial conditions, over N periods in the z direction. D is defined here as usual as

[9]:

D is plotted for different values of .s as a function of a.

A very clear increase of D with Q is observed near the stochastic threshold, although

this tendency disappears at high s values. Indeed, for such large amplitude perturbations,

the resulting extended stochastic sea is no longer sensitive to the detailed shape of the

separatrix.

5, Conclusion

The effects of the shape of the separatrix on the stochasticity threshold and on the

associated diffusion coefficient for this chaotic hamiltonian system have been studied both

analytically and numerically. It has been shown that the flattening of the angle at the

X-point of the separatrix has a very significant effect, which consists i.) in the reduction

of the stochasticity threshold by more than 15% . and ii.) in a large increase of the diffu-

sion coefficient. During the evolution of magnetic configurations (preflare structures and

9 = 1 tokamak islands for instance ) , the separatrix can be squeezed by the growth of

the island(s): thus there is an increase of the stochasticity parameter s , while simulta-

neously. the stochastic threshold is lowered. As a consequence, a small evolution yiolds a

dramatic increase in the diffusion coefficient, therefore giving a possible explanation of l i t »»

catastrophic behaviour observed during flares and disruptions.

Although this study has been initiated mainly because problems of catastrophic evolu-

tion of mngnetohydrodynamical equilibria, the very general form of analysis, ie. the two

f>



waves two waves Hamiltoniaiu suggests the possibility of a wider class of applications in

physics.
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Figure captions

Figure 1: Poincaré map computed from equations 1, for 10 trajectories (;r; = O. (/,• € [O, I].
2500 crossings for each initial condition). The figure is in fact symétrie with respect to the
.r-axis. The solid line shows the unperturbed séparâtrix as if there was only one perturbation
around y = — 1.:

a: .s = 0.68,o = O (ie. standard two waves Hamiltonian) .

b: s = 0.6,a= 1, m = 1 .

c: s = 0.6,o = 0, m = 1.
d: s = 0.6,0 = 0, 7n = 2.

Figure 2: The solid line represents the exact function and the dotted line its approximation
( equations 5) on the interval {0.2;r}.

Figure 3: Evolution of the average diffusion coefficient D versus o, for 5 = 0.6, 0.63, 0.65
0.68. for H0, = 10 initial conditions between x = O and x = x/2, y = 0.9, N = 2500.
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