
IGC-124 1991

Analyses of Selected Fast Critical Assemblies Using JENDL-2 Based Unadjusted Multigroup Data

K. Devan V. Gopalakrishnan M.M. Ramanadhan S.M, Lee

IGC-124 .

1991

GOVERNMENT OF INDIA

• •

١

DEPARTMENT OF ATOMIC ENERGY

*

ANALYSES OF SELECTED FAST CRITICAL ASSEMBLIES USING JENDL-2 BASED UNADJUSTED MULTIGROUP DATA

K.Devan, V.Gopalakrishnan, M.M.Ramanadhan and S.M.Lee

Indira Gandhi Centre for Atomic Research Kalpakkan 603 102 Tamil Nadu, India.

ABSTRACT

order to validate the non-adjusted multigroup cross In section set recently prepared by us from the Japanese Evaluated Data Library - Version 2 (JENDL-2), we analysed some of Nuclear the integral parameters of several fast critical benchmark reactor assemblies, by comparing the measured values with those predicted using this cross section set and also by intercomparing the values predicted by various cross section sets. The observations of our analyses are presented in this We report. have chosen the benchmark assemblies such that there is a variety in core size, major fuel component, reflector used etc. One dimensional homogeneous diffusion theory model was used and suitable corrections were added. The assemblies considered were among the ones recommended by the Cross Section Evaluation Working Group (CSEWG), viz. 2PR-3-12, 2PR-3-48, 2PR-3-49, 2PR-3-50, ZPR-3-53, ZPR-3-54, ZPR-3-56B, ZPR-6-7 and ZPR-6-6A.

CONTENTS

I.	INTRODUCTION	1
II.	DESCRIPTION OF CRITICAL ASSEMBLIES	2
III.	CALCULATIONAL DETAILS	2
(a)) Effective Multiplication Factor	
(b)) Alternative Processing of Blanket Cross Sections	
(c)) Bare Core Calculations	
(d)	Central Reaction Rate Ratios	
(e)	Central Reactivity Worths	
(f)	Normalised Worths	
IV.	RESULTS AND DISCUSSIONS	4
(a)	Effective Multiplication Factor	
(b)	Alternative Processing of Blanket Cross Sections	
(c)	Bare Core Calculations	
(d)	Central Reaction Rate Ratios	
(e)	Central Reactivity Worths	
(f)	Normalised Worths	
ν.	CONCLUSIONS	7
	ACKNOWLEDGEMENTS 8	3
	REFERENCES 8	3
	TABLES)

PAGE

- I. Charecteristics of critical assemblies.
- II. Composition of critical assemblies atom densities (atom/barn-cm) and dimensions.
- III. Comparison of calculated values of k-eff of experimental critical assemblies.
- IV. Correction factors applicable to k-eff determined by homogeneous one-dimensional diffusion calculations.
- V. Corrected k-eff with blanket slowing down option change.
- VI. The difference in k-eff's calculated with JENDL-2 and SETR sets.
- VII. (a) Ratio of 238 U fission rate to 227 U fission rate at core centre.
 - (b) Ratio of ²³⁹Pu fission rate to ²³⁵U fission rate at core centre.
 - (c) Ratio of 240 Pu fission rate to 235 U fission rate at core centre.
 - (d) Ratio of ²³⁸U capture rate to ²³⁵U fission rate at core centre.
 - (e) Ratio of ²³⁸U capture rate to ²³⁹Pu fission rate at core centre.
- VIII. (a) Central reactivity worths of 235 U.
 - (b) Central reactivity worths of ²³⁸U.
 - (c) Central reactivity worths of ²³⁹Pu.
 - (d) Central reactivity worths of Fe.
 - (e) Central reactivity worths of Cr.
 - (f) Central reactivity worths of Ni.

- (g) Central reactivity worths of Na.
- IX. (a) Central reactivity worths of 235 U normalised to those of 239 Pu.
 - (b) Central reactivity worths of 238 U normalised to those of 239 Pu.
 - (c) Central reactivity worths of Fe normalised to those of ²³⁹Pu.
 - (d) Central reactivity worths of Cr normalised to those of ²³⁹Pu.
 - (e) Central reactivity worths of Ni normalised to those of ²³⁹_{Pu}
 - (f) Central reactivity worths of Na normalised to those of ²³⁹_{Pu}.
- X. Average absolute deviation of integral parameters for nine assemblies.

ANALYSES OF SELECTED FAST CRITICAL ASSEMBLIES USING

JENDL-2 BASED UNADJUSTED MULTIGROUP DATA

* * * * *
K.Devan, V.Gopalakrishnan, M.M.Ramanadhan and S.M.Lee

I. INTRODUCTION

Most of the LMFBR core physics neutronics calculations, at IGCAR make use of the 1969 version of French adjusted 25 group neutron cross section library¹ called Cadarache (also called SETR) 25 group Version II set. Presently, it is our interest to create our own multigroup non-adjusted cross section set in suitable format for our neutronics codes for performing LMFBR core calculations, in order to study the impact of recent revisions in the basic data. We have created earlier a 25 group neutron cross section library in SETR format for several elements interest to LMFBRs from the ENDF/B-IV (1974) data library. of This multigroup library was found to predict the reactor integral parameters satisfactorily². In 1985, we received the Japanese Evaluated Nuclear Data Library (1980) (JENDL-2) from IAEA and the generation of a 25 group neutron cross section library in the SETR format from JENDL-2 for materials of interest to LMFBRs was completed recently³. Analyses of fast critical benchmark assemblies, using this new multigroup library, was taken up to study how the more recent JENDL-2 data predicts the LMFBR core integral parameters. The integral parameters we considered in this study are effective multiplication factors, central reaction

* Nuclear Data Section, Reactor Physics Division, IGCAR, Kalpakkam.

cate ratios and central reactivity coefficients. The results of our earlier⁴ analyses are also included in this report.

II. DESCRIPTION OF CRITICAL ASSEMBLIES

The Cross Section Evaluation Working Group (CSEWG) has recommended several benchmark fast critical assemblies⁵ in simplified models, for testing the accuracy of prediction of a given integral parameter by using a multigroup set. For this study, we have selected nine assemblies covering a wide range in energy spectrum and core size. The assemblies ZPR-3-49, ZPR-3-50, ZPR-3-53 and ZPR-3-54 are non-CSEWG criticals and their composition and dimensions for the one dimensional models are taken from ref.6. The assemblies ZPR-3-49, ZPR-3-50, ZPR-3- 53, ZPR-3-54 and ZPR-3-56 provide the opportunity for the examination of the effect of variation of a single parameter. The main characteristics of these nine assemblies⁶ are given in Table I. The composition and dimensions for the one dimensional model of these assemblies are given in Table II.

III. CALCULATIONAL DETAILS

One dimensional homogeneous models in spherical geometry as recommended were used for the analyses. The code EFFCROSS⁷ was used to generate temperature and composition dependent mixture cross sections for these assemblies from the multigroup data set³. The one dimensional diffusion - cum - perturbation code $MUDE^{8}$ was used to calculate effective multiplication factor, direct and adjoint fluxes, reactivity changes etc.

III a. Effective Multiplication Factor

The calculated effective multiplication factor for these nine assemblies are given in Table III. The corrections to

k-off (i.e. 1D to 2D, diffusion to transport and heterogeneity (see Table IV)), are already added in these values. A detailed comparison of reported k-eff's obtained with different cross section sets for these assemblies are also given in Table III. It is important to note that the correction factors mentioned above are not derived from the respective cross section sets but are those reported in Ref. 6 and are based on ENDF/B-III.

III.b Alternative Processing of Blanket Cross Sections

Normal EFFCROSS calculation uses a core spectrum shape for reflector slowing down cross section preparation. This is adequate for heavy metal reflectors like 238 U but may not be good for lighter reflectors like Fe or Ni. To improve this, use of 1/E spectrum for the reflector slowing down cross section preparation has been considered as an alternate for such reflectors.

III.c Bare Core Calculations

The bare core calculations were done to investigate how much core and reflector contribute to k-eff and to understand the nature of the differences between different cross section sets.

ITI.d Central Reaction Rate Ratios

We have calculated one dimensional central fission rates for 238 U, 239 Pu and 240 Pu, central capture rates for 238 U relative to 235 U fission rate and central capture rate for 238 U relative to 239 Pu fission rate. We have also compared in Tables VII.a - VII.e the C/E values of the parameters corresponding to JENDL-2 data with those corresponding to SETR and JENDL-1 sets.

III.e. Central Reactivity Worths

The CSEWG benchmark specifications give reactivity coefficients in units of $10^{-5} \Delta k/k/mole$ obtained in this unit by a conversion factor from the measured worth in inhour unit. It should be kept in mind that the reported experimental worth in units of $10^{-5} \triangle k/k/mole$ is dependent on the specific delayed neutron data used for the conversion. Hence, we have preferred to report the experimental worths in inhour unit from the reported experimental worths in $10^{-5} \Delta k/k/mole$ using conversion factors supplied by the original authors and are included in our tables. For conversion of our calculated worths to inhour unit, we have used the same conversion factors. A comparison of worths calculated in units of inhour/kg with the experimental worths in same unit is made with JENDL-2, ENDF/B-IV and SETR sets for the 235 U, 238 U, 239 Pu, Fe, Cr, Ni and Na. A model correction factor 6 is used to convert the one dimensional value to two dimensional value.

III.f Normalised Worths

We have also calculated the central reactivity worths of 235 U, 238 U, Fe. Cr, and Ni normalised to those of 239 Pu with JENDL-2 and SETR sets.

IV. RESULTS AND DISCUSSIONS

IV.a. Effective Multiplication Factor

It can be seen from Table.III that our JENDL-2 data set predicts the k-eff as well as the other data sets. The average absolute deviation in k-eff calculated with JENDL-2 is 0.55% where as with SETR set it is 0.57%. There is a difference of about 0.12% in the absolute deviation in k-eff between our

JENDL-2 multigroup data set with the reported JENDL-2 set¹⁰ and this may be due to differences in the processing and the calculational model. It is noted that except for ZPR-3-54 SETR set overpredicts the k-eff of all the assemblies while other sets both overpredict and underpredict.

IV.b. Alternative Processing of Blanket Cross Sections

Using the blanket slowing down cross sections prepared with 1/E spectrum for assemblies having lighter reflectors, k-eff's are calculated for these assemblies and are given in Table V. This option is found to improve agreement of the JENDL-2 results with the measured values for ZPR-3-54 with Fe reflector and ZPR-3-56B with Ni reflector.

IV.c. Bare Core Calculations

difference in k-eff's calculated with JENDL-2 and SETR The sets for bare core and with reflectors are given in Table VI. It seen that with reflector SETR set predicts k-eff higher than is. JENDL-2 except for ZPR-3-12, ZPR-3-54 and ZPR-6-6A and the difference is less than 750 pcm except for ZPR-3-54 and ZPR-6-6A. Ιt should be noted that the assemblies ZPR3-12 and ZPR6-6A have 235 U cores and ZPR-3-54 is Fe reflected. The assemblies ZPR-3-54 and ZPR-3-53 have identical coves but different reflectors, and remarkably large difference in k-eff is observed for ZPR-3-54. Following important points are observed from the bare core calculations:

i. For ZPR-3-54, about half the difference in k-eff is due to the core and the other half is due to the reflector and the differences act in the direction of making the total difference

larger.

ii. In all the other cases, the difference due to the core and that due to the reflector act in the opposite direction so that the total difference reduces or changes sign.

It should be noted that the SETR set is an adjusted set for oxide fuelled Pu cores with 238 U blanket and this could cause a systematic difference in the contribution to error in k-eff from core and from blanket.

IV.d. Central Reaction Rate Ratios

The central reaction rates in ²³⁸U, ²³⁹Pu, and ²⁴⁰Pu normalised to those of ²³⁵U are given in Tables VII.a to VII.e. The average absolute deviation of C/E values of ²³⁸U fission, ²³⁹Pu fission, ²⁴⁰Pu fission and ²³⁸U capture normalised to those of ²³⁵U fission, calculated with JENDL-2 set, are 7.3, 4.8, 14 and 3.2% whereas SETR set give 7.7, 2.5, 13.4 and 4.6% respectively.

IV.e. Central Reactivity Worths

The central reactivity worths of 235 U, 238 U, 239 Pu, Fe, Cr, Ni and Na are given in Tables VIII.a to VIII.g. In general, the central reactivity worths are found to be overpredicted for these nuclides with all cross section sets. The average absolute deviation of C/E values of 235 U, 238 U and 239 Pu the worths calculated with JENDL-2 is 17.6, 8.5 and 17.3 % whereas SETR set gives 13.5, 7.8 and 15% respectively. For structural materials, the worths are found to overpredict with all sets except for Ni worth calculated with SETR set. The SETR set is found to predict well the Fe, Cr and Ni worths. A large discrepency in the calculated sodium worth is found with all cross section sets.

IV.f. Normalised Worths

The central reactivity worths of 235 U, 238 U, Fe, Cr and Ni normalised to those of 239 Pu calculated with JENDL-2 and SETR sets are given in Tables IX.a to IX.f. For comparing these calculated results , the reported normalised worths with JENDL-1 are also included in these tables. In general, our JENDL-2 set is found to predict well the normalised worths. The average absolute deviation of C/E values of 235 U, 238 U, Fe, Cr and Ni worths normalised to those of 239 Pu, calculated with JENDL-2 set, are 4, 9.4, 9.44, 10.0 and 9.72% and with SETR set give 3.6, 12.03, 12.92, 9.8 and 21.14% respectively. The large discrepency for Ni normalised worth in case of SETR set is worth mentioning. For sodium , a large discrepency is found in the C/E values with all sets.

Table X gives the summary of the results of the analyses carried out for the nine assemblies.

V. CONCLUSIONS

From the analyses of the nine benchmark fast critical assemblies, it is found that our 25 group cross section set derived from the JENDL-2 point data library predicts the effective multiplication factor as well as the adjusted SETR set. However, the central reactivity worths are in general better predicted by the SETR set while the prediction of central reaction rate ratios is found to vary with the nuclide and critical assembly, sometimes the SETR set performing better and sometimes the JENDL-2 set. The normalised reactivity worths are found to be better predicted by the JENDL-2 set than by the SETR

set except for ²³⁵U. Probably, a detailed sensitivity analysis can explain the impact of individual cross section to the integral parameters. It is clear from Table X that our JENDL-2 set is capable of predicting the integral parameters as close as to that predicted by the adjusted SETR set. Hence it is concluded, subject to the few remarks that follow, that the present analysis has enabled a satisfactory validation of the new multigroup set derived from JENDL-2.

1. The first order perturbation model is not sufficient for sodium worth calculations.

2. A large deviation of the normalised worth of Ni with SETR set suggests some problems in the SETR Ni cross sections.

3. Large deviations of k-effs for ZPR-3-54, an iron reflected assembly, and ZPR-3-56B which is predominantly nickel reflected are observed. This may be due to the inadequacy of the reflector cross section preparation by the code EFFCROSS.

ACKNOWLEDGEMENTS

The authors thank Dr. S. Ganesan and Shri. R. Shankar Singh for their constant encouragements and valuable suggestions in the course of this work.

REFERENCES

1. J. Ravier," Sections Efficacies Multigroupes et Jen SETR a 25 groupes. CEN de Cadarache ", Report, PNR/SETR-66-050 (1966).

2. M.M.Ramanadhan and V.Gopalakrishnan," Kalpakkam Multigroup Cross Section Set for Fast Reactor Applications - Status and Performance", IGCAR-77 (1986).

3. V.Gopalakrishnan, M.M.Ramanadhan, K.Devan and S.Ganesan, "Multigroup Constants from JENDL-2", Internal Note (under preparation).

4. K. Devan, V. Gopalakrishnan, M. M. Ramanadhan and S. M. Lee, "Analysis of Selected Fast Critical Assemblies Using JENDL-2 Multigroup Data", Internal Note, RPD/NDS/40 (1990).

5. BNL-19302 (ENDF-202) Cross Section Evaluation Working Group Benchmark Specifications (1983).

6. R.W.Hardie, R.E.Schenter, and R.E.Wilson, "An Analysis of Selected Fast Critical Assemblies Using ENDF/B-IV Neutron Cross Sections", Nucl. Sci. Engg 57, 222 (1975).

7. J. Damiens and J.Ravier," Program SETR 512- Exploitation des Constantes Multigroupes SETR Cadarache", Report DRP/SETR No.67/746 (1967).

8. T.M.John, "MUDE - A One Dimensional Diffusion Theory Code", Internal Note FRG/01100/70 (1970)

9. Report JAERI 1275, "Benchmark Tests of JENDL-1", 1982.

10. Akira Hasegawa, "Benchmark Testings of Evaluated Data Files on Fission Reactors and Shielding Problems", Nuclear Data for Science and Technology (1988 MITO), 445-454.

Table 1

Characteristics of critical assemblies

Assembly	Fissile fuel	Fertile to fissile ratio	Approximate core volume (litres)	Reflector	Comments
ZPR-3-12	U	3.8	100	U-238	C added to soften spectrum
ZPR-3-54	Pu	1.6	190	Fe	Similar to assembly 53, except an Fe reflector
ZPR-3-53	Pu	1.6	220	U-238	Similar to assembly 54, except an U reflector
ZPR-3-50	Γu	4.5	340	U-238	Similar to assembly 49, except an additional C
ZPR-3-48	Pu	4.5	410	U-238	C added to soften spectrum
7.PR-3-49	Pu	4.5	450	U~238	Similar to assembly 48, except Na removed
ZPR-3-56B	Pu	4.6	610	Ni	Predominantly Ni reflector
ZPR-6-7	Pu	6.5	3100	U-238	L/D = 0.9
ZPR-6-6A	U	5.0	4000	U-238	L/D = 0.8

	Z PR-3-12		ZE	ZPR-3-54		ZPR-3-53	
	Core	Reflector	Core	Reflector	Core	Reflector	
U-234	.000046	_		-	-	~	
U-235	.004516	.000089	.000006	-	.000006	,000083	
J-238	.016948	.040026	.002615	-	.002615	.039770	
Pu-239	_		.001669	-	.001669	-	
Pu-240	-	~	.000107	-	.000107	-	
2u-241		-	.000008	-	.000008	-	
Pu-242	-	_	-	-		-	
)		-	-	-	-		
-	.026762	-	.055898	.001587	.055898	.000024	
Na	-		-	-		-	
Al	-	-	.000111	-	.000111	~	
Cr	.001419	.001237	.002081	.001334	.002081	.001311	
Fe	.005704	.004971	.007134	.074805	.007134	.004496	
Ni	.000621	.000541	.000970	.000629	.000970	.000611	
Мо	-	-	.000208	.000512	.000208	-	
Mn	.000059	.000052	-	-	-	-	
Si	.000069	.000060	-	-	-	-	
Radius (cm)	28.76	59.26	35.889	73.232	37.546	74.876	

Composition of critical assemblies atom densities (atom/barn-cm) and dimensions

l'able II

Table II	(continued)
----------	-------------

	ZPR	-3-50	3-50 ZPR-3-48 ZPR-3-49		PR-3-49	
	Core	Reflector	Core I	Reflector	Core	Reflector
U-235	.000016	.000083	.000016	.000083	.000016	.000083
U-238	.007404	.039613	.007405	.030690	.007406	.039556
Pu-239	.001645	-	.001645	-	.001644	-
Pu-240	.000106	-	.000106	-	.000106	-
Pu-241	.000011	-	.000011	-	.000011	-
Pu-242	.0000004	-	.0000004	-	.0000004	-
0	-	-	-	-	-	-
С	.045940	~	.020770	-	.020766	-
Na	-	-	.006231	-	-	-
Al	.000110	-	.000109	-	.000109	-
Cr	.001816	.001161	.002531	.001225	.002508	.001248
Fe	.007300	.004671	.010180	.004925	.010083	.004626
Ni	.000796	.000508	.001119	.000536	.001121	.000611
Мо	.000205	-	.000206	-	.000206	-
Mn	.000076	.000048	.000106	.000051	.000105	-
Si	-	-	.000124	.000060	-	-
Radius (cm)	43.43	83.77	45.245	75.245	47.53	83.96

Composition of critical assemblies atom densities (atom/barn~cm) and dimensions

Table II (continued)

	ZPR	ZPR-3-56B		2PR-6-7		2PR-6-6A	
	Core	Reflector	Core	Blanket	Core	Reflector	
U-235	.000014		.0000126	.0000856	.001153	.0000855	
U-238	.006195	-	.00578036	.0396179	.0058176	.0395508	
Pu-239	.001358	-	.00088672	-	-	-	
Pu-240	.000181		.00011944	-	-	-	
Pu-241	-	-	.0000133		-	-	
Pu-242	-	-	-			-	
0	.015	-	.01398	.000024	.01390	.000023	
C	.00103	-		-	-	-	
Na	.008669	.007879	.009204	-	.0092904	-	
Λ1	-	-	-	-	-	-	
Cr	.0025	.001941	.002709	.001295	.002842	.001247	
Fe	.0137	.007824	.01297	.004637	.013431	.0044669	
Ni	.00109	.042261	.001240	.005635	.00129]	.0005407	
Мо	.000343	-	.0002357	.0000038	-	-	
Mn	.00022	.0003	.000212	.0000998	.000221	.000096	
Radius (cm)	52.72	87.06	88.16	121.97	95.67	129.48	

Composition of critical assemblies atom Densities (atom/barn-cm) and dimensions

Table. III

Comparison of calculated values of k-eff of experimental critical assemblies

		Correct	ed k-eff		
Assembly	JENDL-J	10 JENDL-2	JENDL-2	FRENCH	6 ENDF/B-IV
ZPR3-12	1.0061	1.00630	1.01030	1.00566	1.0055
ZPR3-54	1.0217	0.96373	1.03305	0.99839	0.9620
ZPR3-53	0.9994	0.99585	1.00156	1.00180	0.9955
ZPR3-50	0.9974	1.00025	0.99958	1.00138	0.9948
2PR3-48	1.0005	1.00627	1.00110	1.00688	1.0015
ZPR3-49	1.0001	1.00896	0.99977	1.00726	1.0021
ZPR3-56B	0.9957	0.99622	1.0134 1	1.01640	0.9882
zpr6-7	0.9983	0.99919	0.99884	1.00491	0.9917
ZPR6-6A	1.0139	1.00408	1.01609	1.00159	0.9967
v. of $ k - 1 $	- 0.00373	0.00433	0.0055 3	0.00574	0.00528

* Omitted from the statistical analysis.

Table IV

Correction factors applicable to k-eff determined by homogeneous one-dimensional diffusion calculations (from ref. 6).

Assembly	lD to 2D	Diffusion to Transport(S _g)	Heterogeneity	Total
ZPR3-12	-0.0009	0.0099	* 0.0	0.0090
2PR3-54	-0.0164	0.0144	0.0230	0.0210
ZPR3-53	~0.0150	0.0087	0.0230	0.0167
2PR3-50	-0.0133	0.0056	0.0220	0.0143
ZPR3-48	-0.0009	0.0064	0.0183	0.0238
ZPR3-49	-0.0139	0.0068	0.0158	0.0087
ZPR3-56B	-0.0166	0.0065	0.0102	0.0001
ZPR6-7	-0.0020	0.0016	0.0166	0.0162
2PR6-6A	-0.0013	0.0013	0.0073	0.0073

* The atom densities and/or size were adjusted to account for heterogeneities.

Tab	5 l	e	v

Assembly		JENDL-2	FRENCH	
-	Normal	With l/E Spectrum	Normal	With l/E spectrum
ZPR3-54	1.03305	1.02980	0.99839	0.99680
ZPR3-56B	1.01349	1.00943	1.01640	1.01176

Corrected k-eff with blanket slowing down option change

			* (kJ - kS) in pcm		
Assembly	Fissile Fuel	Reflector Type	With Reflector	Bare Core	
ZPR3-12	U	U-238	+464	+1189	
2PR3-54	Pu	Fe	+3466	+1600	
<u>ZPR3-53</u>	Pu	U-238	-24	+1606	
ZPR3-50	Pu	U-238	-180	+918	
ZPR3-48	Pu	U-238	-578	+658	
ZPR3-49	Pu	U-238	-749	+613	
ZPR3-56B	Pu	Ni	-291	+833	
2PR6-7	Pu	U-238	~ 607	-0.3	
ZPR6-6A	U	U-238	+1450	+2004	

The difference in k-eff's calculated with JENDL-2 and SETR set

Table VI

* kJ = k-eff calculated with JENDL-2 set.

kS = k-eff calculated with SETR set.

Assembly	Experimental		Calculated (C	C/E)
		9 JENDL-1	JENDL-2	FRENCH
ZFR3-12	0.04700	0.9750	1.0103	0.9851
ZPR3-54	0.02540	1.1290	1.0911	1.0724
ZPR3-53	0.02540	1.1460	1.1120	1.0648
ZPR3-50	0.02510	1.1200	1.0869	1.0546
ZPR3-48	0.03260	0.9970	0.9715	0.9335
ZPR3-49	0.03450	1.0380	1.0211	0.9576
ZPR3-56B	0.03080	0.9340	0.8945	0.8605
ZPR6-7	0.02300	0.9110	0.8851	0.8714
ZPR6-6A	0.02450	0.9030	0.9105	0.8915
Average of) (C/E)-1) :	0.0792	0.0733	0.0769

Table VII.a

Assembly	Exportmontal		Calculated (C/E)
APS MIDT À	Experimental	9 JENDL-1	JENDI 2	FRENCH
ZPR3-54	0.92800	0.9300	0.9102	0.9675
ZPR3-53	0.92800	0.9320	0.9128	0.9664
7PR3-50	0.90300	0.9740	0.9662	1.0082
ZPR3-48	u.97600	0.9730	0.9809	0.9912
ZPR3-42	0.98600	U.9840	0.9966	0.9998
ZPR3-56B	1.02800	0.9270	0.9395	0.9386
ZPR6-7	0.95300	0.9460	0.9548	0.9689

Table VII. b

Assembly	Experimental		Calculated (0	С/Е)
лазепоту	Experimental	9 JENDL-1	JENDL-2	FRENCH
ZPR3-54	0.17400	1.1340	1.1024	1.1033
ZPR3-53	0.17400	1.1460	1,1179	1.0962
ZPR3-50	0.15900	1.2620	1.2379	1.2441
ZPR3-48	0.24300	0.9880	0.9808	0.9929
ZPR3-56B	0.28200	0.7930	0.7784	0.7791

Table VII. c

Ratio of	²³⁸ U capture rate to ²	³⁵ U fission rat	te at core centi	re
Assembly	Experimental		Calculated ((C/E)
Assembly	DAPCIIMENTAL	9 JENDL-1	JENDL-2	FRENCH
ZPR3-12	0.12300	0.9840	0.9746	0.9248
ZPR3-48	0.13800	0.9530	0.9351	0.9302
ZPR6-7	0.13600	1.0160	0.9876	0.9974
ZPR6-5A	0.13900	1.0050	0.9765	0.9655
Average	of (C/E)-1 ;	0.0210	0.0316	0.0455

Table VII.d

- 1.7	Eurovinental		Calculated (C/E)
Assembly	Experimental	9 JENDL-1	JENDL-2	FRENCH
ZPR3-48	0.14100	0.9830	0.9559	0.9411
ZPR6-7	0.14300	1.0720	1.0322	1.0272

Table VII.e

Table VIII.a

Central reactivity worths of 235 U

Assembly	Experimental	Experimental Factor	Inhour	Calculated (C/E)		
	Inhour/Kg	1D>2D	Imour	ENDF/B-IV	JENDL-2	Prench
	, j		%∆k/k			
7PR3-12	285.0	0.996	427.6	0.952	0.926	0.894
ZPR3-54	567.0	1.047	968.8	1,552	1.178	1.282
ZPR3-53	526.0	1.045	950.3	1.338	1.303	1.225
ZPR3-5 0	464.0	1.049	930.1	1.169	1.178	1.100
ZPR3-48	334,0	0.994	932.5	1.189	1.236	1.148
ZPR3-49	282.0	1.049	934.4	1.205	1.234	1.]41
ZPR3-56B	295.0	1.063	975.6	1.239	1.123	1.057
ZPR6-7	133.0	1.004	972.5	1.204	1.228	1.136
ZPR6-6A	42.0	1.003	431.9	1.081	1.034	1.020
Aver	agc of)(C/E	:)-1 :		0.2250	0.1764	0.1350

Table	VIII.b	

Central reactivity worths of 238 U

Assembly	Experimental	Factor Inl	Inhour	Calculated (C/E)		
Аззешоту	Inhour/Kg	1D>2D	8∆ k/k	6 ENDF/B-IV	JENDL-2	FRENCH
ZPR3-12	-12.0	0.991	427.6	1.187	0.969	0.901
2PR3-54	-82.0	1.006	968.8	1.019	0.938	0.892
ZPR3.53	-75.1	1.011	950.3	1.019	0.984	0.884
2 PR 3 50	-42.1	1.017	930.1	0.941	0.991	0.916
ZPR3-48	-23.6	0.991	932.5	1.029	1.133	1.050
ZPR3-49	-18.5	1.008	934.4	1.033	1.121	1.041
ZPR3-56B	-18.4	1.018	975.6	1.221	1.221	1.145
ZPR6-7	-10.9	0.397	972.5	1.013	1.061	0.990
ZPR6~6 /.	-3.5	0.998	431.9	1.118	1.113	1.051
Äverag	of $\left (C/E) \right $	-1/ ;		0,0776	0.0852	0.0782

	Experimental	Factor	Proton Inhour		Calculated (C/E)		
Assembly	-		Inhour	6			
	Inhour/Kg 1D>2D %∆k/k	ENDF/B-IV	JENDL-2	FRENCH			
ZPR3-54	<u>7</u> 38.0	1.048	968.8	1.475	1.117	1.240	
ZPR3-53	681.0	1.043	950.3	1.247	1.225	1.173	
ZPR3-50	564.0	1.049	930.1	1.158	1.156	1.116	
ZPR3-48	445.0	0.994	932.5	1.178	1.209	1.156	
7.PR3-49	415.0	1.049	934.4	1.102	1.119	1.066	
ZPR3-56B	372.0	1.064	975.ć	1.290	1.156	1.120	
2PR6-7	158.0	1.004	972.5	1.222	1.231	1.182	

Table VIII.c

Table VIII.d

Central	reactivity	worths	of	Fe
---------	------------	--------	----	----

b bl.,		Deeler		Calculated (C/E)		
Assembly	Experimental	Factor	Inhour	6		
Inhour/Kg	Innour/Kg	1D>2D	8∆k/k	ENDF/B-IV	JENDL-2	FRENCH
ZPR3-12	-11.5	0.990	427.6	1.096	1.035	1.100
ZPR3-53	-4.5	0.969	950.3	2.262	2.305	2.274
ZPR3-50	-13.2	1.018	930.1	1.329	1.361	1.260
ZPR3-48	-12.2	0.992	932.5	1.250	1.243	1.120
ZPR3-49	-14.1	1.024	934.4	1.016	1.010	0.869
ZPR3-56B	-12.3	1.028	975.6	1.038	0.962	0.849
ZPR6-7	-4.3	1.004	972.5	1.207	1.201	1.101
Averag	1			0.1560	0.1480	0.143

* Omitted from the statistical analysis

Table VIII.e

Central	reactivity	worths	of	Cr
---------	------------	--------	----	----

_ ----

Accombly	Funcation to 1	Factor	Dashan Tahaun	Calculated (C/E)		
Assembly	Experimental Innour/Kg	1D>2D	Inhour	6 ENDF/B-IV	JENDL-2	FRENCH
	Throur/kg ID>2D %Δk/k		JENDL-Z	FRENCH		
ZPR3-53	-10.1	0.997	950.3	2.009	1.462	0.726
ZPR3-50	-13.1	1.022	930.1	1.766	1.366	1.191
ZPR3-48	-12.3	0.989	932.5	1.529	1.209	1.081
ZPR3-49	-11.8	1.027	934.4	1.467	1.162	1.067
ZPR3-56B	-12.7	1.030	975.6	1.271	0.929	0.852
ZPR6-7	-4.5	1.004	972.5	1.489	1.167	1.065
Average	of (C/E)-	1 •		0.5885	0.2395	0.1377

Table VIII.f

Central reactivity worths of Ni

Experimental Inhour/Kg	Factor 1D>2D	Inhour	6		
Inhour/Kg	1D>2D				
		%∆k/k	ENDF/B-IV	JENDL-2	FRENCH
-20.0	0.989	427.6	1.083	0.985	0.929
-20.5	0.996	950.3	1.375	1.435	0.654
-21.6	1.020	930.1	1.335	1.357	0.885
-18.2	0.991	932.5	1.391	1.342	0.934
-20.7	1.022	934.4	1.183	1.168	0.829
-16.8	1.028	975.6	1.300	1.200	0.845
-6.5	1.004	972.5	1.284	1.299	0.904
	-20.5 -21.6 -18.2 -20.7 -16.8 -6.5	-20.5 0.996 -21.6 1.020 -18.2 0.991 -20.7 1.022 -16.8 1.028 -6.5 1.004	-20.50.996950.3-21.61.020930.1-18.20.991932.5-20.71.022934.4-16.81.028975.6	-20.50.996950.31.375-21.61.020930.11.335-18.20.991932.51.391-20.71.022934.41.183-16.81.028975.61.300	-20.50.996950.31.3751.435-21.61.020930.11.3351.357-18.20.991932.51.3911.342-20.71.022934.41.1831.168-16.81.028975.61.3001.200

Table VIII.g

Assembly	Experimental	Factor	Inhour	Calc	ulated (C/I	E)
козешоту	Inhour/Kg	1D>2D	* ∆k/k	6 ENDF/B-IV	JENDL-2	FRENCH
ZPR3-48	-6.3	0.988	932.5	2.053	1.988	2.159
ZPR3-56B	-8.9	0.983	975.6	1.905	2.193	2.345
ZPR6-7	-6.8	0.989	972.5	1.128	1.264	1.365
Average	of (C/E)-	-1 :		0.6953	0.8150	0.9563

Central reactivity worths of Na

N			Calculated (C	** C/E)
Assembly	Experimental	9 JENDL-1	JENDL-2	FRENCH
ZPR3-54	0.75500	1.052	1.056	1.036
ZPR3-53	0.75100	1.058	1.062	1.042
ZPR 3 - 50	0.80900	1.020	1.019	0.986
7PR3-48	0.73800	1.030	1.022	0.993
ZPR3-49	0.67500	1.108	1.092	1.060
7PR3-56B	0.77900	0.985	0.973	0.945
2PR 6- 7	0.82700	1.005	0.999	0.962
Average	of (C/E)-1 :	0.0411	0.0400	0.036

Table IX.a

Assembly			Calculated (C	** C/E)
	Experimental -	9 JENDL-1	JENDL-2	FRENCH
ZPR3-54	-0.11060	0.91 <u>0</u>	0.876	0.750
7.PR3-50	-0.07430	0.914	0.885	0.847
ZPR3-48	-0.05280	0.970	0.940	0.910
ZPR3-49	-0.04480	1.059	1.033	1.007
2PR3-56Ъ	-0.04930	1.099	1.103	1.067
ZPR6-7	-0.06860	0.913	0.869	0.845
Average	of (C/E)-1 :	0.0752	0.0943	0.1203

Table IX.b

Table IX.c

		** Calculated (C/E)			
Assembly	Experimental	9 JENDL-1	JENDL-2	FRENCH	
ZPR3-50	-0.00547	1.027	1.215	1.164	
ZPR3-48	-0.00646	0.924	1.022	0.964	
ZPR3-49	-0.00802	0.854	0.916	0.827	
ZPR3-56B	-0.00772	0.766	0.863	0.786	
ZPR6-7	-0.00630	0.869	0.986	0.941	

Central reactivity worths of Fe normalised to those of ²³⁹Pu

Table	IX.d
	11.0

Central reactivity worths of Cr normalised to those of 239 Pu

		** Calculated (C/E)		
Assembly	Experimental	9 JENDL-1	JENDL-2	FRENCH
ZPR3-50	-0.00505	1.208	1.216	1.097
ZPR3-48	-0.00602	1.033	1.005	0.940
ZPR3-49	-0.00625	1.099	1.051	1.014
ZPR3-56B	-0.00745	0.852	0.828	0.784
ZPR6-7	-0.00623	1.002	0.944	0.897
Average	of (C/E)-1 :	0.0980	0.1000	0.0980

		Calculated (C/E)		
Assembly	Experimental	9 JENDL-]	JENDL-2	FRENCH
ZPR3-50	-0.00940	1.179	1.210	0.817
ZPR3~48	-0.01006	1.125	1.112	0.809
ZPR3-49	-0.01283	0.997	1.024	0.763
7PR3-56B	-0.01109	1.013	1.076	0.782
ZPR6-7	-0.01003	0.975	1.064	0.772
Average	of (C/E)-1 :	0.0690	0.0972	0.2114

Table IX.c

Central reactivity worths of Ni normalised to those of ²³⁹Pu

Table IX	•	Ι
----------	---	---

Central reactivity worths of Na normalised to those of ²³⁹Pu

.	** Calculated (C/E)			
Assembly	Experimental	9 JENDL-1	JENDL-2	FRENCH
ZPR3-48	-0.00137	1.510	1.645	1.868
ZPR3-56B	-0.00231	1.732	2.046	2.258
ZPR6-7	-0.00412	0.909	1.048	1.179
Average	of (C/E)-1 :	0.4443	0.5800	0.7683

Parameter	JENDL-2	SETR	ENDF/B-IV
k-eff	0.0055 3	0.00574	0.00528
Central reaction rate normalised to U-235 f	ission :		
U-238 fission	0.0733	0.0769	
Pu-239 fission	0.0484	0.0251	
Pu-240 fission	0.1398	0.1343	
U-238 capture	0.0316	0.0455	
<u>Central materiai wort</u>	<u>:h</u> :		
U-235	0.1764	0.1350	0.2250
U-238	0.0852	0.0782	0.0776
Pu-239	0.1733	0.1504	0.2389
Fe	0,1480	0.1438	0.1560
Cr	0.2395	0.1377	0.5885
Ni	0.2594	0.1456	0.2787
Na	0.8150	0.9563	0.6953

Average absolute deviation (|(C/E)-1|) of integral parameters for nine assemblies

Table X

Table X (contd.)

Average absolute deviation (| (C/E)-1 |) of integral parameters for nine assemblies

Parameter	JENDL-2	SETR	ENDF/B-IV
Worth normalised to those of Pu-239			
U-235	0.0400	0.0360	
U-238	0.0943	0.1203	
Fe	0.0944	0.1292	
Cr	0.1000	0.0980	
N <i>š.</i>	0.0972	0.2114	
Na	0.5800	0.7683	