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I Introduction

In our previous papers gyroinvariant drift velocities have been obtained for non-uniform
magnetic fields '• . A general treatment is presented here for non-uniform and variable
electro-magnetic fields. As in the mentioned papers we Introduce complex variables and
non analytical functions, combined with sucessive integration by parts. There is no need to
use non-canonical variables in Hamlltonian or Lagragian treatments3'4-5. Some preliminary
ideas of this work were presented some time a g o * 7 . Here we define suitable quasiperiodic
functions T(t) and a continuous averaging procedure in order to obtain the gyroinvariant
drift velocities: Guiding center is defined in a general way, extending our previous
definitions1*2. The guiding center position is found as a function of the instanteneous vector
position to the second order. This allows us to perform the averaging integrations. Our results
for guiding center position are coincident with those of previous authors. In relation to drift
velocities they are coincident in the first order, but there is not way to compare them in the
second order, since our results are gyroinvariant and the previous ones are not.

II. THEORETICAL TREATMENT
In this paper we are considering the non-relativistic motion of a charged particle under
non-uniform and variable magnetic B (r.t) and physical electric field, E p h (r,t)

•4* + -* .,
i ; j | 3 L = E p h + v x B ( r , t ) ; g = m / q ( 2 , )

where q and m are respectively charge and mass particle.
As previous authors have done we are denoting by Eph the physical electric field, which will

be assumed to be of order/. To simplify the ordering in the perturbation analysis we define E,
as in Ref. 5, by Epn=^E

The unitary magnetic field vector b (Tit), perpendicular velocity w, and parallel velocity u
are defined as usual
v = ub + w ; w , b = O <2,2)

A
We choose a reference frame in such a way that the unitary vector b will be parallel to the
z-axis at any time. That can be done if the reference frame rotates with the angular velocity

UU. such that
5?bdji ^ 2

dt dt dt

We introduce complex functions associated with every vector function in such a way that
the real and imaginary parts of the complex function will be respectively equal to the
components of the vector in the directions e1 and £ 2 . In our notation we use the same letter

for the complex function as for the vector but without the circumflex. This will be clearer
looking at the equations that follow.
v? = wx e1 + wy e 2 w = wx + iwv (2,4)

• •>. A A A — / '
V = a s b + dx e-| + dy e 2 ; V = dx + dy l (2,5 ),
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The ̂ .orentz equation is written as v

£(u b + u d£_+ <%£ + f iTx v5i =« *• E + B w* x b

Where ^ / / J , is the relative derivative and d/dt is the absolute derivative.that is,
d /d t=^ /3 +a)x
The projection of Eq. (2.6) in the plane perpendicular and parallel to b can be written using
complex variables as t ^ _ _

w + i _ f i w = E-udJi ; u = E + w ' d b . = E^+l.(wdJl + wdJi) (2,7)
£ dt di * 2 dt dt

where the point and the bar over a letter denote relative time derivative and the complex
conjugate function respectively.

The absolute derivative can also be written in another form which is very convenient for our
treatmen t. ,
fl_« D_ + J_(wV+ v/9) ; £L = ±+ u £_ ( 2 8 \
dt Dt 2 Dt Jt (A

Returning now to Eq. (2.7) for w, that equation can be formally considered as a
non-homogeneous first order differential equation, whose solution is

t t

w=w0 S + S Jo S (E - u D_b_) dt - S Jo S w .V6 dt (2.9)
Dt

as in previous papers we define

S (t) = exp { - - L JQt B [?(I)), t! ] dt, } (2.10)

We also denote by Q (M) the reciprocal of the function B (r,t)«Ref. 1 , Q (?,\) = 1/B(?,t)
The quasi-periodic functions T (+) (t), T^')(t) and T(t) will follow as a result of the
periodicity of exponential function for arguments a multiple of 2 n. Thus its definition is

t t+ T<+)

/ B [r*^),^] dt1 - / B If'Ct-i > . t-i 1 *h =2rc (2.11)

t-T (-) (t) t

2 T (t) = T<-) (t) + T (+) (t) (2.12)

For the particular time t = 0, the preceding functions are denoted by T 0 (+\ To (") and To

Our results for the first and second order drift velocities are

w D C ) = - i Q ( E - u f i t ) - i \^Q\
Dt 2 2

W D ( 2 ) mb2 E I 1 Q 2 ( - ^ - + 2 u - ^ - — lw0 I2 Q ' ' V • b(_3b_+ 2 u
at as 2 at

y j b - f c 2 |wo| 2 u Q \7(Q
Dt 8

243



-4_2|w0| 2 Q2Cb_Vb - 4-2 | w o l 2 < V ( Q QQ. )> ( 2 U )
8 Dt 2 Dt

- f-2 | WQ|2 < Q 2Q_ DJ*_ > - _ 2
 |WQ|

 2 < Q2 Db V b >
2 9s Dt 8 Dt

+<L2 I wo| 2 < Q2 QbV b > - s_2 | w0 |
 2 < u 7 ( Q2 V b )>

4 Dt 8

+ u L 2 | w 0 | 2 < u]f(Q2Yb)> + L 2 | w 0 | 2 <V r [Q< DQ > ]>
4 2 Dt

+ £ 2 < Q(E-u Db) < DQ »

Where the notation < > means

To(+)

< F > - _ 1 _ J Fdt (2.16)
2 T o -To(-)

III. GUIDING CENTRE

As in our paper 1 we consider a fictitious particle whose velocity is just the drift velocity
and to zeroth order of approximation is just the instantaneous vector portion r . The vector
position of that particle is what we called the guiding center position H .

di_=wD (31)

dt
1 • ' •" v* (2.)

x = F1 a + f-| c + gi b (3.3)

Where c is the unitary velocity vector v and a is b x c.

The procedure is an extension of our previous papers 1 <2.The results are:

R * r" w Q a + ~_2 [_M2 a-V^Q2- w DQ2 + 3 u w Q2 a c :Vb
2 2 Dt

- 6 u w Cr c a: Kb] a + ^_f- [ 3 u w Cr a a: / b - u w Cr c c : yb] c

+ A 2 ^ w t f c . Q b . + w 2 Q 2 c c : ^b] b + O (g3) ^
2 Dt
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Using the guiding ctnter position and the average procedure we obtain for second order

drift velocities the following results.

VD * -£u(h(l E i - u fib ) — JUL2 b
Dt 2

+ i . W2 Q ( b"V xb) b-e2 Q2 ( E + a2|7; b)( fa +2ufa)
2 " 2 3t 9S

^-2 U2Q2 fE-c
' D t ' 3s Dt

1 2
 w

 2 Q2 bx[( b x CteJ. 7"bJ + £ 2 w2 u ( t 7 Q 2 )<Vb
Z Dt 4

Z 1
2 w 2 u b x [ ( b xV Q2)- Vb ] + I 2 fifl2 ( E - u

4 2 Dt Dt

t^f- w^ (v Q°), DJb_ b +*i w" DQ*1 (/* b b
6 Dt 2 Dt

_ L f w2 u Q2 (V'b):(Tft b + O (fc
3) (3.6)
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