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ABSTRACT

A relativistic two-particle radial equation describing a particle-antiparticle system with

a Dirac oscillator interaction is written and solved by means of the 1 /N expansion. The emerging

picture of Dirac-oxcillaior mesons seems to be in qualitative agreement with meson phenomenol-

ogy. The spectrum of excitation energies, the strong interaction radii, and the decay widths of

states in our model are calculated and compared with the corresponding experimental magnitudes

for mesons with a pure quark composition and total momentum J = L-
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1. INTRODUCTION

At the present time we expect hadrons to be ihe asymptotic scattering slates of Quantum

Chromodynamics, the field theory of strong interactions. However, we are not able to compute

the S-matrix of QCD. As a consequence, the existing approaches' > obtain hadron properties are

either very qualitative (for example, the 1 /Wc-expansion in QCD [1,2]), or approximate numerical

(lattice calculations [..„ for instance,), or phenomenological QCD-based approaches. The latter

constitute in fact the basis for the current classification of hadron resonances and computation of

static properties of hadrons (see, for example, Ref.[4]).

In the present paper, we study a reiativistic model in which the properties of mesons

may be explicitly computed. The aim is not to describe real mesons, but to gain in the qualitative

understanding of meson properties. In fact, some aspects of the model are very unrealistic: the

interaction is local and not field—mediated, the spin—orbit coupling is excessively strong, and there

is not mixing between mesons with different quark composition.

Our starting point is a relativistically covariant two-particle equation obtained previously

in Refs.[5,6] for (he panicle-antipanicle system with a Dirac-oscillator interaction. The conserved

quantum numbers in the theory are J • the total momentum, and the parity. Besides, there is only

one free parameter in the model: the oscillator frequency, w ( i nits of the quark mass). For

states with parity ( — \)L = ( - V)J the above mentioned equation may be reduced to one radial

Schrodinger-like equation with an eigenvalue-dependent potential |7].

The solutions of this radial equation exhibit many of the properties of real mesons. In-

deed, all states are shown to be resonances, with decay widths that decrease with the increasing of

quark mass, strong interaction radii for light mesons are proportional to the inverse quark mass and

show a very soft dependence on ui, etc.

In this paper only a brief description of the model and the results is given. A more ex-

tended version will be published elsewhere [7],

2. THE MODEL

As mentioned above, our starting point is the radial equpfiin obtained n Ref.[7] for the

quark-antiquark system with a Dirac oscillator interaction. In states with total momentum / = b

this equation takes the form

(1)

The conventions are the following. We use units in which h= m = c = 1, w is the oscillator

frequency, and /j - the relativistic energy (eigenvalue of the mass operator). 5r = — £r — ilk +

^ ^ , and <t> is one of the four components of the wave function of the system.
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The key i.igredients for the derivation of Eq.(l) arc [7]: (i) write free Dirac Hamiltonians

for the particle and the arstiparticle; (ii) introduce a Dirac oscillator interaction according to the

replacement p —< p - twz/?, with a frequency w for the particle and —u for the antiparticle; (iii)

change to the centre of mass frame and use the prescirption of Refs.[8,9] to obtain an explicitly

covariant relativistic equation; and (iv) use straightforward Racah algebra to reduce the obtained

equation to radial equations. As the parity ( - 1 ) ' is a conserved quantity, the sectors with J = L

or J = L ± i may be considered separately. When J = L we obtain Eq.(l), while when ] = L±\

we obtain a coupled pair of second order differential equation which are left for a further analysis.

Eq.(l) may be rewritten in the following Schrodinger-like form (4> = ip/r)

d1 J(J+\) (2)

Let us mention some interesting properties of Eq.(2). In the first place, we shall stress that there are

no bound states. In Fig.l the effective potential that enters Eq.(2) is schematically represented. This

potential supports no bound states. Nevertheless, it is intuitively evident that there are metastablc

states confined to the region T2 < ( i : /2w (the mesons). So, the second interesting property of

Eq.(2) to be stressed is that it predicts strong interaction radii of mesons to be of the order of

f~ ( i n ord'n;>ry units). Using that k « 0 2GeV - fm and giving m inGeV we getI r =

the radius
0 1

(3)

The spectrum of metastable levels in Eq .(2) could be obtained by requiring the wave function

in r ^ -}•£- to be an outcoming wave and looking for solutions in the complex ^i-plane. This

is, however, a complicated procedure. We will make use of a non- perturbative analytical method

consisting in writing formally in D dimensions the Laplacian entering Eq.(2) and using { D+2 7 ) " 1

as an expansion parameter (see, for example, Ref.| 10| and references therein for applications in

non-relafivistic quantum mechanics, and Ref.[ 11 ] and the rited literature for the computation of

energy eigenvalues from the Dirac equation in an external potential). We shall mention that using

this method we get in first approximation a very localized wave function. It means that in fact we

are neglecting the coupling to the disintegration channel and, consequently, we will obtain a real

valued fi. The decay width may be obtained by computing the probability of tunnelling along the

barrier at r < - £ - .

In the present paper, we will use a refined version of this method known as the shifted

1 /W-expansion |12|. We start from the equation

N2 dx2 4(1 -
(4)

which may be taken as an extension of Eq.(2) to D dimensions, which coincides with it at the

physical dimension D = 3 . The notations are as follows. N = D + 2J + a, where the magnitude

will be specified below. No = N mD = 3,v is related to/j as/i = \/NWV,T1 = f^z2 and6(j/)

is defined as

b(u) = -j^= ± —\/JiJ + 1) (5)

The solutions of Eq. (4) may be looked for as a power series in 1/ V. i.e. u = i/0 + i>\/N + ... ,ip =

^o + ifri/i/N^^ + . . . . We briefly quote the results.

In the leading approximation, v^ / 4 is determined as the minimum of a potential

"0 rrr > • f " J ^ o ) 1
— = min [ / ( i ) = mm < — - + — > (6)
4 [4 i J 4( I - i2) J

This leads to trascendental equations for f0 and the position of the minimum, XQ , which may be

solved explicitly. One obtains the following positive solutions for^o at the physical dimension

D = 3 (-/io are also solutions of Eq.(4)),

/ I 7 i
, / l + w JV0 + •S/JU+ 1) . all values of u , J,

U*-' = 1 + J] + u \NO
V I

and

, = - 1 + i / l + w
JU + 1)

The square distance between q and <; in this approximation is given by

or, in ordinary units.

AW

0.2GeV - fm

(7)

(8)

(9)

(10)

(11)
m ) 2

One shall note that r0 defined in Eq.( 11) is obtained from an improperly defined wave function. In

a high energy scattering experiment we expect the whole region r < -£- to be tested by the probe.

So, Eq.(ll) may be tuken as an estimate of the meson diameter only if it is of the same order of

magnitude as " C ° X ~ fm ^ '-e- >f io « 1 -

The parameter o so far has not been determined. It is fixed by the requirement that the

next-to-leading corrections give no contribution to the energy. In other words, Eqs.(7)-{9) are

required to be exact up to corrections of order IJN1.

The next-to-leading corrections to v§ are easily computed by writing x = xo + - V and

considering the small (harmonic) oscillations around the equilibrium distance I Q . I/>O and v\ are

determined from the equation

f d2 1 r
--T+-[

L dy2 2
2 a - 4

4ij X2}
(12)



leading to

where X is the normal frequency.

2a - 4 b(vo)u\
(13)

(14)

If we require v\ - 0 , then after some simple algebraic manipulations we are led to the following

equation for a.

2 - u
- 1 = i/0 =

and the energy of the level with n radia! quanta is obtained from one of the

determined from Eq.{15),

(15)

), with a

Once obtained the energy (no), we may estimate the level width in the quasiclassical (in

1 /N) approximation

i - 2 n / " ,
•/in

F " = m e x p (16)

where [ / ( i ) is the potential defined in Eq.(6). Let us note ihat for Eq.(16) to hold we shall obtain

P < < 1. The integral in Eq.(!6) may be explicitly evaluated out to give

= m c\p — < — ^/yo ~ Wow -• Jvo'n - (17)

We shall discuss below the meaning of the widths of the levels computed from Eq.(4). An alterna-

tive estimation of the width of states with J = 0 may be obtained by computing the transmission

probability of the effective Coulomb carrier at r = ^ = . This has been done in Ref.[13].

3. COMPARISON WITH REAL MESONS

Let us briefly describe the properties of mesons following from Eqs.(7)-(10), (15) and

(17), and compare them with the properties of real mesons.

The first point to notice is that in our model there is no mixing between quarks. A flavour

is defined by a value of the mass, m, , and of ihe frequency, w,. This may be taken as an approximate

description of 66, cc and light isovecior mesons in states with J = L.

So, we will consider the analogues of these mesons in our model. Let us start with the

6b. There is almost no uncertainty in the value of mass one may assign to the b quark. We take

it from Ref.[4], m6 ~ 4.977 GeV. The frequency may be chosen to fit the value of -i physical

magnitude, for example, the energy gap to the first excited state in the subsector wiih J = 0. This

gap is expected to be 0.58 GeV [4]. So, from

AE(n,J) = mi (18)

and particularizing to n = 1, J - 0 , one obtains Wi = 0 062. It means lhat the bb system is

contained in the frequency region w < < 1 (perturbative). In this region, a may be looked for as a

power series in u>. One obtains

, (19)

(20)

and the mass spectrum coincides with the perlurbative result found in Refs.|5,6]

= 2+ - 3+ 2 J + 4 n ± • + 1)1 + O(w2)

Energy differences computed from Eq.(18) and the/i (+) branch of Eq.(20) reproduce qualitatively

the first two expected [4j (and partially observed [ 14]) Regge trajectories in bottonium in the sector

with J - L, i.e. tf,,ise corresponding to n = 0 and n = 1. The splitting of the two levels

Corresponding to a definite / is not, however, given by the differ LC fiU) - /J1 " ' . In our model,

this is a very strong splitting caused by a strong L - S coupling, while in bottonium the splitting

is supposed to be insignificant |4],

The experimental data available for cc mesons in states with J = L are the following.

Three lines with their corresponding widths have been reported (4]: T\C( 2980), V = 10 MeV;

T)C(3950) , F = 8 MeV; Xc\ (3510), T = 1.3 MeV . On the other hand, one can get an idea of

the expected radii of these mesons from the measured strong interaction radius of the J/V', fl? =

0.04 fm2 [15] (the //i/> is not a state with J = L).

In Fig.2, excitation energies computed from Eqs.(7) and (15) are compared to the ob-

served [14] (expected [4]) values for cc states with J = L- The mass mc = 1.628 GeV has

been taken from Ref.[4], whiSe the frequency wc has again been chosen to fit the energy gap in the

subsector with J = 0 (0 61 GeV}. We obtained wc = 0.235.

The radius of the 7/c(2980) computed from Eq.(3) is ^own to be Rlz = 0,21 fm, a

very reasonable value. One shall note that for charmonium (and also for bottonium), io defined in

Eq.(10) is a very small magnitude as compared with the diameter of the region where the meson

lives until it decays, i.e. i 0 < < 1. and thus this value cannot follow from the total cross section

measured in a high energy scattering experiment 115].

The law (17) does not give the experimentally observed widths of cc states, but it leads to

a qualitatively correct dependence on the quark flavour, ra, and J . Indeed, according to Eq.(17) we

obtain that bb levels have smaller widths than cc, and thai to excited cc states correspond smaller

widths than to the ground state 7)d( 2980). The latter is simply a consequence of the fact that for

excited states of the | i ( + ) branch it is harder to tunnel through the barrier at x < 1. This statement,

of course, must be understood as referring to states below the DD threshold.
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The experimental excitation energies of J = L isovector resonances are represented in

Fig.3 [14]. The width of the level in GeV is given whtn available. Missing stales (thin lines) are

taken from Ref.[4|. Dashed lines are the results of our calculations.

In the present case, the uncertainty in the mass of the u quark is very high, and we took it

as a free parameter, together with the frequency LJU , to fit two experimentally observed magnitudes:

the energy gap in the subsector with J = 0 , 1 162 GeV, and the pion radius FU = 0 64 fm. We

estimated lhe radius as half ihe r0 given in Eq.(ll), as this value follows from an io fs 1. One

obtains

mu = 0 242 GeV

w« = 7 48 .

(21)

(22)

As may be seen, light mesons are contained in the highly non-perturbativc region w > > 1. In this

frequency range some n teresting phenomena take place. For example, lhe branches /J'*1 and^ ( * ;

change their relative disposition, i.e. now / j ( ~> is higher in energy than ji1 *'. Something analogous

to this is experimentally observed at least in J = 1 stales, in which J P C = 1*~ states are lower in

energy lhan l + t states j 14|, contrary to what is expected in charmonium: I1"" > 1** [4]. So, in

Fig.3 we drew the /i( ' branch except for the doublet in J - 1, n = (I for which both branches are

represented.

The level widths, calculated from £q.(17), are also given in Fig.3. The agreement is not

good, but some qualitative properties are reproduced, For example, the widths of light mesons

are several orders of magnitude higher than for cc mesons, the widths of excited uu states do not

decrease with increasing J , etc.

Concernins; the radii of light mesons, we shall make an interesting remark. We choose

mu to fit R,, but Eq.(l I) contains more information than a simple number. From Eq.( 11) we obtain

for the radi is
2 _ 0 0 1 / 3 + 2 J Q ,

- 1 fm' (23)

Eq.^23) reproduces qualitatively the knovn properties of strong interaction radii of light mesons

[15], The main contribution to R2^ (i.e. the term ^ y ^ ) is independent of the interaction potential

(of u). In non-relativistic potential models, an analogous term is usually interpreted as a relativistic

smearing of quark coordinates. A soft dependence on w comes from a. We shall stress that Eq.(23)

follows from Eq.(:) in the u > > 1 limit. The latter is a natural definition of the meson radius.

4. SUMMARY AND DISCUSSION

The main result of lhe present paper is the qualitative picture of mesons following from

Eq.(2): mesons are metastable states living in a region of squared radius ^ fcfm2.

We compared the properties of our bb, cc and uu mode! mesons with the properties of real

mesons. To achieve this goal we determined the quark parameter u , as io hi the value of an ob-

servable magnitude, for example the energy gap in the subsector J = 0. This is, of course, a rough

procedure because we are working in a zeroth order approximation, without realistic hyperfine

and other forces. Nevertheless, we obtained reasonable values f"r the radii of the studied mesons.

For light mesons we obtained an expression for the radius, which reproduces what is known about

strong interaction radii of hadrons [15|.

Excitation energies of states with J ~ L were calculated by using mass formulae obtained

by means of the 1 /Tv"-expansion. The agreement with experiment is only qualitative due to the fact

that the forces acting in the model are not realistic. In particular, the splitting of the doublets in

subsectors with J > 0 isexcessive. However, some qualitative properties are correctly reproduced.

For example, the fact thai the branches /i{ *' and ;i( -1 change their relative disposition as we go from

u < < I (heavy quarkonia) to w > > 1 (light mfsoiii) seems to have its analogue in the spectra of

real mesons.

We estimated the level width by computing the quasiclassical (in \/N) transmission

probability of ihe barrier at x = 1. This leads to qualitative ..-orreci predictions, for example

that heavy mesons have smaller widths (according to the law 1 R; mexp - - , where w decreases

as m is increased). But the values we obtain for F are far frum the real ones. This is due to the

major role played by the vacuum in ihe decay of a meson, which is not taken into account in the

two-particle equation (2). In particular, we obtain an instable -n meson {against to its disintegration

into u and u), while in reality the IT is stabilized because of the l.ick of final states for its decay to

proceed.

We see that further developments of the present work may go along two directions. The

first is to carry out the 2eroih-order analysis for J = L+ 1 states, and the second to include realistic

forces. Bolh seem to be very promising.
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FIGURE CAPTIONS

Fig.l Effective potential entering Eq.(2). The Coulomb-like barrier at r = - £ - is transparent.

It means that this potential supports only metastable states i,the mesons).

Fig.2 Excitation energies of cc mesons. The bold Sines are experimentally observed levels, thin

lines correspond to calculations by Godfrey and Isgur [•*',, while our model levels (the

/i ( + ) branch) are represented by dashed lines.

Fig.3 The same as Fig.2 for uu mesons, but in this case dashed lines represent levels calculated

from the / /"* branch, except that the two terms of the n = 0, J ~ 1 doublet are drawn.

Level widths are a!so indicated when available (in GeV).

10

T



Ueff.

Vim7

AE (GeV)

1

0,5

3 J

F i g . l

Fig.2

11
12



AE (GeV)

1,2 x 1(H

0,65
034

0,25

1,5

= o,2 - 0,6 0,35 - o.s

0,15 1.2x10-2

1,5 x 10-2

0,5 9,8 x I O - 3

= 5,4 x 10-

Fig.3

13




