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1. Introduction

Heavy quarkonium physics stays e.g. the problem of non-leptonic decays of mesons.
This includes the description of ¢g-bound states and the evaluation of decay rates. In
papers (1]- [5] the bilocal meson theory was constructed including the nonrelativistic
nonlocal description of heavy quarkonia and the chiral Lagrangian for light mesons in
the bilocal limit (3]- [5]. In paper [5] we discussed the description of mesonic orbital
excitation in the bilocal theory.

This paper is devoted to the calculation of meson decay constants and of amplitudes
of non-leptonic decays of D and B mesons.

2. Relativistic bound states in QCD

In this section we shortly repeai some statements concerning the construction of
relativistic bound states in QCD. Bound states played a fundamental role in the devel-
opment of quantum theory. The description of the atomic spectrum by E.Schrédinger
signified the formation of quantum mechanics as a consistent theory, and the descrip-
tion of the Lamb shift of spectral lines by H.Bethe started the creation of QED and
quantum field theory.

To get some insight into the description of relativistic bound states in gauge theory,
let us first consider the well- known example of an atom in its rest frame (with the
momentum P, = (Ma,0,0,0). In lowest order with respect to radiative corrections
the atom spectrum is described by the action

W= [ i@ - mO) + 5 [dadpiekeow@ie) . )
where K is the Coulomb kernel

K = (10) - Yo(z) - (10) 6(z0) ,

2, = z, — y, is the relative space-time. Now the question arises how to describe a
moving atom. The wave function of a relativistic atom is constructed by the usual
boost operation

#(z,y) — ¢(2,y) =P Fx(zt) bz 1) , (2)
= Z..—vL(z-n’),X..=————(zgy)“ ,

where P, is the total momentum P, = (\/13"2 + M},ﬁ #£0) =M, 7.
This relativistic atom bilocal field is described by action (1) with the moving
Coulomb kernel
K(z,y) = K(z1X) = ' Vo(z*) - # 8(z - 7)., (3

This means that we choose the new radiative gauge depending on the arbitrary unit
time- like vector 1)’ (that one calls the time- axis of quantization) and this vector has
been chosen parallel to the total momentum of atoms (n’ ~ 7).
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It is easy to see that the bilocal field (2) satisfies the Yukawa condition [6]

/]
2“57”¢(21X) =0 y (l)
which means that the bilocal field is an irreducible representation of Lthe Lorentz group
(i.e. it has the mass P? = M3 and spin).
As a result, we obtain the action (1)with the kernel (3), where Lhe time- axis ¥’ is
the unit eigenvector of the bound state total momentum operator

a
ax,

7,8(2]X) ~ =—9(2)X) . (5)

These prescriptions lead to a new relativistic polential model [1]- [5] which unifies
the potential model for the heavy- quarkonia spectroscopy and the bilocal generaliza-
tion of the chiral Lagrangian for light quarkonia. 1t is important to underline that the
instantaneous bound state physics (4) not only depends on the gauge but this depen-
dence is necessary for the relativistic covariance of physical observables (in particular,
the mass spectrum). In this case, the potential model (1),(3) becomes the relativistic
one [1].

Just this recipe should be taken into account for hadron description. As we have
seen, the relativistic covariant formulation of instantaneous interaction is the main
ingredient to describe bound states. Now the question arises: How to get this picture
in the field theory of interacting quarks and gluons. The answer was found by the
quantization procedure of the gauge theory which includes the explicit solution of the
classical equation for the time- component of gauge field 4o = (7 - A) (we called this
quantization the "minimal approach” [7}).

In this minimal quantization of QCD the gluon exchange interaction betweent
quarks is naturally divided into two parts: the instantaneous and the retardation
contributions. If we define any hadron bound state by formulae (2), and (4) as an
irreducible nonlocal representation of the Poincaré group, it is easy to understand that
the covariant instantaneous gluon interaction ~ &(7 - 2) at the point of existence of
bound states - z = 0 is greater than the remaining retarded part of this interaction in
QCD. This minimal approach allows one to formulate the hadron perturbation theory
[1], the lowest order of which is the new relativistic potential model. On the recent
level of QC D we can choose the quark- antiquark potential in the form of the sum of
the rising and Coulomb ones.

The criterion of the validity of our approach is the description of the light meson
physics (spectroscopy and decay constants) in terms of the parameter of the rising
potential defined from the quarkonium spectroscopy.

The instantaneous singularities, forming the bound states, cannot be reproduced
by a relativistic gauge where all gauge field prapagators have singularities only on the
light cone. All modern QCD approaches, including the lattice calculations, do not
take into account these peculiarities of the problem of bound states. Finally, we note
that in the mirimal scheme of quantization it can be shown by the explicit solution
of constraints {7, 8, 9] that this method contains additional physical information - the
topological degeneracy of the colour physical state, as the mechanism of confinement.
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3. Meson decay constants

The quadratic part of effective action over bilocal field M has the form
wil = -—z-—Tr(GgM)" (6)

Here Gy is the Green function G5! = iff X, £ satisfies the Schwinger- Dyson equation
and the symbol Tr means both the integration and the trace over discrete indices.

The bilocal field M can be expanded over creation (a};)} and annihilation (ay)
operators

zT+y dPy
M(z,y) = M-yl—57) = EH T
(1)

la . o o .
/ (—Zf#e""“”{e"’('%l’af,l‘y + e"”('%l’anl‘y} .

Pu,wy are the total momentum and energy of the bound state with quantum numbers
H, respectively. The vertex functions T'y satisfy the Bethe- Salpeter equation

F’?’ = —iK"(Geg'yGy)

where K7 is the instantaneous interaction kernel with the definite time axis 7,
K" = #V(x*)é(z - )it

(1 = 1,0 = P./VP?).

Now we consider the inclusion of weak interactions into the effective action (6).
The effective Lagrangian of weak interaction has the form

L {Vu(Q OMqJ)(IO n)+hec } V2 {Vij(Q_iquj)lu + h"c'}' (8)

eff = \/-

G = 107%/m? is the Fermi constant, Q denotes the column of (u,c,t) quarks and ¢
denotes the column of (d, s, b) quarks, V is the Kobayashi- Maskawa mixing matrix,
Ou=7%0+7), ,=10u,l=¢e,u,1, 0= ve,v, Vs

For the definition of the meson decay constants we will intraduce in the bilocal
action (6) the local leptonic weak current L by the substitution

M(z,y) = M(z,y) + L(=z,y) , (9)
where

i(z,9) = %s(x —y)lem | (10)

[ = 0,1, and P, is the total momentum of the leptonic pair.
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Inserting (9), (10) in (6), we get the following form for the effective action, which
corresponds to weak interaction
G

TY(GgM)? — 2Tx(GMGL) = 27§V.-,~O,(GMG),-.-I, . (11)

and the matrix element for the decay of a pseudoscalar meson M into a leptonic pair

reads

< lv|W.eﬂ:|M > = (2x)'i8(Py - PL)—‘/(2_:T__——3—-2“—’;%(< w|i,j0 >)» g
(12)

- f (ff,l);tr{wjouc,-(q - P)uGie+ 7,,—’)} .

The whole dependence on the mesonic properties of this matrix elements is included
into the integral term. Using the relations for Green functions [}] ;

6iq-P) = Al N A” 4
=3 do— (B + B2 —ic) " qo—(~E; + M +ig) )"

{(13)
Py A} Al
Gilat3g) = "(qn—(E.-——u“, -"E)+'Io—'(—Ei—M,“+i€)) '

with - i
. - 1 - y "
AP = SEINLSP) = 501+ 5 pho) = 500 % 10S2p)) :
AP = S.INLSTB) = 501 £ Spho) = 5(1 £ %5:70) !

SE(p) = sindo(p) £ fcosda(p) = exp(2va(p)) ()
ﬁ=i’i7i’ﬁi=|°:;l:isﬁ2="li i
. - me _ Ipi ‘
sm¢.(p) = EI(P) ] mél(p)- E.(p) g
wp) = F-p)+3) i Bulp)= VoI ; !
A= S(1Em) , {
{
and the definition of the wave function of bound states 1
L

. [d I -
z/?:—"(c,-l‘j.-ﬁ.-)s ¥ ,
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we can write
f (2 )4“{‘/-_10 G, (q - —)[‘JIG (q + _)} (15)

. . aq 3
_zfmtr(‘{,ouw,,) .

This compact form is very useful because the whole description of relativistic bound
states may represented in the language of the functions ¥;. Let us expand the wave
function of bound state aver the Lorentz matrices. By help of (14) we can write ¥ as

the "dressed” wave function \Il

¥=¥(-P) = Sj'¥(-P)s;
(4] i o ,
U(P) = (U +p0" (16)
o [1) 0
U(-P) = (I'—hfw2")y,

) 0 o o
In these relations v/ = {+%,9%,1}, ¢ i/ = {L iy N 5} (i = 1,2) correspond to
pseudoscalar, vector and scalar mesons, respectively. For pseudoscalar mesons we have
I A5
¥ =9° and
0 0 0
¥ (—P) = (L1 ~# L)7". (17)

) )
The functions [, and L; satisfy the set of two equations (5]

it

Min® = Bl e~ [ Gvie-alreero -t ms ) iy o
. (18)

where

ci(p) = ci(p)ei(p) F silp)s;(p) = < (P) '

si(P) = si(p)c;(p) ia](p)cl(p) = |J(p) ’
si; = sin(viy) .
¢ = cos(i;) ,

= (p-§); i, are defined in (14), {,j are the flavours of quarks, which form the bound
state.
We obtain the expression for the decay constant of the meson with quantum nun-
bers H using the standard definitions for the decay constant of the meson

= 5= [ s Lemeosten) (19)
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Here cos(¢p) = cos(¢ij) = cos(vi+v;) and 7, j denote the quarks in this meson.Specilying
these combinations we have

Nc

F = ar

)S(Lz),COS(Vd + Vll) ’
4N /(2 )a(Lg)KOOS(V, + Vd) )
4N / (2 )a( Lz)DCOS("c"'"") ;

0
(LQ)D‘COS(VC +vy) ;

Be /(Zt)s(Lz)Becos(”b + ”c) '

4N dq

= [ apllalacotn ) .

Fg, =

4. Nonleptonic transitions D and B mesons

For the description of nonleptonic decays of D and B mesons we shall start from
the effective action which has the form

(GM)* —
(20)

- %'ZI'V.EV(;{ [0“(G‘MHG:)0“] (C‘,‘M,’.‘G.’) + (Ge MuGl) [O“GjM,‘.'G'iO,.] } .

In this formula V;; are the matrix elements of Kobayashi- Maskawa matrix, G; deuotes
the Green funciion of the quarks (u,e,t) and G; are the Green functions of quarks
(d,s,b). The diagrams for the weak transitions M = M are listed in Fig.1 and the
corresponding combinations of the matrix elements of Kobayashi- Maskawa matrix are
given in Tabl.1-3.

The matrix elements for these transitions can be written in the form

< M(P)|W, ﬁIM(P') >=

G 1 dq

dk
i(2x)46(P - ﬂ)_é_W_my__z (2')3/@;)—421)

{10 Vatuta + V0,95a] + =[O Vubu(@Vi0ata + ] }

After using techniques similar to those applied in section 3.3 the expressions in the

brace brackets for different weak transitions have the form
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Tr(¥0,%0,)

E

Te(%0,90,)

P=§

Te(¥0,¥0,)

3PP [ o { |/ o b e+ it + )] et Lo o +

12 (p)ch(p) [ / (2—1)—3<=,‘~‘.-(k +p) _L (k+ p)] } +

+

(22)

+

(2,)3{ [/ (@) El (% + p)sii(k + P)] s5:(p) .f_q () +

+

£, (eii(o) [ / (Tﬂ;s;(km L +p)] } ,

= 80rd)- ] (2,),{[ [ camss fa G+ picitt+ )| <te) V1 o) +

+ Ly '(P)Cﬁ(P) [/ Wcﬁ-(k +p) Vi “(+ P)] } +

(23) -

(2,)3{ [ / @y Ly (k + D)ok + P)] sfi(p) V2o +

+ Ix (r)ni(p) [j (5;)55,?:(* +p) Va “(k+ P)} } ,

= ~arP) [ (2,)3{ [/ s e G+ mrctith-+ )] i) £ 01+

+ L2 (p)chip) [ / (—2,—),-c3“.~(k +9) B (k+ p)] } +
(24)

+ (2,)3 { [ _/ Gy Ln (k+ plag(k + P)] 85:(p) £ (p) +
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+ L (D) [ / (‘2%555(" L) B (k4 p)]} ,

P A

Te(¥0,%0,)

+ L (p)eh(p) U Wc;(k +p) Atk + p)] } +
+ _ (2#)3{ [/ @ny L (k+ p)sig(k + P)] sh(») A, “(p) +

+ L (P)sia(») [/ @r )Ss,‘(k+P A V(k+P)]} )

Tr(¥0,%0,) = |
16e{(n. ) [ g555slha ekl + [ botot - b (isil}

S .
Te(v0,%0,) =
W d . d
= —lﬁc{(n.. -€}) / @T")[z (Pleql + (—2;’—),@& L&)[E (p)s:,l} .
v,y
Te(¥0,¥%0,) =
- d d
= —lﬁee;{ / ﬁ:’?lf}. “(P)e) + / (3:?(‘"»1’# + 988 Va “(PJSLI} .
Ay
Tr(¥0,¥%0,) =

= 16ee:{ / -(—;:—)5[21 “(pyeh] + / (—:“%5(7114’: + n..p.f)l,?h “(p)s;.l} .

8

-8() [ 55 {[/ oage b (ko )tk + )] 500 0 +

(26)

(27)

(23)

(29)




Transitions | Vi bid [ji |k
B3 D° |VyValbd|cu
B =D | Vevx I bd]|uc
By — T2 | VaVy|bd|tu
32— T¢ | ViViz | bd | ut
B o1 | VaVy [ bd [te
BT | Vavs [bd et
Table 1.

0 0 0
For these Lransitions (L;) corresponds to (L;) pe and (L;) corresponds to wave

functions in the final state.

Transitions | Vi V)7 [ji |kl
B = D% [VuaVi|bs|cu
B — D° | V4Va|bs]uc
_. — T‘? V‘b V& bs { tu
30 — T2 VaViy [ bs | ut
B 12 [ VyVs I bs]tc
BT wVy |bs|ct
Table 2.

. 0 [] 1]
For thesertransitions (L) correspouds to. (£;) sy and (L;) correspoud- to wave

functions in the final state.
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5. Conclusion

In this paper general expressions for decay constants of quarkonia (D
and the weak transition matrix elements for mesonic transitions in bilocal frame are

obtained.

The numerical calculations using some kind of "realistic” potentials (may be one
should examine the simple Coulomb-plus-linear potential at first) will be considered
in the next papers. We think that even a nonrelativistic limit is good enough for a
test of the perspectives of this approach. We have the opinior
good. First numerical investigations based on the proposed framework supported this

conclusion [10}.

Transitions | Vi V,;‘ ji | kl
D> K° |V, V4 | uc|sd
D= KO | VgV | uc | ds
D° > BY | VaVa luclbd
D® = BY | VaV34 | uc|db
D® — B? VisVi [ uc | bs
D°— BY [ V,Vy|uc|sb
Table 3.

. ) )
For these transitions (£;) corresponds to (L;)pe and ( z.-) corresponds to wave

functions in the final state.

10
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Figure 1.

The diagrams of weak transilions M -5 M in the bilocal approach.
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Cna6ele B3amMopgeiicTBHA B GUMOKANBHOI

KHpallbHOK TeopHH.

II. HenenToHHbe pacnagbl KBapKOHHEB

B OMJIOKanbHOM noaxone

Jra yacTh paboThl NMOCBANEHA ONHCAHHKY ME30HHBIX KOHC—
TAHT pacnaja 4 HeNenToHHbM mnepexodaM D- H B-Me30HOB B
paMKax GHNOKajmbHON TEOPHH MEe30HOB.

PaGoTa BunonHeHa B JlabopaTopHH TeopeTHUecKoH ¢HU3H-
kn OHAH.

INpenpunt O6veMHEHHOrO MHCTHUTYTa RAEPHBIX HeCaelosanmi. yGua 1992

Kalinovsky Yu.L. et al. E4-92-9
Weak Interactions in a Bilocal

Chiral Theory.

II. Nonleptonic Decays of Quarkonia

in Bilocal Approach

In this part the calculus to describe meson decay
constants and the nonleptonic transitions for D and B
mesons in a bilocal meson field theory are formulated.

The investigation has been performed at the Labora-
tory of Theoretical Physics, JINR.
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