
• (•) •I HU9Z0S93O 

сообщения 
объединенного 

института 
ядерных 

иссяедоший 
дубна 

Е4-91-500 

W.Lucha1. F.SchSberl 

QUARK-ANTIQUARK BOUND STATES 

1Institut fUr Hochenergiephysik Osterreichische 
Akademie der Wissenschaften A-1050 Wien, Austria 

2Institut fur Theoretische Physik Universitat 
Wien,A-1090 Wien, Austria 



i 

r © Объединенный институт ядерных исследований Дубна, 1991 



1 Introduction 

One of the major outstanding problems in theoretical elementary particle 
physics is the question of the origin of confinement. As long as there is 
no satisfactory solution to this problem which allows us to calculate the 
properties of bound states of coloured constituents from first principles, 
that is—as has been nowadays generally accepted—quantum chromo-
dynamics, one has to rely on somewhat more or less phenomenological 
approaches to bound states. 

In this rather condensed survey we would like to have a quick look 
at some aspects of the treatment of quark-antiquark bound states from 
various points of view. Particular emphasis will be laid on the inter
relationship of nonrelativistic and (at least semi-) relativistic approaches. 

This brief review is organized as follows. In Section 2 we discuss the 
significance of the description of hadrons as bound states of (constituent) 
quarks by nonrelativistic potential models. To this end we derive the 
relativistic generalization of the quantum-mechanical virial theorem and 
use it to clarify the connection between the nonrelativistic and (semi-) 
relativistic treatment of bound states. 

In Section 3 we present a new approach to the fermion-antifermion 
bound-state problem. This approach is based on the construction of an 
effective Hamiltonian which incorporates relativistic kinematics as well as 
an interaction potential, the perturbative part of which is derived from 
the quantum field theory describing the truly fundamental interaction 
between the bound-state constitutents. 

We adopt this effective-Hamiltonian method in Section 4 for the de
scription of hadrons as bound states of constituent quarks. However, we 
do not intend to attempt by the given prescription a satisfactory numer
ical fit of the experimentally observed hadron spectra. Rather, we try to 
check the proposed procedure on a very basic level, namely, by applica
tion to some selected questions, where we can obtain the solution to the 
resulting equation of motion by analytical computation. We shall find 
that our effective-Hamiltonian method is able to reproduce some general 
features of the empirical meson spectrum. 

Finally, in Section 5 we comment on the relationship between the 
effective-Hamiltonian method and the Bcthe-Salpeter formalism. 
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2 Reliability of Nonrelativistic Potential Models 

An amazing circumstance in hadron spectroscopy is the description of 
hadrons as bound states of quarks by nonrelativistic [1,2] and (semi-) 
relativistic [3,4] potential models at an equally good level. The relativistic 
version of the quantum-mechanical virial theorem [5,6] may provide a tool 
to clarify this situation. 

The static inter-quark potential V(r), r = \x\, has to consist of at 
least two parts: At short distances it originates from one-gluon exchange 
(which gives an approximately Coulomb-like contribution), 

UmV(r)~4- , as = ^- , (1) 
г—о 3 г 4гг 

where I is the appropriate colour factor for mesons. At large distances 
it has to provide for confinement, V(r) —> oo for r —> oo. Lattice gauge 
theories indicate that the rise of the potential is approximately linear, 

lim V(r) ~ ar . (2) 

The superposition of these two parts is the fimnel (or Cornell) potential 
[7,8,9] 

V(r) = - ~ + ar . (3) 

This form (Fig. 1) represents the prototype of all realistic "QCD-iuspirod" 
potential models. 

Let us try to get an idea of the order of magnitude of the parameters 
Q S and a entering in the above potential. Our main assumption will be 
that light quarks feel predominantly the linear part of the potential, i.e., 
Vett = ar. 

From the scaring behaviour of the Schrodinger equation one obtains 
for the energy levels of the bound state 1 

Еп=\Т1'е" f o r v = a r ' ( 4 ) 

where ft is the reduced mass of the two-particle system and —e„ arc 
the zeros of the Airy function, et = 2.34,62 = 4 .09, . . . . Thus the mass 

•For a brief introduction to tiie scaled Schrodinger equation sec, for installer, Kt'l. |2|. 
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V(r) ~ г 
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Figure I: Funnel potential 

difference between ground state and first radial excitation is given by 
l I 

M ' - M = ( g ) 5 . ( e 2 - e i ) = 1 . 7 5 ( Q 3 • (5) 

With the constituent quark masses m u = m<< = 0.34 GeV one finds from 
М^цзоо) — -W* aa^ -^л(1700) — Mp for the slope of the linear potential 
a = 0.27 GeV 2. 

Rom the spin-spin interaction entering in the generalized Breit-Fermi 
Hamiltonian one obtains under the above assumption for the mass-
squared difference between corresponding spin-singlet and spin-triplet 
states2 

M 2 - - M 2 - ~ f a . « . (6) 

Flrom Мл — М„г and Af j ^ . — Mj( one gets a , ~ 0.6 for the strong fine 
structure constant at an energy scale corresponding to light hadrons. 

2 For a brief introduction to the Breit-Fermi Hamiltonian see, for instance, Ref. [2]. 

V ( r ) ~ -
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In order to derive the virial theorem [10] we make use of the generator 
£, = e!(lnA)(pSF+i?p) ( 7 ) 

of the dilatations 

DpD~l = \p , DxD'1 = A2 . (8) 
A 

The virial theorem may be phrased in the way that the expectation val
ues of the commutator of D and the Hamiltonian H of the system un
der consideration, taken with respect to normalized energy eigenstatcs 
Н\ф) = Е\ф), (ф\ф) = 1, vanish: 

ЩАЯ]№) = 0 , (9) 

(ф\ОН\ф) = Е{фЩф) = (ф\НО\ф) . (10) 
Let us assume that the Hamiltonian H for a two-particle system шчу 
be split into a kinetic part T and a potential V(a;), H = T + V(.r). 
Nonrelativistically the kinetic term reads 

Г = | - , (И) 

where ц = mim;>/(mi + тг) denotes the reduced mass of the bound-state 
constituents with masses mi and m?, respectively. Under Ihc dilatations 
(8) the nonrelativistic Hamiltonian behaves like 

DHD-l = ^T + V(\:r) . (12) 

With the expansions in powers of In A 

- T 2 ~ l - 2 1 n A (13) 

and 
V(XS) ~ V(S) + (lnA)x • VF(.r) (14) 

we compute the first derivative of (ф\НО\ф) = 0 with respect to In A and 
obtain 

= lim(t/-|[-2T + x • $V(2)]D\t) 

= (0 | [ -2 r + .r-VV(x)]|v-> = O . (15) 
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which is the nonrelativistic virial theorem: 

Wr№) = i<0|f.VV(*)M . 
Relativistically the kinetic term reads 

T=y/p + m? + VP 2 + mi • 
Performing the same steps as above and noticing the expansion 

1 ./^2 P' 

one obtains the relativistic virial theorem [5,6] 

In Л 

{ф\х-Т>\ ШФ) = ( P2 

ijp + m\ \Jp2 + m$ *) 

(16) 

(17) 

(18) 

(19) 

which in the nonrelativistic case reduces, of course, to (16). 
With the help of the relativistic virial theorem (19) we find for the 

relativistic energy eigenvalues 

B = (H) = (.r.VV) + (V-) + ( 7 J ± = f + 7 5 ^ ) . (20) 

For the funnel potential (3), however, r V + V = 2ar. Despite the presence 
of the Coulomb term in the potential it. drops out in the expression for 
the energy! Nonrelativistically, the energy is given by 

E = \(rV'(r)) + {V(r)) . (21) 

In contrast to the relativistic case, due to the factor j in front of ( rV) 
in the above relation, the cancellation of the Coulomb part is incomplete 
in the nonrelativistic version. Consequently, to the extend that the third 
term on the right-hand side of Eq. (20) may be neglected, the expectation 
value of the nonrelativistic Hamiltonian with a purely linear potential 
V = ar is of formal resemblance to the expectation value of the relativistic 
Hamiltonian with the funnel potential (3). The corresponding cigenstates 
are, of course, different. Nevertheless, the above similarity may lead one 
astray to treat, bound states of light constituents uoiirelativistically, by 
employing only a linear potential. 

There are some further, but less rigorous, hints why the description of 
bound states by the nonrelativistic Schrodinger formalism might not be 
complete nonsense. 
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First of all, according to |{0)| < \J(02) valid for any hermitian opera
tor O, the relativistic kinetic energy satisfies (y/p2 + m 2 ) < \/{р2) + in'2. 
From this one finds for the expectation value of Я 

(Я) = 2 (у 7 ? 2 + m 2 ) + (V) < 2^(р 2 ) + m 2 + (V) 

Consequently, the relativistic energy eigenvalue E = (Я) is bounded from 
above by 

The operator on the right-hand side of this inequality is formally of the 
same structure as the nonrelativistic Schrodinger Hamiltonian 

P 2 

ffNR = 2m + '-r- + V N R (24) m 

with, however, an effective mass m = $y/(p2} + rri* and the nonrelativistie 
potential 

VWR= ,. ' 2-y/{p2) + m* + V = 2m-K1 + V . (25) 
/{p 2 ) + m 2 m 

The effective mass m as well as the constant in the potential Vjsjjj depend 
on the average momentum (p 2) and will thus vary from level to level. The 
expectation value of the kinetic energy is related by the nonrelativistie 
virial theorem (16) to (r^V(r)}. The latter is a constant only for the 
exceptional case of a logarithmic potential oc ln(r/»'o) [11]. Only in this 
case (p 2) is independent of the level of excitation. 

Secondly, there exists a certain kind of duality between an ultra-
relativistic Hamiltonian with harmonic-oscillator potential and a non
relativistic Hamiltonian with linear potential [12]: The ultra-relativistic 
Hamiltonian # U R = 2\/p^ + кг 2 is converted into the nonrelativistic 
Hamiltonian Ядоц = p 2 / m + ar by means of the duality transformation 
|p | —t ar/2, r —» 2|p|/o, provided the parameters к, a, and m are related 
by к = a 2 / (4m). The eigenfuuctions in the corresponding wave equations, 
Н\]^ф(х) = Еф{х) and Нц#ф(у) = Еф{у), respectively, are then con
nected by the Fourier transformation ф(х) = fd3y exp(i | i • у) ф(у). 
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3 Relativistic Description of Fermion-Antifermion 
Bound States 

3.1 The Effective Hamiltonian 

Our aim is to describe bound states of a fermion-antifermion pair by 
an effective Hamiltonian [13] which incorporates the relativistically cor
rect kinetic term Hq(p) = y/p* + m'i as well as the complete relativistic 
corrections to the static potential. This potential should, of course, be 
derived from the underlying quantum field theory. In order to do this, we 
take advantage of the fact that in scattering theory the potential acting 
between two particles is nothing else but the Fourier transform of the 
first Born approximation Tf{ to the transition amplitude for the elastic 
scattering of the involved particles [14,2]: 

V{x)~ jSke-^Tfi , (26) 

where k = p — <f denotes the relevant momentum transfer, p and q being 
the relative momenta in initial and final state, respectively. 

The proposed procedure consists therefore of two main steps [13]: 

1. Compute the effective interaction potential V(x) from the underlying 
quantum field theory via the scattering amplitude for elastic two-
particle scattering. 

2. Construct the effective Hamiltonian 

H = H0(p) + H0(-p) + V(£) (27) 

in order to determine the energy eigenvalues and respective state vec
tors of the bound state under consideration from the corresponding 
multi-particle Schrodinger equation. 

The energy in the rest system of the bound state is, of course, nothing else 
but the mass of the composite particle. Obviously, the proposed method 
may be regarded as the relativistic generalization of the description of 
bound states by nonrelativistic potential models. 
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3.2 The Scattering Amplitude 

In order to calculate the scattering amplitude required for the deriva
tion of the effective interaction potential, it is sufficient to consider the 
elastic scattering of the involved fermion-antifermion pair in their center-
of-momentum system: 

/ (p ) + / H 0 — /(9 > + / ( - « ) • ( 2 8 ) 

Expressed in terms of the usual Dirac spinors u(p) and v(p), the gen
eral form of the scattering amplitude corresponding to this process reads 

Г ~ u(q)Г, u(p) Ц-р)Т2 v(-q) К (29) 

where Г,-, i = 1,2, represents some Dirac matrix, Г, = 1,75,7,,, 7,,75, nlw. 
К is the interaction integral kernel, which has to be determined from the 
underlying quantum field theory. The Fourier transform of just this ker
nel yields the static interaction potential. As far as the spin structure of 
the above scattering amplitude is concerned, we shall only be interested 
in vector Г1 ® Г 2 = Ji, © 7'' —corresponding to a (maybe only effective) 
exchange of a vector boson—and scalar Г1 ® Г 2 = 1 © 1 corresponding 
to a (maybe only effective) exchange of a scalar b o s o n , which apprar 
to be the dominant ones for the quark-antiquark interaction originating 
from quantum chromodynamics. (For a very recent review on the phc-
nomenological aspects of the forces acting within bound states of quarks 
see, e.g., Ref. [2].) 

In order to obtain the dependence of the scattering amplitude on the 
momentap and q, we insert an explicit representation of the Dirac- spinor.s. 
for instance, the Dirac representation 

(30) 

where S are the three Pauli matrices, \ is the two-coinponent spinor 
corresponding to a given spin polarization, and we introduced for the 
denominators in Dirac spinors the shorthand notation S = \J]~P + m2+m. 
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Up to an overall normalization factor, the general form of the scattering 
amplitudes is then given for vectorial spin structure by [13,15] 

T v ~ | i + j-g-(p-q-ipxq-a\) 

1 , -. - . -' - - ч + ^ - ( p - d - t p x g - f f j ) 

+ •F-F-[Pt{l-si-ffi) + iP-si)iP-^)] 

-ipx q-3+ - ((f-ffiKp-ffa)] 

+ ^-o-[P- " (1 + ^1 -°'i) 
-i p x q- ff+ - (p- <?i)(q- a-i)\ 

+ с с с о [(У7• q ) 2 - ' ( р <i)(pxq-s+) 
OIO2O3J4 

- (р х 9 • 81)(р x q • 3-i)]| Л',- (31) 

and for scalar spin structure by [13,15] 

Ts ~ - | l - ^ - ( P • 9 - t p x 7 • ffi) 
1 ... - . - - - , 

+ 7 У Б Т [(P- « ) 2 - ' 0 ' ' f / ) ( ) ' x f +̂1 

- (p x a- ffi)(i?xf 8Щ Ks . (32) 

where <r,- is understood to act on particle «', t = 1,2, and <x+ is the sum of 
ff\ and <T2i <?+ = 8\ + ff2. 

In a nonrelativistic expansion of the above scattering amplitudes up 
to order 1/c2 one recovers, of course, the well-known Bi^it Fermi inter
action. 
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3.3 The Massless Case 

The case of massless—and thus ultra-relativistically moving- hound-
state constituents, i.e., 771; = 0, entails a considerable simplification of 
the scattering amplitudes, since under these circumstances the T-matrix 
elements only depend on the unit vectors 

-- P - _ <f , т > ; 
P = 7P ' q = 7¥ ( 3 ) 

as well as on their difference 

k = p-q . (34) 

Explicitly, the scattering amplitudes read for vectorial spin structure [13] 

Tv ~ [(3 + p-q)(l+p-q~ipxqa+) 
— k2 S\ • ff2 + (fc • o\ )(k • ст2) 
- ( p X 9 - ? i ) ( p x f ff2)]A> (35) 

and for scalar spin structure [13] 

- [ - ^ ( Р + 2 jpxf}-ff+) 

- (py.q-3i)(px.q-S2) Ks • (36) 

In contrast to the general case given in Subsection 3.2, this simplified 
form of the scattering amplitudes allows for an analytical treatment of 
the bound states under consideration. Accordingly, for the applications 
of the developed formalism in Section 4, we shall assume the constituents 
to be massless particles. 

3.4 The Variational Method 

In order to get an estimate for the energy eigenvalue E we employ a 
simple variational technique, where we compute the expectation value 
of the Hamiltonan Я with respect to some suitably chosen trial states 
IV'(A)) depending on a variational parameter A, 

Е{\) = (ф(\)\Н\ф{\)) , (37) 
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and minimize the residting expression E(X) with respect to A, 

dE(X) 
dX 

= 0 ~ A m i n . (38) 

The minimum £(Amin) found in this way provides, of course, only an 
upper bound to the proper energy eigenvalue E, 

S<S(Amiu) • (39) 

For reasonable potentials, however, it has been shown that it yields a 
fairly good approximation to the exact energy. 

As our trial functions we shall use Gaussian wave functions, 

Фет(х) ~ r ' exp I — ^ - 1 ytm , 

Фет(р) ~ Pl exp 1 - ^ 2 ) У е т ' 

as well as Hydrogen-like wave functions, 

Ф(т(х) ~ г1 ехр(-л>) У(т , 

(40) 

jf ( 4 1 ) 
V»ftn(p ) ~ (p 2 + A2)<+2 M™ • 

Here, У1т(в, ф) are the spherical harmonics for angular momentum (. and 
projection m. 
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4 Applications 

Let us try to use the formalism developed in the preceding section for the 
description of mesons as bound states of a (constituent) quark-autiquark 
pair. It should be clear from the previous discussion that the form of 
the relevant interaction potential is f ч -1 by the integral kernels Ky, A's, 
which have to be determined from th> underlying theory. 

As is well known, for the strong interaction the potential consists of a 
short-range and a long-range part. 

The short-range part is of perturbative origin—where, since we are 
only interested in the Born approximation, we only have to deal with 
lowest order perturbation theory. In gauge theories this contribution is 
generated by one-gauge-boson exchange and is consequently of vectorial 
spin structure, with corresponding interaction kernel 

""-l^if • ( 4 2 ) 

The parameter к is given, for instance, in quantum electrodynamics from 
one-photon exchange by к = Qj Q/e2, and in quantum chromodynamics 
from one-gluon exchange between colour-singlet states by к = j </*. 

The long-range part is of nouperturbative origin and has to rise to 
infinity for large inter-quark distances r in order to be able to describe 
confinement: УПр(»") —* °o for r —• oo. From lattice gauge theories 
there are hints that this rise is a linear one and that this contribution is 
of scalar spin structure: 

V„p(r) = a r . (43) 

Under the above assumptions the expectation value of the Hamiltonian 
(27) is given by [13] 

щ = / * Р | Й Я 1 2 № . 1 ( £ ) + Я О Д ( - Р ) ] 

- (2тг) 3 jd 3 pd\r{q)Tf^ , (p) 

+ Jd3x\il,(x)\2Vnp(x) . (44) 

In the following we will investigate the question whether or not the 
above model is able to reproduce some simple features of the meson spec
trum. 
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4.1 Singlet-Triplet Mass Differences 

Empirically, the differences of the squared masses of corresponding spin-
singlet and spin-triplet partners which contain at. least one light quark 
(ii.rf, s) are constant. 

Tabjr 1: Differences of the squared masses of spin-singlcl and spin-triplet partners [16] 

Spin triplet Spin singlet MLI -Ml=0[Ge\'2] 

n •R 0.57 
K" К 0.55 
D* D 0.55 
Dt Ds 0.58 
D" В 0.56 

From Table 1 one finds for the average of all pairs of mesons: 

A/ij = l - Л/1Ц oi (0.5C ± 0.01) GeY2 . (45) 
The Fourier transform of/ixi/is the relative orbital angular momentum 

of the two bound-state constituents. Accordingly, all terms which involve 
this expression do not contribute to ground states (with f = 0). 

Consequently, the bound-state energy (44) is given by [13] 

Щ = 2/rf :Vk'Mf/> 

1 
(2тг):14 

Jdppijip) [SVJ - |(47r)2<of

1 -*?.> 

with 
n 2 = /dsi„rfn, i (3 + fi - f})(i + f> <i) • 

(4G) 

(47) 

The spin expectation value (гТ| • ff-2) depends on the total spin S of the 
two-fermion state: 

<<?i • <i-i) = 
—3 for spin singlets. S = 0 
+ 1 for spin triplets. S = 1 

(48) 
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Applying the variational technique of Subsection 3.4 to the above ex
pression for the energy yields for the mass-squared difference we are look
ing for [13] 

M i = 1 - M j = 0 ~ 

32 —-j ка for Gaussian trial functions 
37T J 

1ft 
—г ка for Hydrogen-like trial functions 

• (49) 

These expressions have to be compared with the result [2] obtained in the 
nonrelativistic case on the grounds of the instantaneous-limit approxima
tion to the interaction kernel (42), 

M l = 1 - M b * ^ *» • (50) 

Obviously, all predictions for the mass-squared differences are indepen
dent of the mass of the particles which constitute the bound state. How
ever, in the nonrelativistic case this mass independence follows from the 
neglect of terms of higher order in the inverse masses of the components 
[17] and the assumption that light constituents will be mainly affected 
by the linear part of the potential. In contrast to that, in the ultrarel-
ativistic case this mass independence is enforced by the assumption of 
vanishing masses of the bound-state constituents. Since iu this case there 
is no other dimensional parameter than the slope a of the linear potential, 
any quantity of dimension mass-squared has to lie proportional to this 
slope. 

4.2 Linear Regge Trajectories 

It is a well-known experimental fact that hadrons populate linear Regge 
trajectories, that is, the square of the mass of a state with orbital angular 
momentum I is proportional to I: 

M2(C) = /3 (. + const , (51) 

with the same slope (3 ~ 1.2 GeV2 for all trajectories. This feature of the 
hadron spectrum is nicely illustrated in Fig. 2. 
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[GeV2] 

Figure 2: Lowest-lying experimental Regge trajectories for non-strange mesons [16] 

4.3 Nonrelativistic Approach to Regge Trajectories 

We now ask ourselves whether or not it is possible to find in the framework 
of nonrelativistic potential models a potential which reproduces the linear 
behaviour of Regge trajectories mentioned in the preceding subsection. 
As we will see below, the answer is yes. 
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For large angular momenta one may expect that the bound states will 
only feel the confining part of the potential. We thus assume that it is 
justified to ignore the Coulomb part. We start from the scaled Schrodinger 
equation and compute with the help of an approximation procedure the 
eigenvalue e [18,19] (see also Ref. [10]). For the inter-quark potential wc 
assume a power-law behaviour, V[r) = br". In terms of a dimensionless 
radial coordinate p the scaled Schrodinger equation then reads 

{-Ь + рп)ф = е1> (52) 

We now insert the reduced radial wave function ;/(/>) into this equation. 
Defining the effective potential in the scaled radial Sihriidiugcr equation 

W(p] =«+})+, (53) 

we find for the radial wave equation 

v" = i e ^ 1 + P',-e]y = lW(p)-t]<l (54) 

From the first derivative 

W(p) = -2e^+V+np„-i (55) 

we determine the minimum of W, 

W'(pm)=0 , pn 

2£(f + l) 2+n 
(56) 

and approximate W near this minimum />„, by a parabola. The second 
derivative of W is 

w'V) = 6 ^ i ^ + n(n-i y-* (57) 
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Consequently, the Taylor series expansion of W at pm reads 

W{P) = W(pm)+l-W"(p,n)(p-P,»f + 0((p-pm)3) 
= А + В(р-Рт)2 + 0((р-рт)3) , 

whore the constants A and В are defined according to 
t((+l) 

A = W(Pm) = 
I' 

в = \w»(p,„) = \ 

+Pl 

6££+Ii + f l ( B _ 1 K r * 

Inserting p,„ wo find explicitly for A 

A = ({( + 1) 

'2ЦГ 

2f ( f+ l ) 
+ 

2f(f + l) 

l± I ) ] " + 2 | r ( , + 1)[^±il]-' + 1} 
I±i>]*( 1 +.) 

and for В 

^ = 4-{jHf+D+»(»-iuc'i} 
I'm I * J 

1/2 

(58) 

(59) 

(60) 

(61) 

= ±-{\[ЩС + 1) + (»-1)2(у + 1)]) 
Pm I 2 I 

- * Ы(Щ)(1 | "^ 1 / 2 l 2 f ' r + 1 K i + l) 
" ^ l ( + H 1 + 2 j J -,,?„K(f+D(» + 2)l^ 

= [ 
2f(f + l)1"-+ 2 2f(f + l ) ( l + %) 

[f(f + l)(» + 2)] 1/ J 

2((C+l) 
n 

2C(C + l) 

2 f ( f+ l ) 2f(f+ ! ) ( ! + | ) 
[<V+l)(n + 2)]'/2 

= .4-

"+2 n( l + a) 
[*(f+l)(n + 2)]'/» 

it 

W/+1ИИ + 2)]1/» ' 
(02) 
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Abbreviating ё = e — A our differential equation thus takes the form 

y" = [ B ( p - p m ) 2 - % . (63) 
This is obviously a one-dimensional harmonic oscillator. The correspond
ing eigenvalue is 

1 = 2 ^ ( ^ + 1 ) . (64) 

Hence the eigenvalue of the scaled Schrodinger equation is given by 

e = i + A = A + 2y/5{N+^ 

- AJI+ П { Ш + 1 ) ) 

_ [2£(€ + 1 ) ] ^ Ь / .n\\ n(2N + \) 1 
" [ n J V + 2)\l + [t(e+l)(n + 2)]Wl " 

Scaling back we obtain for the energy 

(65) 

\ ( 2 / 0 n j 

i 
2+n (66) 

and for the mass of the bound state 

Af = mi + ТП2 + E 

~ m i + m 2 + i(2^J [—n—] \1+2) 
I n(2N+l) 1 
\ 1 + [ ^ + l)(n + 2)]'/2| (67) 

We now determine that value of n which yields linear Regge trajectories. 
To this end we consider (67) for large I. The leading term is the one 
containing I 2 . Hence 

In order to get M ос уД, n has to satisfy ^ = \ and is thus fixed to 
n = | . Consequently, we find for large I 

n+2 

M 2 a 16. • £ + const (69) 
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In other words, a confining potential of the form V(r) = br2/3 leads to 
the well-known relation 

M 2 = /3f +const , (70) 

where 

/3 = 16 * - (71) 
\|54/i 

is the so-called Regge slope. Adding a Coulomb-like part to the potential 
one obtains indeed rather good predictions for the spectrum. We conclude 
that, when treated nonrelativistically, a linear potential V(r) = ar does 
not lead to linear Regge trajectories. 

4.4 Regge Trajectories in an Ultra-Relativistic Treatment of 
Fermion-Antifermion Bound States 

Let us now look at the meson spectrum from the opposite, that is, the 
ultra-relativistic, point of view [20]. For simplicity, we only consider spin-
singlet mesons, that is, the total spin of the bound-state constituents is 
equal to zero, S = 0. In this case the expectation value of the vectorial 
scattering amplitude, taken with respect to (S=0) states reduces to [20] 

(2V)s=o~2AV • (72) 

Nevertheless, it is not possible to give an analytic expression for the 
resulting energy spectrum. However, with the help of the asymptotic 
expansion of the spherical harmonics Уы(в, ф) for large values of t [21], 

x c o s [ ( £ + i ) ^ - f + T 1 6 . m , f o r , _ « , , { 7 3 ) 

VsinO 

it can be shown that in the limit ( —• oo the perturbative contribution 
to the energy vanishes proportional to i~l for Gaussian trial functions or 
proportional to £~ъ?2 for hydrogen-like trial functions [20]. The reasoning 
for this is as follows. Both our trial functions are of the form фы{р) = 
f(p) У/т(^1 Ф), differing only by the function f(p) of the radial variable. 
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The radial integrations in the perturbative contribution to the energy 
give for Gaussian trial functions 

(74) 

and for Hydrogen-like trial functions 

1. ., /I* 2«+ 5 r(f + l)< Jdppf{p) = 
.0 я- Г(2<4 3) (75) 

The angular integrations cannot be performed analytically. With the 
above asymptotic expansion, however, one may estimate the behaviour 
of the angular integral for large t. It is easy to convince oneself by partial 
integration that an integral of the form 

|dxcosf(£ + - J i + aj/(.i:) 

is of the order t~l: 

fdx cos \(e+ - J x + a f(x) 

e+ 
T { ( - l ) ' c o s a f(v) - sinn /(0) 

- J dx sin 11 + - J x + a 
dx /(*)} (76) 

provided the first derivative of the otherwise arbitrary, {-independent 
function f(x) exists. We thus find that the angular integral behaves like 

Г « - г е + 1)Г(< + т + 1) , ,. 
Г(£+|) 2 

Consequently, with the help of Stirling's formula 

Г(х) ~ V2lr е - 1 ж1"? for x —»oo 

the announced result follows: 

ton Jd3pd3q 4<'(q) Tft Ф(р) = 0 . 

(77) 

(78) 
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Upon vanishing of the perturbative contribution, the bound-state en
ergy E( corresponding to large orbital angular momentum ( is given by 

E, = 2jdip\^ba^)\:lp + aJdtx\44m{Jl)\2r . (79) 

Applying, as before, the variational technique of Subsection 3.4 yields for 
the large-Г dependence of the energy [20] (for bo th types of trial functions) 

ь^Щ • | 8 ° » 
Recalling again Stirling's formula (77) in order to express the above 
ganuna functions for large I, we obtain from the ratio 

T(J-) 

indeed linear Regge trajectories, with slope Л = 8ri [20]: 

E}~8al fm- f—> oc . (82) 

Herein, the way in which the energy Et depends on <i is no great surprise. 
Because of the lack of any dimensional parameter other than the slope 
(j of the linear potential, any quantity of dimension mass-squared has 
to be proportional to a. From (82) the numerical value of n is about 
(i = 0.15 GeV 2 . 

The result (82) is the same as the one obtained either in the W K B ap
proximation to a relativistic potential model based on the Klein Gordon 
equation [22], or as a lower bound to the asymptotic ground-state en
ergy in a mathematically rigorous discussion for a purely linear potential 
[23]. jr within the path-integral formalism when assuming the asymptot ic 
large-area law for the Wilson loop [24] (see also Ref. [2]). 

In summary, we investigated bound states of fermiou antifermion pairs 
by our effective-Hamiltonian method [13], which describes the interaction 
of the bound-state constituents by an effective potential but incorporates 
relativistic kinematics. Treating the constituents ultra-relativistically, we 
have shown that the behaviour of the bound-state masses for large an
gular momenta is exclusively determined by the non-perturbative contri
bution to the interaction potential [20]. For a linear rise of this par t of 
the potential with increasing inter-quark distance one obtains an (asymp
totically) linear dependence of the squared masses on the corresponding 
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orbital angular momentum [20]. This result is a consequence of the rel-
ativistic kinematics incorporated in this approach. In contrast to that, 
in the nonrelativistic approximation linear Regge trajectories require a 
confining potential rising like the inter-quark distance to the power | , as 
has bc-m demonstrated in Subsection 4.3. 

4.5 Nonrelativistic Versus Ultra-Relativistic Descript ion of 
Regge Trajectories 

In Subsection 4.3 we learned that within a nonrelativistic consideration 
one is able to obtain linear Regge trajectories for a potential which be
haves like V(r) ~ r 2 ' 3 . We found that the nonrelativistic Hamiltonian 

-*2 
Нш = гт + гп2 + %- + Ьг2'3 , (83) 

where ft = т д о г Д л и + mi) is the reduced mass of the two-particle 
system, leads to linear Regge trajectories with slope 

0NR = 
1 2 8 6 3 (84) 

In contrast to that, we showed in Subsection 4.4 that in the ultra-
relativistic case a linear confining potential gives linear Regge trajectories 
with slope 

AjR = 8a . (85) 
We shall now demonstrate that, despite of the apparently different 

forms of the involved Hamiltonians, the resulting energy eigenvalues are 
almost identical, that is, not only in their slopes but also in their absolute 
values [25]. 

To this end, let us compare the binding energies e = E — m\ — mi for 
nonrelativistic and ultrarelativistic limit, ep)R and ецц, respectively. We 
demand equality of the Regge slopes, / % R = /?UR, since, if reasonable at 
all, they should describe one and the same physics. With the help of our 
variational procedure (with Gaussian trial functions) we then find for the 
ratio of these binding energies [25] 

«_1Ш±ЮЯ!! _ , ta , _ ( 8 6 ) 
£TJR r (« + 2 ) 
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As indicated, for ( —too this ratio approaches unity. 
From its derivative with respect to t, the behaviour of this ratio for 

finite С is controlled by the expression 

ф(С + 1) + Зф(е+%)-4ф(е + 2) , (87) 

where ф(х) = Г'(х)/Г(ж) denotes the logarithmic derivative of the gamma 
function, the so-called "digamma function" [21]. Because of the concavity 
of ф(х), 

ф"(х) = - 2 E , 1 лз < 0 , for a ^ 0 , - l , - 2 (88) 
n=o (a + nY 

this expression is always negative. Any function f(x) with f"(x) < 0 
satisfies the concavity condition 

pnx) + (\-p)f(y)<f(px + (l-p)y) . (89) 

In our case a: = £ + | , У = С + j - , and p = \- The ratio SNR/^UK. ' S 

therefore c. strictly monotonia decreasing function with increasing t and 
hence bounded from above by its value for i = 0, which is about 1.025, 
and, of course, bounded from below by unity: 

1 < £ M < !M(£ = о) ~ 1.025 . (90) 
eUR £UR 

Summarizing, we compared the spectra of energy eigenvalues predicted 
by two different ways of describing hadrons as bound states of quarks [2]: 
the two approaches might be regarded as opposite extremes as far as 
the extent of incorporation of relativistic kinematics is concerned; the 
respective confining inter-quark potential, however, is determined by the 
requirement that both models should yield linear Regge trajectories in 
the limit of large angular momenta. By use of a simple variational tech
nique, we found that the binding energies obtained within nonrelativistic 
and ultra-relativistic treatment agree with an error of less than three per
cent [25]. These findings have also been confirmed by explicit numerical 
computation of the mesonic mass spectrum. 
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5 The Bethe -Sa lpe ter Formalism 

As a final topic we would like to clarify the relation between our effective-
Hamiltonian approach to bound states and the Bethe-Salpeter formalism. 
We shall show below that the eigenvalue equation involving our effectiv; 
Hamiltonian corresponds to a well-defined approximation of the Bethe-
Salpeter equation. 

Within the framework of the Bethe-Salpetei formalism a bound state 
is represented by the Bethe-Salpeter amplitude, which (in momentum 
space) is defined as the Fourier transform of the time-ordered product of 
the respective field operators of the particles constituting the bound state, 
taken between the state vector of the bound state and the vacuum, after 
factorizing off the motion of the center-of-momentum. Accordingly, ignor
ing all normalization factors, the BS amplitude for fermion-antifermiou 
bound states reads 

9(p) ~ e i p x Jd*x e'"1 <0 |TMx,Mx 2 ) ) |F ) , (91) 
where X denotes the center-of-momentum coordinate, x = X\ — x% the 
relative coordinate, P = рх+ръ the total momentum, and p the relative 
momentum of the two bound-state constituents. 

The BS amplitude Ф(р) satisfies the Bethe-Salpeter equation [26] (in 
momentum space) 

(Ж- mi) Ф(р) (jfe+ m 2) ~ Jd*q K{p,q) Ф(д) (92) 

in which the interaction between the particles forming the bound state 
enters via the Bethe-Salpeter kernel A"(p, q), which is defined (only per-
turbatively!) as the sum of all BS-irreducible Feynmau graphs for two-
particle into two-particle scattering. (In the above form of the BS equation 
the inverse propagators on the left-hand side have been approximated by 
their free counterparts.) 

In principle, the BS equation represents the appropriate tool for the 
description of bound states within quantum field theory. In practice, how
ever, there are two fundamental drawbacks. On the one hand, the BS ker
nel cannot be computed beyond the tight limits of perturbation theory. 
On the other hand, even with the BS kernel at one's disposal, it is— 
except for a few simple cases—not possible to find the general solution 
of the BS equation. 
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Assuming for the BS kernel the static approximation 

K{ptq) = K{p,q) (93) 

which corresponds to the assumption of an instantaneous interaction be
tween the bound-state constituents, and defining the equal-time wave 
function 

$(p) = Jdii0nilPo) , (94) 
leads to the Salpeter equation [27] 

Af то А"(Р.д)Ф(д)7оЛ^ Щр) ~ / A E - H0(pi) - Я0(}Т2) 
ЛГ7(1А'(р,|Г)Ф((7)7оЛ.7' 

Е + Н0(}ц) + ПоШ 
(95) 

where Af are the energy projection operators corresponding to positive 
or negative energy of the particle •/, /' = 1,2. 

Neglection of the second term on the right-hand side of the Salpeter 
equation—which corresponds to particle-antiparticle annihilation and 
subsequent creation and thus has no clear interpretation in terms of a 
potential—on the grounds of the reasonable assumption that the denom
inator in the first term is much smaller than that in the second term, 

E - #0Q7,) - Яи(;72) < E + Я„(;7,) + Я0(;72) 

leads to the so-called reduced Salpcter equation 

(96) 

[E - Я 0 (р0 - Яо(р2)] Щр) ~ / А Л | 70 K(p,q) Щ<7) 7о ЛГ 
(97) 

The BS amplitude Ф(|7) is a (4 x 4) matrix. Very similarly as airy Dirae 
spiuor may be decomposed into a "large" and a "sniall" component, the 
BS amplitude Ф(/7) consists of "large-large1', "large small", and "small 
small" components. In the latter case, however, these components arc 
related by the energy projection operators \f. Using these relations in 
order to express everything in terms of the "large-large" component ф(р) 
one ends up with an equation of motion, 

[E -H0(,n) - Ha(fi2)] ф(р) ~J#q T» t(q) (98) 

25 



which is formally identical to the Schrodinger equation with our effective 
Hamiltonian (27). 
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Люха В., Шэберп Ф. Е4-91-500 
Кварк-антикварк связанные состояния 

Этот краткий обзор посвящен различным аспектам описа
ния адронов как связанных состояний кварков на примере 
мезонов, состоящих из (конституентных) кварка и антиквар
ка. Показано, что выведенная релятивистская вириальная 
теорема может быть использована для выявления связи меж
ду (квази-) релятивистским и (скорее всего эффек
тивным) нерепятивистским описанием связанных состоя
ний. Более того, предложен новый релятивистский подход 
для описания связанного состояния фермиона и антифермио-
на, примененный для аналитического рассмотрения некото
рых избранных особенностей мезонного спектра. 

Работа выполнена в Лаборатории теоретической физики 
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Quark-Antiquark Bound States 

This brief review discusses various aspects of the 
description of hadrons as bound states of quarks at the 
simpler example of mesons, which are regarded as composi
te of a (constituent) quark and antiquark. It is shown I 
how a recently derived relativistic virial theorem may 
be used in order to cast some light on the interplay bet
ween the (semi-)relativistic and (maybe only effective) 
nonrelativistic treatment of bound states. Furthermore, 
a new relativistic approach to fermion-antifermion bound 
states is briefly sketched and applied in order to pre
dict analytically a few selected general features of the 
meson spectrum. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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