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I. Introduction

The key role of the resonance phenomena in reactor applications manifests through the
self-shielding effect. The basic issue involves the application of the microscopic cross sections
in the macroscopic reactor lattices consisting of many nuclides that exhibit resonance behavior.
To preserve the Fidelity of such a effect requires the accurate calculations of the cross sections
and the neutron flux in great detail. This clearly not possible without viable resonance data.

The recently released ENDF/B VI resonance data1 in the resolved range especially reflect
the dramatic improvement in two important areas; namely, the significant extension of the
resolved resonance ranges accompanied by the availability of the R-matrix parameters of the
Reich-Moore type. The improvements all but eliminate the long standing difficulties in
conjunction to the use of the Breit-Wigner representation particularly inadequate for the closely
spaced resonances and at the same time, removed at least in part the ambiguity of having to
extend the unresolved treatment too far into the low energy region where the self-shielding effect
is apparently deterministic in nature. The benefit of such a development is not without costs to
the users. Aside from the obvious increase in computing time required for the significantly
greater number of resonances, the main CUIK "rn is the compatibility of the Riech-Moore
representation to the existing reactor processing codes which, until now, are based on the
traditional cross section formalisms.

As described previously2, one convenient way to alleviate the compatibility problem is
to convert these Reich-Moore parameters into the pole and residue parameters whereby the cross
sections can be cast into the similar form of the traditional cross section formalisms readily
amenable for the ENDF/B format based code systems. The purpose of this paper is to
summarize our recent efforts to facilitate implementation of the proposed methods into the
production codes at ANL.

II. Brief Review of the Proposed Pole Representation

As reported previously2, the rigor of the R-matrix cross sections based on the Reich
Moore formalism1 and the traditional feature of Doppler-broadening via the Voigt profile
essential to many existing methods in reactor applications can be preserved by the use of either
a rigorous pole representation or a simplified alternative based on pole and residue parameters
numerically converted from any given set of Reich-Moore parameters2. By taking into account
all energy dependent quantities in the R-matrix representation, one obtains, via partial fraction,

the pole representation with 2(1 +1) simple pole terms in /E-domain per resonance for a given
I- and J-state. The genuine energy-independent pole and residue parameters can be obtained by



using the WHOPPER-eode2 developed for this purpose. Of the 2(f+ 1) poles per resonance,
only two exhibit the usual sharp fluctuations that resemble the Breit-Wigner resonances as a

function of V'E while the remaining 21 poles are characterized by the extremely large half
'width' corresponding to the imaginary part of the pole. Upon Doppler-broadening using the
rigorous kernel defined by Solbrig, one'has2
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where Ru.xj. Px' and Am
 a r e residues (or its product with hard sphere shift factor where

appropriate), poles and the Doppler width in v'E-domain respectively, and the complex
probability integral, W(z), is related to the usual Doppler-broadened line shape functions as

i x(x,y) (2)

The quantity qf
(x>(vE) here represents the superposition of all poles with 'giant width'

for a given i not affected by the Doppler effect. One obvious concern from practical point of
view is that the evaluation of Eq-1 will undoubtedly require excessive computing cost although
it may not be prohibitive. Hence, a simplified version of this approach was developed to
provide an alternative more attractive to reactor applications. The procedure is equivalent to the
direct extraction of the Humblet-Rosenfeld3-type parameters and the associated 'background'

term with weak y/E-dependence explicitly from the converted pole and residue parameters
described above. This can be accomplished by regrouping the sum of rational terms into a
'fluctuating' term and a 'smooth' term. The latter consisting of ensemble of pole terms,
attributable to the outlying poles and poles with extremely large 'width' defined in Eq-1, can be
approximated effectively by a rational function of low order via the non-linear least square fit
via the use of the WHOPPER.JUNIOR code2. These fitted poles can be viewed as the 'pseudo'
poles analogous to resonances assigned to regions outside of the effective resolved energy range.
It has been demonstrated2 that only three 'pseudo' pole terms for each smooth term are required
for a given t to provide sufficient accuracy for all major nuclides processed so far.

Upon Doppler-broadening, it leads immediately to the familiar form defined by the
traditional formalisms2:
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and rk
(!° and, c«k* are the fitted residue and pole respectively.

Thus, the only difference between Eq-3 and the traditional formalisms is the presence of
the ^background' terms with weak energy and temperature dependence. Its compatibility to all
ENDF/B format1 based codes is quite evident.

II. Cross Section Representations and Self-Shielding Effects

One representative quantity that characterizes the self-shielding effect is the self-shielding
factor. With no loss of generality, it suffices to view it as a measure of correlation between the
microscopic cross section and neutron flux in energy as well as in space at a given temperature2

, . -;.-•* - . -Jgggg- ( 6)

The averages involved can be cast into the form of either the usual Reimann integral or
Lebesgue integral. It is quite apparent that a concise description of the cross section as a
function of energy and temperature is essential to both the theoretical modeling and the practical
computation of this potentially complex problem involving neutron slowing-down and transport
in a reactor cell. For the resolved energy of interest here, the degree of correlation is clearly
deterministic and multivariant in nature.

All traditional cross section representations' prior to the availability- of the R-matrix
parameters were essentially expressible as the linear combinations of the Breit-Wigner - like
terms supplemented by the pointwise smooth data. Aside from the obvious consideration of the
inherent advantage of the Doppler-broadening, the overriding consideration to preserve the
traditional form in terms of the Voigt profiles' is its concise mathematical behavior upon which
many fundamental concepts and numerical methods are based. In particular, such a description
made possible the coexistence of two fundamental concepts based on the resonance integral
approach and continuous energy approach respectively. The former treats the resonance integral
for individual resonances separately while the later retains the continuous nature of the flux in
energy over the entire resolved range. Various methods based on these concepts differ only in
the rigor by which the neutron flux is treated. Thus, by preserving the traditional form, the
proposed method is readily amenable to most of the reactor codes in existence with minor
modifications.



As long as the resonance cross sections are represented as the linear combination defined
by Eq-1 or Eq-3, the W-function alone dictates their behavior as a function of energy and
temperature. The analytical characteristics of practical interest can be summarized in Table I.
To be consistent with the traditional description of \p and x, the variables x and t will henceforth
be taken to be 2(E-Eo)/r and (A/P)2 respectively instead of the generic z.

Table 1: Analytical Behavior of Voigt Profiles of Practical Interest

Lorentzian Limits
( I z | > > > 1)

Extreme-Broadening
(t > > > 1)

Derivatives:
1" order
2nd order

1/(1+x2)

>A\/ir7F exp(-x'2/4t)

[x-x-W2t
[l-(l+2t-x2)^2x^]/(2t)2

X (x,t)

x/(l+x2)

(1/v/T) D(x/2vT)
(Dawson integral)

[l-^xx]/2t
-[x( 1 -2tf)+(I +2t-x2)x]/(2t)2

The Lorentzian limits define the short range nature of fluctuations exhibited by these
functions. The practical importance will be further addressed in the next section. The explicit
knowledge of the derivatives not only provides the analytical insight of how the cross section
slope varies as a function of energy but also specifies various extreme points exactly. The latter
include the maximum, minimum and points of inflection for each pole term, which are generally
difficult to pin-point by means of the brute force approach. For sharply varying function in
question, their exact locations will have significant impact on the accuracy of the interpolation
of cross sections that follows if the pointwise entry is used. It is worth noting that the points
of inflection represent the locations where the temperature derivative vanishes. This stems from
the fact that both ^ and x must satisfy the heat equation of the form

32f _ df
dx2 3t

They are especially important from the point of view of the Doppler effect calculations.

(7)

Numerically, these extreme points for \p, x, and (^+ax) can be determined readily as
a function of t. A computer code based on the Newton-Raphson scheme has been developed to
compute these extreme points as a function of t (and a where appropriate) using the zero
temperature limits as initial guesses. It turns out that these points generally exhibit behavior
closely resemble a hyperbola with asymptos identifiable with the expected limits inferred by two
limiting cases given in Table I. Fig. 1 illustrates the minimum | Xmin | of (i^+ax) as a function

of v't" for a = 0.20. Two asymptos correspond to | Xulin | = | (-1-^1+a )/a | for the zero

temperature limit and | Xmll | = -54104 (2/T) for the extreme broadening limit reflected by



the Dawson integral respectively. The relationship can be readily characterized by a family of
hyperbolas with coefficients as a function of a. Such information can be incorporated into the
scheme to construct the pointwise cross sections to be described.

IV. Facilitation of the Proposed Method in Progress

From the practical point of view, the most essential consideration is the potential trade-
offs among accuracy, computing cost and computer storage requirement that are suitable to one's
objectives and computing tool available. For our purpose here, the discussions will be focused
on issues pertinent to the entry of the basis resonance data to the existing deterministic and
Monte Carlo codes at ANL. There are only two ways that the basic resonance data can be
brought into the reactor applications; namely, the direct entry at run time and the entry with pre-
computed pointwise cross sections as a function of energy and temperature. In conjunction to
such applications two unique features of the proposed method of particular interest are the prior
knowledge of the analytical behavior of the cross sections and the accuracy of the Doppler-
broadening which is clearly difficult to match by any finite difference methods implicitly based
on the Taylor's expansion without the recourse of using an exceedingly large number of mesh
points.

In the following discussion, our efforts to implement the proposed method in the
processing codes with two completely different data-entry philosophies will be described.

1. Entry at Run-Time

This type of data entry is obviously attractive for the deterministic approach in
which the rigor of the composition and temperature dependence is required. It is particularly
important to the code such as the MC2-2/RABANL in which both resonance integral approach
and continuous energy integral transport theory approach coexist.

However, the rigor clearly can not be achieved without the accompanying computing cost
and simplifications are obviously required. The points in question is how to enhance the
computational efficiencies with acceptable sacrifice in accuracy.

The question of how to manage the numerous number of resonances at run time is
nothing new for the MC2-2/RABANL code4. It has been demonstrated how this problem can
be alleviated by taking advantage of the ultra-fine group structure of the code essential for fast
reactor applications. The basic structure consists of 2000 energy group with the width
approximately equal to 1/2 of the maximum energy loss per collision incurred to a neutron by
the elastic scattering of the heaviest nuclide of practical interest. The basic logic of the code
involves the creation of a base library of 'smooth' cross sections of all nuclides of interest
beforehand but the resonance cross sections are computed for each ultra-fine group at run time.
Two main cost-saving features already in place prior to the availability of the R-Matrix data are
summarized briefly as follows.

(A) Pre-screening procedure



One obvious way to take advantage of the ultra-fine group structure is the use of a pre-
screening process while construction the base library, whereby all resonances with the total
width much greater than both the ultra-fine group width and the Doppler width corresponding
to the highest temperature anticipated will be processed into the 'smooth' library. Many s-wave
resonances of structural material apparently will fall into this category. Thus, it helps reduce
the needs to compute them at run time.

(B) Treatment of distant resonances

As described earlier, each pole term characterized by the W-function exhibits strong
fluctuations only in the energy region near the peak of the resonance. Thus, with exception of
a handful of resonances within and close to a given ultra fine group in question, it suffices to
evaluate the contributions of the distant levels at the ultra-fine group mesh instead of the hyper-
fine meshes required to ensure the adequate treatment of the self-shielding effect.

The viability of these schemes have been successfully demonstrated especially when the
continuous energy integral transport option is used4. The same techniques are readily amenable
to the proposed method2 based on the Hamblet-Rosenfeld3 type of parameters. It is worth noting
that the contributions of the distant tails of the latter are generally more important than those
based on the traditional formalisms according to our experience with the WHOPPER code2.
Modification and further explorations of the known analytical properties to expedite the
calculations are still under way.

(2) Entry As Pre-Computed Pointwise Cross Section

For calculations based on continuous energy Monte Carlo approach, the
entry of resonance data at run time is obviously out of question. One must rely on the pre-
computed pointwise cross sections as a function of energy and temperature. Although the
storage is no longer a prohibitive constraint for the new generation computers, nevertheless,
some viable criteria for the mesh spacings are obviously required to ensure the accuracy of the
subsequent interpolation at run time.

For the cross section expressed as the linear combination of l^fo, t;) and a^fo, t j , it
suffices to investigate the problem in two stage: (a) Determine the mesh points adequate to
cover any individual term for various values of a; and t; within -oo < \x < co; (b) optimization
of the union of the individual sets within the resolved energy boundaries. In the following
discussion, various steps pertinent to such a procedure will be described along with some
preliminary results.

a) Rational Transformation and Preliminary Grids

One necessary but not sufficient condition for the pointwise cross section and
energy pairs generated for each term must preserve the expected average upon numerical
integration. It is, therefore, reasonable to conjecture that the preliminary grids required may
be taken to be the quadrature points adequate to preserve the rigor of the integration. As
described in Ref-5, one of the most efficient way is via the use of the Gauss-Jacobi quadrature.



It is equivalent to carry out a rational transformation of the form

f(x)dx = - M . d u ; - O O < X < O Q (8)

where

(9)

and K is a constant dependent only on the Doppler width and total width under consideration.

For our purpose here it was found that K=—jT7(A+F)] is satisfactory for the cases considered.

In terms of the Gauss-Jacobi quadrature a set of mesh points {iij} is specified once the
total number of points is given. Extensive investigations indicate that 13 points are sufficient
to reproduce the expected value adequately. A set of points {E;} in energy domain
corresponding to {u;} can be obtained readily and vice versa. The transformation fully utilizes
t h e L o r e n t z i a n b e h a v i o r of ^ a n d x f u n c t i o n s , b e c a u s e

lim(^/(l-u2)) = const. ; and lim (x/l-u2) = const. /\/l - u 2 .

Thus, the transformation amounts to optimization of number of points needed to describe each
term in question from the perspective of integration.

b) Addition of Points

Although the preliminary grids provide a good start, they are by no means
adequate to ensure the accuracy of values to be interpolated at run time. In particular, those
extreme points described earlier can play an important role in the interpolation process that
follows. Hence, these points are included into the set determined by the quadrature.

The addition of extreme points, however, still does not guarantee the accuracy of the
interpolated values especially between points where the gradient changes significantly. To
ensure the accuracy of values to be interpolated, the spacing of predetermined meshes obviously
must be correlated to their higher order derivatives as defined explicitly by. the remainder
associated with the interpolation scheme used. The precise knowledge of the derivatives for
every preliminary mesh provides the needed criteria. Extensive investigations are under way
and some preliminary results will be presented in the later section.

C) Union of Individual Sets and Further Addition or Reduction of Points

The individual {uj or {Ej sets can be combined to form an union that covers the
entire resolved region. Two common scenarios that one encounters are: (1) the ensemble
consists of either the well-isolated poles (or resonance where appropriate); or (2) closely-spaced
poles. The former may result in an union of disjoint sets while the latter tends to produce the
ensemble of strongly overlapping sets. Hence, additions or reduction of points are required
accordingly.



The intersections of various sets may be defined at the average of two end points (in
energy) of the neighboring sets. These intersecting points define the subset center around a
given pole consisting of points that happen to fall into this interval. The table may consist of
either {crx;} and {E;} pairs or {axi/(l-Uj2)} and {u(} pairs. If the subsequent interpolation scheme
is to be carried out in the u-domain, all energy points within the interval must be converted into
the u-mesh points based on the pole in question. For the nuclides with a dominant s-wave
sequence (such as 238U), the mesh points generated for the p-wave poles can be included as
subsets in the interval defined by the s-wave pole in which they happen to fall.

d) Preliminary Results

An experimental code capable of generating pointwise cross sections using the
scheme described above along with plotting and interpolation routines has been developed.
Although, many criteria pertinent to addition and reduction of points are still being explored,
the preliminary results presented here are believed to be useful to illustrate the general features
of the proposed method.

Fig. 3 and Fig. 4 show the U238 absorption and scattering cross sections vs energy
respectively as obtained by the direct calculations using 'fine' energy meshes and the preliminary
grids quadrature points for individual s-wave as well as p-wave poles with the minimum points
added. They clearly indicate that the preliminary grid can already provide reasonable resolution
for the energy region with many sharp resonances prior to the addition of extra points. The
difficulties of pin-pointing the peaks and valleys by the brute force means inspite of the
extremely fine points used are quite evident as illustrated by the solid lines. The problem can
be alleviated readily by the proposed method when the extreme points are added.

For illustration purposes, some preliminary results were obtained via some ad-hoc
conditions in lieu of the finished criteria at this time. One area of particular interest in the
optimal choice between interpolation scheme and the number of mesh points required.

Fig. 5 and Fig. 6 show the relative errors of U238 absorption cross sections in percent
resulting from the interpolation of the pointwise data based on the 4-point and 2-point LaGrange
interpolation scheme respectively in the low energy region where the high accuracy is the most
difficult to achieve. Since the results were obtained by using the same set of pointwise cross
section data, the significant difference in the relative errors is directly attributable to the
interpolation scheme. These figures clearly illustrate the difficult choice between the accuracy
and computing cost that one must make whenever the entry of the pointwise cross sections is
considered. It is believed that the accuracy of the proposed scheme can be significantly
improved by removing a handful of peaks and valleys in the relative error via the use of the
more viable criteria.

It is worth noting that the inherent errors attributable to the pointwise entry of cross
section data are seldom noticeable in the cursory reactor bench-mark calculations based on the
average quantities over considerably large energy span due to the error cancellations.
Nevertheless, they do provide a point of reference as to the potential limitations of this mode
of data entry especially for problems where the localized details are important.



V. Conclusions

The proposed method for converting the R-matrix parameters given by the ENDF/B VI
file into pole and residue parameters prior to their deployment in Reactor applications is believed
to be of practical importance especially for the code systems at ANL, It can be used effectively
in the context of either one of the two modes of data entries commonly adopted. For the
methods based on the data entry at run time, the pole representation is readily amenable to the
codes in existence with minor modifications. Although no quantitative results are available at
this time, the implementation of the method into the MC22/RABANL code5 is well under way.
For methods that the pointwise entries are more appropriate, the proposed scheme can also be
used as a powerful tool in constructing the pointwise cross section libraries. Aside from the
rigor in the Doppler broadening of cross sections, it also provides the invaluable analytical
insight in the optimization of the mesh structures. The most important feature still under
investigation is the correlation between mesh spacing and the rate of change in derivatives
between points that obviously determines the accuracy of any interpolation scheme.
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Figure 3, a sof2 3 8UvsE
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Figure 4. % Error in ora (4-point)
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Figure 5. % Error in a, (2-point)
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