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ABSTRACT

The mean field in. a globally coupled system of chaotic logistic maps does not obey

the standard rules of statistics, even for systems of very large sizes. This indicates

the existence of intrinsic instabilities in its evolution. Here these instabilities are

related to the very non-smooth behavior of mean values in a single logistic map, as

a function of its parameter. Problems of this kind do not affect a similar system of

coupled tent maps, where good statistical behavior has been found. We also explore

the transition between these two regimes.
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I. INTRODUCTION

In recent times there has been a number of efforts to analyze the interplay be-

tween temporal chaos and space synchronization in globally coupled systems. These

are systems of considerable importance in modeling phenomena as diverse as Joseph-

son junction arrays, multimode lasers, vortex dynamics in fluids and even evolutionary

dynamics, biological information processing and neurodynamics [1]. There is a great

wealth of phenomena in these systems, originating in the presence of two conflicting

trends in their dynamics. On one side, the presence of a common driving factor, com-

ing from some type of average over the system, introduces a partial synchronization

in the evolution of its elements. On the other, the chaotic divergence between the

evolution of any two different elements tends to destroy this coherence. There are,

therefore, two limiting behaviors, one on which a large coupling forces the synchro-

nization of a set of weakly chaotic elements, and another on which strongly chaotic

but weakly coupled systems display incoherent behavior. This last situation is char-

acterized by having exponential divergence of trajectories not only in time —positive

Lyapunov exponents—, but also in space, in the sense that if at any given time two

different elements of the system have very close magnitudes, those magnitudes will

diverge from each other exponentially fast. Notice that for strong coupling it is pos-

sible to have all the elements of the system converging into a single cluster, and at

the same time to have this cluster moving chaotically [2].

In fact, at first sight these weakly coupled systems do not look too different from a

simple lattice of uncoupled identical chaotic elements, with maybe some shifts in their

parameters. A more careful study reveals, however, that there is a detectable and

non-trivial influence of the global coupling, which gives rise to some subtle coherent

effects, spoiling the statistical properties of the system.



[[. GLOBALLY COUPLED LOGISTIC MAPS.

Here we consider some of these coherence effects through the particular example

of a globally coupled lattice of logistic maps, obeying the equations

(i) = (1 - + - £/(*„(»), (1)

where i is the space index and n is the time index. Here f(x) is the familiar logistic

map, f(x) = 1 - ax2, and the mean field h at time n appears in the last term of the

equation above,

1 N

' N (2)

This is a simple prototype of globally coupled chaotic system, and has been ex-

haustively explored in Refs. [2-4]. For large a and small e the system settles in a

"turbulent" regime, where, as mentioned before, all elements x(i) evolve chaotically,

without any obvious mutual synchronization.

In this regime, it is reasonable to expect the mean field to obey general statistical

rules, since it is an average over quasirandom variables. In particular, it was expected

that ft should converge to a fixed value h* as N —» oo, with fluctuations around this

limiting value normally distributed (Central Limit Theorem), and with a dispersion

that decays as 1/i/N (Law of Large Numbers). Surprisingly, it was found that this

simple system failed to fulfill these expectations [3, 4]. This failure has also been

verified in similar models [5], which suggests that this is a generic behavior. In

particular, it was found that the dispersion of the mean field did not go to zero, as

expected, but instead saturated to a fixed positive value for large JV; broad peaks

indicating a quasiperiodic component were found in the Fourier spectrum of the time

sequence for the mean field; and the mutual information on the lattice also saturated

to a nonzero value for large N.

To understand the relevance of these facts, we should notice that, if in efFi-cl tin-

mean field converged to a fixed value, the system would decouple. Each and every

one of its elements would behave like a single logistic map of the form

yn+1 = l-A{a^,h')yl (3)

with A = (l-t)(l-t + th') and y = i / ( l -t + th'), where the value of k' is obtained

self-consistently. In fact, this assumption of convergence of ft to a fixed limit has been

used successfully in the study of a different globally coupled nonlinear system [6]. For

logistic maps, this reduction of the dynamics of the (infinite) lattice to that of a single

map does not happen, which clearly implies that the self-consistency equation for ft"

is unstable around its fixed points.

III. STATIC MEAN FIELD MAPPING

A. Definition

Let us consider ft, for the moment being, not as a dynamical variable but as <i

fixed input in the system, and call it fc;n. Taking the N —» oo limit on a lattice of the

type described by Eq. (1), we can define a system of equations that gives as a final

result a static mean field ftou(, in the following manner

fc~'=jJis,i
(5)

This gives us a function kmt(hin;a,t), which we will call the "static mapping". In

this simplified problem we can check whether or not the self-consistency equation

ôui = fcin bas a solution, and explore its stability. Notice that ftou< is invariant because

of the existence of an invariant distribution for X (and therefore for f(x)) [7], when

the maps are in the chaotic regime. For cases where the maps are in some periodic



regime (and even when they are in chaotic motion inside some periodic window, as

in parts of the 3-witidow), the existence of an invariant distribution depends on the

distribution of initial conditions. We will assume that in these cases all different

phases of the relevant cycle are equally represented, so that an invariant distribution

can be achieved.

It should be clear that this static mapping is not equivalent to the actual evolution

of the mean field, hn = M ^ n - i , K-7, ••• \a,t), also defined in the N -» oo limit. This

"dynamic mapping" depends in principle on all previous values of k —although this

dependence is negligible for very old h (i.e., for hn-m when m > 1)—, and has

therefore a much richer behavior. What is important for us here is that they have

the same fixed points. On the stability of these fixed points we propose the following

hypothesis: the dynamic mapping hn = hn(hn-u kn-2, • • •) cannot be stable around its

fixed point h; — k", t = n, n — 1 , . . . , if the static mapping is not. Basically, we are

assuming that if the process is unstable even in the very simplified form given by the

static mapping, the complexities introduced by the dependence on all previous values

of k cannot make its stability but worse. The numerical results verify this statement,

as we will see next.

B. Numerical results

We have evaluated numerically the static mapping in the range of hin that contains

the fixed points houl = h^ for the parameters a = 1.99 and t = 0.1. The results are

shown in Fig. 1. Although this is an extremely non-smooth function, it has to be

continuous, since for the different types of bifurcations present in the logistic map the

average value of x changes continuously (SJ. The fixed points in this graph give k" ss

0.311, not too different from the actual average of the mean field (< h >ss 0.3063),

but different enough to imply that < k > does not fall on a fixed point. It is clear

from the graph that none of these fixed points can be stable, since the absolute slopes

lA/i^j/AAjnl obtained numerically are much larger than one almost everywhere. We

should keep in mind that only 300 points have been calculated to get this figure, and

therefore these slopes are defined only in a coarse-grained sense. In fact, the function

hovt(hin) has well defined derivatives only inside its periodic windows. Therefore,

even though this function cannot reveal all the complexity of the actual mapping

hn = hn(hn^i, An-2,- • -)i >ts non-smooth behavior is indicative of why hn does not

converge to an invariant value as N —» oo.

The presence of the "well" visible in Fig. 1, and of which an enlarged view is given

in Fig. 2, deserves some comment. The bottom of the wetl corresponds to a periodic

14-window, that, as is common in the logistic map, begins in a tangent bifurcation

and ends in an internal crisis. The infinite slope at the left end of the periodic window

is due to the fact that at both sides of a tangent bifurcation in the logistic map the

average value of x changes a s < x > — < i > c ~ | a — ac\'t
2, where ac is the critical

parameter for the bifurcation. This is also true on the one-band side of an internal

crisis [9], where the probability density spreads from the several bands at one side

into the one on the other, also as \a — ac\
1^2. This explains the infinite slope at the

right end. These two facts, together with the continuity of < x > in period-doubling

bifurcations, sustain our assertion that ftoui(/(,n) is continuous. These "wells" and

their infinite-slope walls should not be isolated instances in the hout vs. k^n graph,

since the periodic windows from where they arise are thought to be dense in the

bifurcation diagram of the logistic map [7,10]. This is what makes impossible for the

map to have a derivative except inside a periodic window.

As pointed out in Ref. [4], all these peculiar phenomena disappears if we change

/(x) in the set of equations (1) to a tent map, f(x) = 1 — a\x\. For this system, the

mean field hn seems to converge to a limit, with fluctuations that decay as \/\fN,

T T
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as expected. A look to the bifurcation diagram for the tent map shows a complete

absence of periodic windows, tangent bifurcations or internal crisis, and suggests a

smooth behavior of < i > as a function of a, which of course would imply a smooth

behavior in ftou,(ftm). This has been verified numerically, for a = 1.99 and t = 0.1.

The results are shown in Fig. 3. The curve houl vs. kin obtained here is extremely

smooth —within our levels of error—, and has a very small slope. The fixed point

is hout = h%n = 0.1787, in perfect agreement with the calculated value of < k >.

Therefore, the simplified static mapping does not suggest instabilities in the more

complex dynamic mapping.

In summary, the strong instability of the static mapping /iou((Am) is a good indi-

cator of the lack of convergence of the mean field A to a fixed value as N grows. The

convergence of ft towards such a limit in the system with tent maps is accompanied

by a smooth and almost flat ha<il(hin). However, we should not forget that this is

only a static construction, and cannot represent the full dynamics of the problem.

As a matter of fact, the plot of hn+l vs. ft,,, obtained for a value of N such that the

fluctuations have reached their saturation level, shows a very different behavior, as

can be seen in Fig. 4. So we have to keep in mind that the static function tells us

about the impossibility of achieving a fixed value for h in the N —> oo limit, but it

does not say anything about the actual evolution of this quantity.

IV. INTERMEDIATE CASE£: MIXING TENT AND LOGISTIC MAPS

Given the fact that nonstatistical behavior is present in logistic but not in tent

maps, it is natural to ask what happens for intermediate situations. For this we

have considered a "logistic+tent" map that interpolates between quadratic and linear

behavior. It is given by

It has as limits the tent map, when a = 0, and the logistic map, when a = 1. There

are, of course, many other ways of interpolating between these two limits, a simple

one being the power map /„(*) = 1 - a\x\\ with 1 < -, < 2. For concreteness, we

will consider here only the function given in Eq. (6).

We have explored numerically the behavior of coupled lattices of these maps.

The results for the MSD of the mean field for a close to 1 show clear non-statistical

behavior, which seems to disappear monotonically with decreasing a. (See Fig. 5).

A very interesting feature here is the slight but consistent recovery of the values of

the MSD for values of a less than one, up to the value of saturation of the MSD. A

similar phenomenon was found in Ref. [4], in a coupled lattice of logistic maps subject

to the influence of static parametric fluctuations.

A much stronger evidence of coherence is found in the power spectrum of the

mean field. As mentioned before, one of the signals of nonstatistical behavior in

these systems is the appearance of broad peaks in the power spectrum, indicating a

quasi-periodic component in the evolution of the system. As can be seen in Fig. 6,

this quasi-periodicity is strongly accentuated in the case of maps with a small tent

component (1 — a =s 0.1). The quasiperiodic behavior is strong enough as to be visible

in the fcn+i vs. hn plot, as shown in Fig. 7. Obviously, as we make a even smaller

this trend reverses and the power spectrum becomes almost fiat.

This increase in the quasi-periodicity of the mean field has been encounte-ed

in other two cases: in the presence of a very small additive noise [1L], and when the

mean field is not global but includes only the N/2 nearest neighbors [12]. These three

cases are similar in that all of them point to a connection between small smoothly

distributed noise and an increase in quasi-periodicity. In our case, we could roughly

consider the tent part of our map as a perturbation over the logistic part (for a close

to 1), since one part is added to the other to obtain the total mapping. Obviously,



this is a highly correlated perturbation; however, taking into account that the tent

map has a behavior closer to white noise (its invariant distributions for alpha < 2.0

are almost flat) than that of the logistic map, the connection between these two

processes is at least plausible. Notice that here we cannot invoke the influence of

some periodic window for this increase in quasi-periodicity, first because periodic

windows are almost non-existent in the bifurcation diagram of f,,{x) for a = 0.9,

and second because this would make difficult to explain why the total strength of the

signal decreases, i.e., why the MSD goes down as we decrease a. A similar argument

can be made for the semi-globally coupled map, in the sense that the influence of the

elements of the lattice that are not directly affected by the —now local— mean field

can be roughly considered as a smoothly distributed small noise.

Finally, we have also checked, for these mixed maps, the behavior of the static

mapping hovt(h,n). Result for a = 0.9 can be seen in Fig. 9. Since the mixed map has

negative Schwarzian derivative except at i = 0, where derivatives are not denned, we

expect to find only one attractor, and therefore a well defined < i > , independent of

the initial value XQ- The behavior of the static mapping seems smooth and already (for

this value of a) close to that of the tent map. Within our error levels, the curve still

shows some structure. A careful look at the bifurcation diagram of this map shows

that almost all the periodic windows have disappeared —this is due to the tent-

like behavior of the map at its critical point—, thus eliminating the multiple points

of infinite slope in the ftou( vs. h,n 'graph. The coarse-grained slopes |Aftou,/AAin|

obtained here are much smaller than one.

Therefore, the results for this case indicate that the stability of the static mapping

(at least in the coarse grained sense we have considered) is not sufficient to insure

stability of the actual dynamics. Our numerical results are of course insufficient to

describe the behavior of the actual derivative dhoui/dhin (or, equivalently, d < x > /da)

in these maps, and may still allow for differentiability in the tent map and non-

differentiability in the mixed cases.

V. CONCLUSIONS

The behavior of the mean field in globally coupled chaotic systems contains a

number of surprises. The non-statistical behavior of this quantity indicates the exis-

tence of an intrinsic instability in the evolution of the system, when we consider its

infinite size limit. Here we have explored the relationship between this instability and

the corresponding problem in a simplified mapping for the mean field, which assumes

that the dynamics depends only in the last value of this quantity. This is a very

crude approximation, since it assumes an infinitely fast relaxation of the probability

densities of the process, but it still gives information about its fixed points and some

idea about their stability.

The numerical results obtained here indicate that the stability of this static map-

ping may be a necessary but not sufficient condition for the stability of the actual

dynamics, i.e., for a normal statistical behavior of the mean field on the system. This

results should be taken only as a first step in the study of the behavior of this kind

of problems. In principle, a complete program should be carried out through the

analysis of the stability of the eigenmodes of the Perron-Frobenious equation of the

system, a point that has been mentioned in Ref. J4).

Under the influence of the previously mentioned instabilities, the mean field devel-

ops a dynamics that is weakly quasi-periodic. This is already unexpected, and gives

rise to some as yet unresolved questions, as, for instance, what is the mechanism

that selects the dominant frequencies. Even more remarkable is the fact that several

mechanisms have been already been found to strongly increase this quasi-periodicity,

and none of them can be considered a form of periodic driving. On the contrary,
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directly or indirectly ali of them can be assimilated to the addition of a small white

noise. Also, this increase in quasi-periodicity is accompanied by a reduction on the

total strength of the signal,

Finally, we want to mention that there has been recent evidence showing that the

phenomena we have explored here also appears in locally coupled systems. Periodic-

ity and quasi-periodicity have been observed in some totalistic cellular automata in

3, 4 and 5 dimensions [13], in medium-range coupled one-dimensional lattice maps

[12, 14], and in locally coupled high-dimensional lattice maps [15]. All this wealth of

evidence says that there should be a common and fairly robust mechanism that ex-

tracts periodic behavior out of coupled chaos. The precise nature of this mechanism

is still unknown.
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FIGURE CAPTIONS

FIG. 1. Static mapping /w(f t m ) from Eq. 1. The line joins 300 points calculated over

equally spaced /i;n values. These points were obtained averaging over 1.5 x 10s iterations,

after a transient of 4000 iterations. The straight line is the diagonal hmt — I'm • The typical

error level is indicated with the error bar in the upper-right corner. Here a = 1.99, i = 0.1

and / ( i ) is the logistic map.

FIG. 2. Enlargement of the "well" visible in Fig. 1. The bottom corresponds to a

periodic 14-window, the left wall is a tangent bifurcation and the right wall is an internal

crisis. The line joins 300 points calculated as averages over 7.5 X 10T iterations, after

a transient of 4000 iterations. The straight line is the diagonal hou, = ft;n. All othe1

parameters are as in Fig. 1. Typical error bars are not significant at the scale of the figure.

FIG. 3. Static mapping hmt(hin) for the tent map. The line joins 300 points calculated

as in Fig. 1. The straight line is the diagonal hout = /*,„, and a typical error bar is given in

the lower-right corner.

FIG. 4. Distributions of the values of the mean field /in+i vs. hn in the dynamic

mapping, where f(x) h the logistic map. These results are for a lattice of size TV = 200000.

Here we have plotted 10000 points, after a transient of 5000 iterations. Other parameters

are as in Fig. 1.

13 14



FIG- 5. Mean Square Deviation for the mean fieid vs. Lattice Size for several values

of a, in the mixed map. For all points we have used a total of 102400 iterations, with a

transient of 5000 iterations. The values of a are: (•) a = 1.0 (logistic); ( • ) a = 0.95; (x)

a = 0.9; (A) a = 0,75; (A) Q = 0.0 (tent). As before, a = 1.99 and f = 0.1.

FIG. 6. Power spectra for the mean field for a = 1 (upper line), a = 0.9 (middle line),

and a = 0.0 (lower line). Here we are averaging over 100 runs of 1024 iterations each, after

a transient of 5000 iterations. The parameters are a = 1.99 and c = 0.1.

FIG. 7. Distributions of the values of the mean field /in+i vs. hn in the dynamic

mapping, where / (x) is the mixed "logistk+tent" map. Here a = 0.9. All other parameters

are as in Fig. 4.

FIG. 8. Distributions of the values of the mean field kn+l vs. hK in the dynamic

mapping. Here f(x) is the logistic map, as in Fig. 4, but we have added an uniformly

distributed noise of amplitude cr = 0.0045. All other parameters are as in Fig. 4.

FIG. 9. Static mapping hO}ll(h,n) for the mixed "logistic+tent" map. The line joins

300 points calculated as in Fig. 1. The straight line is the diagonal hmt = hin, and a typical

error bar is given in the lower-right corner.
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