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1 Introduction

One of the major outstanding problems in theoretical elementary particle
physics is the question of the origin of confinement. As long as there is
no satisfactory solution to this problem which allows us to calculate the
properties of bound states of coloured constituents from first principles,
that is—as has been nowadays generally accepted—quantum chromo-
dynamics, one has to rely on somewhat more or less phenomenological
approaches to bound states.

In this rather condensed survey we would like to have a quick look
at some aspects of the treatment of quark—antiquark bound states from
various points of view. Particular emphasis will be laid on the inter-
relationship of nonrelativistic and (at least semi-) relativistic approaches.

This brief review is organized as follows. In Section 2 we discuss the
significance of the description of hadrons as bound states of (constituent)
quarks by nonrelativistic potential models. To this end we derive the
relativistic generalization of the quantum-mechanical virial theorem and
use it to clarify the connection between the nonrelativistic and (semi-)
relativistic treatment of bound states.

In Section 3 we present a new approach to the fermion-antifermion
hound-state problem. This approach is based on the construction of an
cffective Hamiltonian which incorporates relativistic kinematics as well as
an interaction potential, the perturbative part of which is derived from
the quantum field theory describing the truly fundamental interaction
between the bound-state constitutents.

We adopt this effective-Hamiltonian method in Section 4 for the de-
scription of hadrons as bound states of constituent quarks. However, we
do not intend to attempt by the given prescription a satisfactory numer-
ical fit of the experimentally observed hadron spectra. Rather, we try to
check the proposed procedure on a very basic level, namely, by applica-
tion to some selected questions, where we can obtain the solution to the
resulting equation of motion by analytical computation. We shall find
that our effective-Hamiltonian method is able to reproduce some general
features of the empirical meson spectrum.

Finally, in Section 5 we comment on the relationship between the
effective-Hamiltonian method and the Bethe-Salpeter formalism.
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2 Reliability of Nonrelativistic Potential Models

An amazing circumstance in hadron spectroscopy is the description of
hadrons as bound states of quarks by nonrelativistic [1,2] and (semi-)
relativistic [3,4] potential models at an equally good level. The relativistic
version of the quantum-mechanical virial theorem [5,6) may provide a tool
to clarify this situation.

The static inter-quark potential V'(r), r = ||, has to consist of at
least two parts: At short distances it originates from one-gluon exchange
(which gives an approximately Coulomb-like contribution),

4o g:
limV(r)>~ —=—= | a, = =L 1
r—0 (r) 3r T ar (1)
where % is the appropriate colour factor for mesons. At large distances
it has to provide for confinement, V(r} — oc for r — oc. Lattice gauge
theories indicate that the rise of the potential is approximately linear,

rlLrgQV(-r) ~ar . (2)

The superposition of these two parts is the funnel {or Cornell) potential
[7.8,9)

Vir)= _%"1— tar . (3)
This form (Fig. 1) represents the prototype of all realistic “QCD-inspired”
potential models.

Let us try to get an idea of the order of magnitude of the parameters
a; and a entering in the above potential. Qur main assumption will be
that light quarks feel predominantly the linear part of the potential, i.c.,
Ver=ar.

From the scaling behaviour of the Schrodinger equation one obtains
for the energy levels of the bound state!

a2\ 3
E',,=(§ﬁ) €y for V=ar , (4)

where p is the reduced mass of the two-particle systomn and —¢, are
the zeros of the Airy function, €; = 2.34,e3 = 4.09,... . Tlns the mass

‘For a brief introduction to the scaled Schrodinger equation sec, for instauce, Rel. |2].
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Figure 1: Funnel potential

difference between ground state and first radial excitation is given by

M~-M= (g;)%-(ez—el)= 1.75 (%)% . (5)

With the constituent quark masses m, = mq = 0.34 GeV one finds from
M, (1300) — M and M 799) — M for the slope of the linear potential
a =0.27 GeV2.

From the spin-spin interaction entering in the generalized Breit~Fermi
Hamiltonian one obtains under the above assumption for the mass-
squared difference between corresponding spin-singlet and spin-triplet
states?

M2 - MR- ~ ?'9—2a,a . (6)

From M, — M2 and M. — M one gets o, ~ 0.6 for the strong fine
structure constant at an energy scale corresponding to light hadrons.

?For a brief introduction to the Breit~Fermi Hamiltonian see, for instance, Ref. [2].
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In order to derive the virial theorem [10] we make use of the gencrator
D = 5 \)(F% + &) o

of the dilatations
DpD!' = };7 , DiD'=if . (8)

The virial theorem may be phrased in the way that the expectation val-
ues of the commutator of D and the Hamiltonian H of the system un-
der consideration, taken with respect to normalized energy cigenstates

Hip) = El), (¢|¢) = 1, vanish:
D, AwI=0] . o

(¢|DH) = E($|Dly) = ($|HD|¢) . (10)
Let us assume that the Hamiltonian H for a two-particle system nay
be split into a kinetic part T and a potential V(3), H = T + V(7).
Nonrelativistically the kinetic term reads

since

)
r

=L 11

o (11)
where y = m;mgy/(m, +ms) denotes the reduced nass of the bound-state
constituents with masses mm; and iny, respectively. Under ithe dilatations

(8) the nonrelativistic Hamiltonian behaves like

DHD!'= %T+V(,\i’) . (12)
With the expansions in powers of In A
1
Exl-2mhA (13)
and
V(AE) = V(2) + (In M) VV(F) (14)

we compute ‘the first derivative of {¢|H Dy} = 0 with respect to ln X and
obtain

.1 -1

lim - (${(DHD™" ~ H)DJy)

= lim(y|[-2T + & - V()| D|v)
= (Y|[-2T + #- VV(@D)]l¢) =0 . (15)
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which is the nonrelativistic virial theorem:

1 s Srrm
WITI) = 5817 V(@) (16)
Relativistically the kinetic term reads

T=/F+mi+Vp2+mi . (17)

Performing the same steps as above and noticing the expansion

1 =2 2 /-‘2 2 p2 l A
21) m \,p m = m 1l ( )

one obtains the relativistic virial theorein [5,6]

-2 Y]
7. OV(T ) = 4 P I f
(WIF - VV(F)|y) <¢“/ﬁ2+"ﬁ+‘/ﬁ2+m§u> . (19

which in the nonrelativistic case reduces, of course, to (16).

With the help of the relativistic virial theorem (19) we find for the
relativistic energy cigenvalues

E=(H)=(F-VV)+ (V) + < mi__y > (20)

= = (i ’ - .
VEt+mi o 5?2+ md

For the funnel potential (3), however, rV” 41" = 2ar. Despite the presence

of the Coulomb term in the potential it drops out in the expression for

the energy! Nonrelativistically, the cnergy is given by

E= (Vo) + (V1) (21)

In contrast to the relativistic case, due to the factor % in front of (r17)
in the above relation, the cancellation of the Coulomb part is incomplete
in the nonrelativistic version. Consequently, to the extend that the third
term on the right-hand side of Eq. (20) may be ncglected, the expectation
value of the nonrelativistic Hamniltonian with a purely linear potential
V' = ar is of formal resemblance to the expectation value of the relativistic
Hamiltonian with the funnel potential (3). The corresponding eigenstates
are, of course, different. Nevertheless, the above similarity may lead one
astray to treat bound states of light constituents nonrelativistically, by
employing only a lincar potential.

There are some further, but less rigorous, hints why the description of

bound states by the nourelativistic Schrodinger formalism might not be
comiplete nonsense.
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First of all, according to [(O)| < /(O?) valid for any hermitian opera-
tor O, the relativistic kinetic energy satisfies (\/ﬁ' T4 m'z) < VP2 + mi
From this one finds for the expectation value of H

(H) = 2(ViT+md)+ (V) <2/FH +m? + (V)

5%) + m? pi+m? ; .
=2—(P—6%$+(v>=<2m+v> GLY

Consequently, the relativistic energy eigenvalue E = (H) is hounded from

above by
=2 2
E< (2#1— + V> : (23)
7+

The operator on the right-hand side of this inequality is formally of the
same structure as the nonrelativistic Schrédinger Hamiltonian

2
HNR=2ﬁz+%+VNR (24)

with, however, an effective mass 1 = §,/(5?) + m? and the nonrelativistic
potential

m

I
VNR—‘/,W— PH+m2+V =2m —+V . (25)

The effective mass 7in as well as the constant in the potential Vyg depend
on the average momentum (52) and will thus vary from level to level. The
expectation value of the kinetic energy is related by the nonrelativistic
virial theorem (16) to (r&V(r)). The latter is a constant only for the
exceptional case of a logarithmic potential o In(r/r¢) [11]. Only in this
case () is independent of the level of excitation.

Secondly, there exists a certain kind of duality between an ultra-
relativistic Hamiltonian with harmonic-oscillator potential and a non-
relativistic Hamiltonian with linear potential {12]: The ultra-relativistic
Hamiltonian Hyg = 24/p? + &r? is converted into the nonrelativistic
Hamiltonian Hyp = 5?/m + ar by means of the duality transformation
|P] — ar/2, r — 2|p|/a, provided the parameters , a, and m are related
by & = a®/(4m). The eigenfunctions in the corresponding wave equations,
Hypeé(Z) = E@(F) and Hypy(§) = Ew(j), respectively, are then con-
nected by the Fourier transformation ¢(Z) = [ d°y exp(i3% - 7) ¥().
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3 Relativistic Description of Fermion—Antifermion
Bound States

3.1 The Effective Hamiltonian

Our aim is to describe bound states of a fermion-antifermion pair by
an effective Hamiltonian [13] which incorporates the relativistically cor-
rect kinetic term Hy(5) = /B2 + m? as well as the complete relativistic
corrections to the static potential. This potential should, of course, be
derived from the underlying quantum field theory. In order to do this, we
take advantage of the fact that in scattering theory the potential acting
between two particles is nothing else but the Fourier transform of the
first Born approximation TfB,- to the transition amplitude for the elastic
scattering of the involved particles {14,2]:

V@)~ [dke*ETE (26)

where £ = p— g denotes the relevant momentum transfer, 5 and § being
the relative momenta in initial and final state, respectively.
The proposed procedure consists therefore of two main steps [13]:

1. Compute the effective interaction potential V() from the underlying
quantum field theory via the scattering amplitude for elastic two-
particle scattering,.

2. Construct the effective Hamiltonian
H = Hy(7) + Ho(-7) + V(3) (27)

in order to determine the energy eigenvalues and respective state vec-
tors of the bound state under consideration from the corresponding
multi-particle Schrédinger equation.

The energy in the rest system of the bound state is, of course, nothing else
but the mass of the composite particle. Obviously, the proposed method
may be regarded as the relativistic generalization of the description of
bound states by nonrelativistic potential models.
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3.2 The Scattering Amplitude

In order to calculate the scattering amplitude required for the deriva-
tion of the effective interaction potential, it is sufficient to consider the
elastic scattering of the involved fermion-antifermion pair in their center-
of-momentum system:

f(P)+ f(-P) — F@) + f(-7) . (28)

Expressed in terms of the usual Dirac spinors u(f) and v(f), the gen-
eral form of the scattering amplitude corresponding to this process reads

T~ @) Ty u(fp) 5(—p ) Tav(~q) K (29)

where T, i = 1,2, represents some Dirac matrix, I'i = 1, 5, ¥4 70075 Tjw
K is the interaction integral kernel, which has to be detenuined fromn the
underlying quantum field theory. The Fourier transform of just this ker-
nel yields the static interaction potential. As far as the spin structure of
the above scattering amplitude is concerned, we shall only be interested
in vector I'y @ T'y = v, ® 4" ~-corresponding to a (maybe only cffective)
exchange of a vector boson—and scalar I'y ® T3 =11  corresponding
to a (maybe ounly effective) exchange of a scalar boson---, which appcar
to be the dominant ones for the quark-antiquark interaction originating
from quantum chromodynamics. (For a very recent review on the phe-
nomenological aspects of the forces acting within bound states of quarks
see, e.g., Ref. [2].)

In order to obtain the dependence of the scattering amplitude on the
momenta ff and ¢, we insert an explicit representation of the Dirac spinors.
for instance, the Dirac representation

1
wp)~| -7 |v »
S;
s (30)
v(f) ~ S; xX° o, = —toyyt
1

where & are the three Pauli matrices, y is the two-component spinor
corresponding to a given spin polarization, and we introduced for the
denominators in Dirac spinors the shorthand notation § = /52 + m2+m.
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Up to an overall normalization factor. the general form of the scattering
amplitudes is then given for vectorial spin structure by [13,15] 2

1 Lo

Tv~{1 + E(p-q—tp\xq-dl)

)y

b G i B X )
S‘)S“Pq P 2

1 . - vy o
+ m[lﬂ(l—ﬂl'02)+(P'Ul)(17'0-2)]

-

1 . o o Ny
+ m[qz(l—01'02)+(f1'01)(f1'02)]

1

5154

[P-§(1+71-6,)
—ipx -8y = (§-6)(P- G2
[F-d(14d-72)

~ipx -Gy —(F-FING-52)]

1
5,53

1y
+ m[(l' §Y —ip-gpxq-a4)
~FX T AN TEI K (31
and for scalar spin structure by [13,15]

1 )
Ts ~ -{1 - G i-ifxda)

! (P-g—ipxq-ay)
- —————— . ‘ - L 1 . 0
5254 pq pPXq-oy
o =\ P N Sy
_ . —in-. X q-
* 5555 (@) =i QW7 % G- 54)
— (X G x (f-('f-))]} Ks . (32)
where d; is understood to act on particle ¢, i = 1.2, and &, is the sun of
31 and 52, 0-“+ =a +52.

In a nonrelativistic expansion of the above scattering aplitudes up

to order 1/c? one recovers, of course, the well-known Bivit -Fermi inter- v
action.




3.3 The Massless Case

The case of massless—and thus ultra-relativistically moving---bound-
state constituents, i.e., m; = 0, entails a considerable simplification of
the scattering amplitudes, since under these circumstances the T-matrix
elements only depend on the unit vectors

._ 7 . q
= , = —= (33)
p qu q qu
as well as on their difference
k=p-¢ (34)

Explicitly, the scattering amplitudes read for vectorial spin structure {13]
Ty ~ [(B+p- Q)1 +p-G~ipxg-Gy)
- K3 -G+ (k-81)(k- &)
— (pxg-0)(pxg-dqa) | Ky (35)

and for scalar spin structure [13]
1 &y =
Ts ~ — 1&:‘(&:‘+2iﬁxq-5+)
- (Bxq-a)pxg-a)|Ks . (36)

In contrast to the general case given in Subsection 3.2, this simplified
form of the scattering amplitudes allows for an analytical treatment of
the bound states under consideration. Accordingly, for the applications

of the developed formalism in Section 4, we shall assume the constitueuts
to be massless particles.

3.4 The Variational Method

In order to get an estimate for the energy eigenvalue E we employ a
simple variational technique, where we compute the expectation value
of the Hamiltonan H with respect to some suitably cliosen trial states
[¥(X)) depending on a variational parameter A,

E(A) = (W(MH|Y(A)) {37

10
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and minimize the resulting expression F()) with respect to A,

dE()\)

|, =0 ~ Apin . (38)

min
The minimum E(Apj,) found in this way provides, of course, only an
upper bound to the proper energy eigenvalue E,

E < E(Amin) - (39)

For reasonable potentials, however, it has been shown that it yields a
fairly good approximation to the exact energy.
As our trial functions we shall use Gaussian wave functions,

/\2 2
Y E) ~ 1t exp( ) Yem
(40)

bem(F) ~ p* exp( 21):2) Yim
as well as Hydrogen-like wave functions,

Yem(E) ~ vl exp(=ar) Vim
o o (41)
Yem(P) ~ P+ e ,\2)1+2 e Y

Here, Yem(#, ¢) are the spherical harmonics for angular momentum ¢ and
projection m.
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4 Applications

Let us try to use the formalism developed in the preceding section for the
description of mesons as bound states of a (constituent) quark-anticuark
pair. It should be clear from the previous discussion that the form of
the relevant interaction potential is £ .1 by the integral kernels 'y, Ag,
which have to be determined from th: underlying theory.

As is well known, for the strong interaction the potential consists of a
short-range and a long-range part.

The short-range part is of perturbative origin—where, since we are
only interested in the Born approximation, we only have to deal with
lowest order perturbation theory. In gauge theories this contribution is
generated by one-gauge-boson exchange and is consequently of vectorial
spin structure, with corresponding interaction kernel

K

(p—gq)
The parameter & is given, for instance, in quantum electrodynamics from
one-photon exchange by x = Q; Q; ¢?, and in quantum chromodynamics
from one-gluon exchange between colour-singlet states by £ = § 2.

The long-range part is of nonperturbative origin and has to rise to
infinity for large inter-quark distances » in order to be able to descrilic
confinement: Vp(r) —+ oo for # — oo. From lattice gauge theories
there are hints that this rise is a linear one and that this contribution is
of scalar spin structure:

Ky = (42)

Vp(r)=ar . (43)
Under the above assumptions the expectation value of the Hamiltonian
(27) is given by [13]

E; ]d317 (95 [Hoa(F) + Hoa(—5)]
(2r)? [ d*pd’q ¥*(@) TF; ()
[ &z (B Vip(E) (44)

In the following we will investigate the question whether or not the

above model is able to reproduce some simple features of the meson spec-
trum,

(I
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4.1 Singlet—Triplet Mass Differences

Empirically, the differences of the squared masses of corresponding spin-
singlet and spin-triplet partners which contain at least one light quark
(u.d. s) are constant.

Table 1: Differences of the squared massces of spin-singlet and spin-triplet partners [16]

Spin triplet Spin singlet M3 — M3_1[GeVY]
n T 0.57
K? K 0.55
D* D 0.55
D; D, 0.58
B* B 0.56

From Table 1 one finds for the average of all pairs of mesons:
M2_, — M2, ~(0.56 £ 0.01) GeV? . (45)
The Fourier transform of fix{ is the relative orbital angular mmomentwin
of the two bound-state constituents. Accordingly. all terms which involve
this expression do not contribute to ground states (with 7 = 0).
Consequently. the hound-state energy (44) is given by [13]

E; = 2/(1“1; |¢/~v(p)|2 P

N 2 R
- (217)*% !dpp o(p) [sz'-’— g(m“(a, )
+ u/(l"‘m |l/’(l')|2 ro, (46)
with ’
@ = [dn,dq, % B+p- A +p-@) . (47)

The spin expectation value {7 - &) depends on the total spin S of the
two-fermion state:
. . -3 for spin singlets, S =0
(0 -G4) = L. (48)
+1  for spin triplets, S =1
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Applying the variational technique of Subsection 3.4 to the above ex-
pression for the energy yields for the mass-squared difference we are look-
ing for [13]

:—?% ka for Gaussian trial functions
Mg‘:l - M.g:() = 116r ) . (49)
e for Hydrogen-like trial functions

These expressions have to be compared with the result [2] obtained in the
nonrelativistic case on the grounds of the instantaneous-limit approxima-
tion to the interaction kernel (42),

ME, — ME_ =~ % Ka . (50)

Obviously, all predictions for the mass-squared differences are indepen-
dent of the mass of the particles which constitute the bound state. How-
ever, in the nonrelativistic case this mass independence follows from the
neglect of terms of higher order in the inverse masses of the components
[17] and the assumption that light constituents will be mainly affected
by the linear part of the potential. In contrast to that. in the ultrarel-
ativistic case this mass independence is enforced by the assunption of
vanishing masses of the bound-state constituents. Since in this case there
is no other dimensicnal parameter than the slope a of the lincar potential,

any quantity of dimension mass-squared has to be proportional to this
slope.

4.2 Linear Regge Trajectories

It is a well-known experimental fact that hadrons populate linear Regge
trajectories, that is, the square of the mass of a state with orbital angular
momentum £ is proportional to (:

M2(6)= B £+ const , (51)

with the same slope 3 ~ 1.2 GeV? for all trajectories. This feature of the
hadron spectrum is nicely illustrated in Fig. 2.
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Figure 2: Lowest-lying experimental Regge trajectories for non-strange mesons [16]

4.3 Nonrelativistic Approach to Regge Trajectories

We now ask ourselves whether or not it is possible to find in the framework
of nonrelativistic potential models a potential which reproduces the linear

behaviour of Regge trajectories mentioned in the preceding subsection.
As we will see below, the answer is yes.
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For large angular momenta one may expect that the bound states will
only feel the confining part of the potential. We thus assume that it is
justified to ignore the Coulomb part. We start from the scaled Schradinger
equation and compute with the help of an approximation procedure the
eigenvalue € [18,19] (see also Ref. [10]). For the inter-quark potential we
assume a power-law behaviour, ¥ (r) = ", In terms of a dimensionless
radial coordinate p the scaled Schrodinger equation then reads

(-A+p" ) =ep . (52)

We now insert the reduced radial wave function y(p) into this cquation.
Defining the effective potential in the scaled radial Schréidinger equation

fe+1
Wip) = (,;: )+fI" \ (53)

we find for the radial wave equation

[4
= e (€+1) P —dy=[W(p)—ey . (54)

From the first derivative

2[(£'{;1) n—|

W'(p) = — +np (55)
we determine the minimum of W,
2¢( ¢ 1 2+n
W,(/’m) =0 ‘ Pm = ‘:""(n;)'] [ (56)

and approximate W near this minimum p,, by a parabola. The secoud
derivative of W is

fe+1 .
W'p)=6 ( Ij; )+n(n —1)p"?

16
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Consequently, the Taylor series expansion of W at py, reads

W(p)

W (pn) + 5W" (pn)(p = pin)? + O((p = pm)")
A+ B(p—pn) +0((p~ o))

where the constants A and B are defined according to

A

B

(f+1)

"( "( m) = [

W{pm) =

Inserting p,, we hu(l explicitly for 4

o e
= (0+1) [2(((:— 1)] wtl N [M] )

and for B
vB

A

260 +1)] 743
= [“( +1)] N (1+
n
1
”"’
l

m

+0)
r(f+

3)

Lt (14))" = L

+n(n —- 1)p), ]

n

200 o) -1
[M] +‘{f(,+1,[?ﬂ+_1_>] +1}
n n

1 . 1/2
> {— [G(’(f+ 1) +n(n —1)p+? }

™m

1/2
{ [G(‘((+1)+(n—l)'2((l+1)]}

1 20+ 1) (1+ %)

4

2+ (1+3)

n n

[e(C + 1)(n + 2)]1/2

[2c(c+ 1)}51—2 a(1+2)
[e(€ + 1)(n + 2))1/2

n

A m + 2)|72

17

P2 1000+ 1) (i + 2)]1/2
2

[2((C+ 1)]‘n_+2 2000+1) (1+ %)

_ e+ D+ 27

_ [2e(l+1)]f+"-z [2c(r+ 1)]

(58)

(59)

(60)

(61)

(62)
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Abbreviating € = ¢ — A4 our differential equation thus takes the form

y' =B~ pm)* — &y . (63)

This is obviously a one-dimensional harmonic oscillator. The correspond-
ing eigenvalue is v

E=2\/§(N+-2-) : (64)

Hence the eigenvalue of the scaled Schrédinger equation is given by

¢ E+A=A+2\/§(N+l)

2
= __n2N+1)
= {1+ g e
—[ n ] (l’fi){l““mm}.- (65)

Scaling back we obtain for the energy
E ( L )ﬁ (66)
=|-— ‘€,
(2
and for the mass of the bound state

M=m+m; + E
1 n
_ B\ Z+n [2¢(¢ 4 1) o2 n
=mitm + ((2u)") [ n (1 t E)
n(2N +1)
< {1+ s s o)
We now determine that value of n which yields linear Regge trajectorics.

To this end we consider (67) for large €. The leading term is the one
containing ¢2. Hence

M ((—;l:)—)# (1 +3) (%)"L“ (O3 4 const . (68)

In order to get M « V%, n has to satisfy 2% = } and is thus fixed to
n= % Consequently, we find for large ¢

3
Mz'zlﬁls—zﬁ-€+const . (69)

(67)
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In other words, a confining potential of the form V(r) = br2/? leads to
the well-known relation

M?* = 30+ const (70)

b3
B=16 m (71)

is the so-called Regge slope. Adding a Coulomb-like part to the potential
one obtains indeed rather good predictions for the spectrum. We conclude
that, when treated nonrelativistically, a lincar potential V(r) = ar does
not lead to linear Regge trajectories.

wlere

4.4 Regge Trajectories in an Ultra-Relativistic Treatment of
Fermion—Antifermion Bound States

Let us now look at the ineson spectrum from the opposite, that is, the
ultra-relativistic, point of view [20]. For simplicity. we only consider spin-
singlet mesons, that is, the total spin of the bound-state constituents is
equal to zero, S = 0. In this case the expectation value of the vectorial
scattering amplitude, taken with respect to (S=0) states reduces to {20]

(Tv)so~2 Ky . (72)

Nevertheless, it is not possible to give an analytic expression for the
resulting energy spectrum. However, with the help of the asymptotic
expansion of the spherical harmonics Ve, (8, ¢) for large values of ¢ [21],

VE Tl -m+ )T+ m+1)
m(0, ~ —
yl ( ¢) T [‘(€+§)
cosl(€+ $)0 — 5+ ims -
Vs e for {—ro00 , (73)

it can be shown that in the limit £ — oo the perturbative contribution
to the energy vanishes proportional to £~ for Gaussian trial functions or
proportional to £75/2 for hydrogen-like trial functions [20]. The reasoning
for this is as follows. Both our trial functions are of the form Yem(7) =
() Yem(8, ¢), differing only by the function f(p) of the radial variable.
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The radial integrations in the perturbative contribution to the energy
give for Gaussian trial functions

2
%® r¢+1)? -
d, =2t 2 A T4
[ _0/ pp f (P)] T(e+d) (74)
and for Hydrogen-like trial functions
4t+5 r( + 1)4 _
[/dppfp)] T m/\ . {75)

The angular integrations cannot be performed analytically. With the
above asymptotic expansion, however, one nay estimatce the behaviour
of the angular integral for large £. It is easy to convince oneself by partial
integration that an integral of the form

jdzcos [(t’ + —1-) 4+ a] f(x)
3 2
is of the order £-:

0j’rd:ccos [(£+%)z +a] f(x)
ei%

{(-1)*cosa f(m) — sina f(0)

.. 1 d -
_b/du:sm [(l’+ §)a:+a] (—l;f(w)} . (76)
provided the first derivative of the otherwise arbitrary, f-independent
function f(x) exists. We thus find that the angular integral behaves like

Fl-m+1I(l+m+1)
L€+ )2

Consequently, with the help of Stirling’s formula

]

x O (%)

[(r)~V2re® 2" %  for z— 00 , (77)
the announced result follows:
Am [ dpdq §*(d) Tf 45 =0 . (78)
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Upon vanishing of the perturbative contribution, the bound-state en-
ergy Ey correspouding to large orbital angular momentun ¢ is given by

Er=2 / &Ep lenP)P p+a / e (D) r . (79)

Applying, as before, the variational technique of Subsection 3.4 yields for
the large-£ dependence of the energy [20] (for both types of trial functions)

L((+2)
Ei~2vV2a =——+ . 80
R N (80)
Recalling again Stirling’s formula (77) in order to express the above
gana functions for large (. we obtain from the ratio
T

3
_—IT_\/T (81)

indeed lincar Regge trajectories. with slope 3 = 8« {20]:
E?} ~ 8al for (— o . (82)

Herein, the way in whicl the energy E; depeuds on a is o great surprise.
Because of the lack of any dimensional parameter other than the slope
a of the linear potential, any gnantity of dimension mass-squared has
to be proportional to a. From (82) the uumnierical value of a is about
a =015 GeV2,

The result (82) is the same as the one obtained cither in the WKB ap-
proximation to a relativistic potential model based on the Klein- Gordon
equation [22], or as a lower bound to the asviuptotic ground-state en-
ergy in a mathematically rigorous discussion for a purely linear potential
[23]. .r within the path-integral formalisim when assuming the asymptotic
large-area law for the Wilson loop [24] (see also Ref. 2]).

In summary, we investigated bound states of fermion antifermion pairs
by our effective-Hamiltonian method [13], which describes the interaction
of the bound-state constituents by an effective potential but incorporates
relativistic kinematics. Treating the constituents ultra-relativistically, we
hiave shown that the behaviour of the bound-state masses for large an-
gular momenta is exclusively detertnined by the non-perturbative contri-
bution to the interaction potential [20]. For a lincar rise of this part of
the potential with increasing inter-quark distance one obtains an (asymp-
totically) lincar dependence of the squared masses on the corresponding
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orbital angular momentum [20]. This result is a consequence of the rel-
ativistic kinematics incorporated in this approach. In contrast to that,
in the nonrelativistic approximation linear Regge trajectories require a
confining potential rising like the inter-quark distance to the power %, as
has ben demonstrated in Subsection 4.3.

4.5 Nonrelativistic Versus Ultra-Relativistic Description of
Regge Trajectories

In Subsection 4.3 we learned that within a nonrelativistic consideration
one is able to obtain linear Regge trajectories for a potentiul which be-
haves like V(r) ~ r%/3, We found that the nonrelativistic Hamiltonian

=2
Hyp=m +my+ ;’—# +or (83)

where p = mymy/(m, + my) is the reduced mass of the two-particle
system, leads to linear Regge trajectories with slope

128 b°
Bur = ,l—z‘ﬁ . (84)

In contrast to that, we showed in Subsection 4.4 that in the ultra-
relativistic case a linear confining potential gives linear Regge trajectories
with sloge

Bur =8a . (85)

We shall now demonstrate that, despite of the apparently different
forms of the involved Hamiltonians, the resulting energy eigenvalues are
almost identical, that is, not only in their slopes but also in their absolute
values [25].

To this end, let us compare the binding energies € = E — m; — m; for
nonrelativistic and ultrarelativistic limit, eyg and eyg, respectively. We
demand equality of the Regge slopes, Byr = Byn, since, if reasonable at
all, they should describe one and the same physics. With the help of our
variational procedure (with Gaussian trial functions) we then find for the
ratio of these binding energies [25]

.E-N;& = [r(e+ %)I‘(e + lﬁ_l);g]llq
“UR T(£+2)

—1 for € —o00 (86)
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As indicated, for £ — oo this ratio approaches unity.

From its derivative with respect to ¢, the behaviour of this ratio for
finite ¢ is conirolled by the expression

w(£+g)+3w(£’+ Wy—ay(e+2) , &7

where y(x 2)/T'(z) denotes the logarithmic derivative of the gamma
function, the S0~ Lalled “digamma function” [21]. Because of the concavity

of ¥(z),

#'(z) = -2 Z <0 , for z#0,-1,-2,...

T < . (88)

this expression is always negative. Any function f(z) with f"(2) < 0
satisfies the concavity condition

pf)+(1—p) fly) < flpz+ (1 —-ply) . (89)

inourcase x = €+ 3,y =0+, and p = i- The ratio exg/eyy; is
therefore . strictly monotonic decreasing function with increasing ¢ and
hence bounded from above by its value for ¢ = 0, which is about 1.025,
and, of course, bounded from below by unity:

1< MR o MRy _0)~1.025 . (90)
SUR EUR

Summarizing, we compared the spectra of energy eigenvalues predicted
by two different ways of describing hadrons as bound states of quarks [2]:
the two approaches might be regarded as opposite extremes as far as
the extent of incorporation of relativistic kinematics is concerned; the
respective confining inter-quark potential, however, is determined by the
requirement that both models should yield linear Regge trajectories in
the limit of large angular momenta. By use of a simple variational tech-
nique, we found that the binding energies obtained within nonrelativistic
and ultra-relativistic treatment agree with an error of less than three per-
cent [25]. These findings have also been confirmed by explicit numerical
computation of the mesonic mass spectrum.
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5 The Bethe—Salpeter Formalism

As a fina! topic we would like to clarify the relation between our effective-
Hamiltonian approach to bound states and the Bethe-Salpeter formalism.
We shall show below that the eigenvalue equation involving our effective
Hamiltonian corresponds to a well-defined approximation of the Bethe-
Salpeter equation.

Within the framework of the Bethe-Salpetei formalism a bound state
is represented by the Bethe-Salpeter amplitude, which (in momentum
space) is defined as the Fourier transform of the time-ordered product of
the respective field operators of the particles constituting the bound state,
taken between the state vector of the bound state and the vacuwum, after
factorizing off the motion of the center-of-inomentum. Accordingly, ignor-
ing all normalization factors, the BS amplitude for fermion-antifermion
bound states reads

U(p) ~ e [d'z e (0T (3 (=1)d(z2))|P) (91)
where X denotes the center-of-momentum coordinate, 2 = v} — xy the
relative coordinate, P = py + py the total momentum, and p the relative
momentum of the two bound-state constituents.

The BS amplitude ¥(p) satisfies the Bethe-Salpeter equation [26] (in
momentum space)

(h—m1) U(p) (Bt ma) ~ [ K(p,0) U(e) | . (92)

in which the interaction between the particles forming the bound state
enters via the Bethe-Salpeter kernel K'(p, q), which is defined (only per-
turbatively!) as the sum of all BS-irreducible Feynman graphs for two-
particle into two-particle scattering. (In the abeve form of the BS equation
the inverse propagators on the left-hand side have been approximated by
their free counterparts.)

In principle, the BS equation represents the appropriate tool for the
description of bound states within quantum field theory. In practice, how-
ever, there are two fundamental drawbacks. On the one hand, the BS ker-
nel cannot be computed beyond the tight limits of perturbation theory.
On the other hand, even with the BS kernel at one's disposal, it is-—

except for a few simple cases——not pessible to find the general solution
of the BS equation.
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Asswmning for the BS kernel tlie static approximation

K(p,q)=K(pq) . (93)

which corresponds to the assumption of an instantaneous interaction be-
tween the bound-state constituents, and defining the equal-time wave
function

®(7) = [dpo ¥(Fpo) (94)
leads to the Salpeter equation [27)

o TAF 70 K §) () 70 AF®
PV 3 1 Yo P q q) 7 N
#p) ~ [ [ E ~ Holp) — Holf%)
A K@) ) A-z_c] (95)
E + Hy(5) + Ho(i") '

where AF are the energy projection operators correspouding to positive
or negative energy of the particle 7, i = 1,2.

Neglection of the second term on the right-hand side of the Salpeter
equation—which corresponds to particle-antiparticle aunnihilation and
subsequent creation and thus has no clear interpretation in terms of a
potential—on the grounds of the reasonable asswption that the denom-
inator in the first term is much smaller than that in the second term,

E — Ho(jh) — Hy(j52) € E + Hy(h) + Ho(ph) - (96)

leads to the so-called reduced Salpeter equation

| (B — By - Holfo)] 9(7) ~ [ g Af 70 K(5.4) 2(0) 0 A"

(97)

The BS amplitude ®(57) is a (4 x 4) matrix. Vory similarly as any Dirac
spinor may be decomposed into a *large™ and a “small” component, the
BS amplitude ®(j7) consists of “large- large™, “large -small”, and “small-
small” components. In the latter case, however, these components are
related by the energy projection operators AF. Using these relations in
order to express everything in terms of the “large-large™ coniponent '12:(1')’)
one ends up with an equation of motion,

[E = Ho() ~ Hoi)] ¢(5) ~ [dq TR (@) |« (98)
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which is formally identical to the Schrédinger equation with our effective .
Hamiltonian (27).
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Noxa B., lliabepn . E3-91~500
Keapk-aHTUKBapK CBA3aHHbIE COCTOAHWA

3T0T KpaTKuii 0630p NOCBAUEH pa3nNUMHLIM acnexkTaM onwca- |

HUR AAPOHOB Kak CBA3aHHLIX COCTOAHWA KBAPKOB Ha nNpuMepe
ME30HOB, COCTOAWMX M3 (KOHCTUTYEHTHBIX) KBApKa W aHTUKBAap-
Ka. Noxaaano, 4TO BhIBEAEHHAR PERNATUBWUCTCKAA BUpWanbHas
TeopeMa MOMeT bbiTb WCMONbL3OBAHA ANA BLIABNEHWA CBA3N Mew-
Ay {xBasn-) penaTuBUCTCKUM W (ckopee Bcero afex-
TWBHLIM) HEPEeRATVUBWCTCKAM ONWCAHWEeM CBA3AHHLIX COCTOA-
Huii. bonee Toro, NpeanoweH HOBGIY PENATUBUCTCKWI NOAXOA
ANA ONMCAHWA CBA3AHHOrO COCTOAHMA (depMUOHA U aHTuhepmno-
Ha, MPUMEHEHHLIA ANA AHANNTUMECKOrO PACCMOTPEHVA HeKoTo-
peix u3bpaHHbix ocobeHHoCTell Me3OHHOro chnekTpa.

PaboTta BminonHeHa 8 MabopaTopuv TeopeTUYECKOR GV3MKK
onan.

Coobmenne O6benuuentoro HHCTUTYTa AlCpHBLIX Hecnenonalmil. JyGua 1991

Lucha W., Schoberl F. E4-91-500
Quark-Antiquark Bound States

This brief review discusses various aspects of the
description of hadrons as bound states of quarks at the
simpler example of mesons, which are regarded as composi-
te of a (constituent) quark and antiquark. It is shown
how a recently derived relativistic virial theorem may
be used in order to cast some 1ight on the interplay bet-
ween the (semi-)relativistic and (maybe only effective)
nonrelativistic treatment of bound states. Furthermore,
a new relativistic approach to fermion-antifermion bound
states is briefly sketched and -applied in order to pre-~

dict analytically a few selected general features of the
meson spectrum.

The investigation has been performed at the Laboratory|
of Theoretical Physics, JINR.
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