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Measurements of the Electric and Magnetic Form Factors 
of the Neutron and Their Dependence on Inelastic Modeling 

ABSTRACT 
The charge and magnetic elastic form factors of the 

neutron, G,n(Q3) and G„„(Q!), have been measured in the four-
momentum transfer range 1.75 < Q 2 < 4.00 (GeV/c)2 using a 
Rosenbluth separation. These measurements constitute part of 
experiment KE11 which was performed at the End Station A 
facilities at the Stanford Linear Accelerator Center in the 
winter of 1989. The results show that G„,(Q J)/M„/G D(Q 2) is 
consistent with unity, where ii„ is the neutron anomalous 
magnetic moment, and GD(Q2) = (1.0 + Qyo.71)" 2, is the 
empirical dipole formula. The results for (GE„ (Q2)/G„ (Q2) ) 2 are 
consistent with zero within errors. 

The extraction of the neutron electromagnetic form 
factors from deuterium cross sections is a model dependent 
procedure because of the Fermi momentum of the bound nucleons. 
In addition to the smeared quasielastic cross section, there 
is an inelastic tail due to pion production which extends into 
the quasielastic region. This tail is significant (15% at the 
largest Q 2 point) and must be subtracted to measure the 
neutron form factors. An extensive study has been made on the 
effect of the modeling of this tail on the measured form 

iii 



factors using different Fermi smearing models, off-mass-shell 
corrections, and deuteron wave functions. The off-mass-shell-
effects were the largest, but still smaller than the 
experimental error. 

Comparisons were made with many theoretical models. There 
is no single form factor model studied which was able to 
describe the measured electromagnetic form factors of both the 
neutron and proton. 

Measurements were also obtained of the 4(1232) resonance 
transition form factors in the range 1.6 < Q 2 < 6.75 (GeV/c)s. 
These data confirm that the observed fall-off of the 
transition form factor is faster than that expected from 
leading order perturbative QCD calculations. 
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1 
1. INTRODUCTION 

The first studies of the electromagnetic structure of the 
nucleons using energetic electron beams as probes began in the 
1950's with the work by Hofstadter, at al [1][2]. The 
experimental goal in these early experiments and in those that 
followed was to understand how the electromagnetic probe 
interacts with the internal charge and current distributions 
of the nucleons. The electromagnetic form factors are the 
embodiment of these interactions. These form factors, G,(Q2) 
and G,,(Q2), which depend only on the four-momentum transfer 
squared, are fundamental quantities, and the measured cross 
section can be directly expressed in terms of them. If a 
complete theory of hadron structure existed then these 
quantities could be calculated. Since this is not the case, 
and may never be, we must rely on experimental measurements 
and approximate model calculations. The early experiments 
measured the form factors for the proton in the four-momentum 
transfer squared range 0.02 < Q 2 < 0.5 (GeV/c)2 and the neutron 
form factors in the range 0.02 < Q 3 < 0.3 (GeV/c)a. These first 
glimpses into the nucleon structure also indicated that the 
root-mean-square radius of the nucleons' structure is around 
0.80 fm and that the distribution of charge roughly drops off 
exponentially in the radial direction. 

The form factor measurements become increasingly 
difficult at high Q s because the cross section falls as 1/Q" 
at high Q' and the counting rates drop correspondingly. 
Experimental techniques have progressed greatly since the 
early experiments, however, and success has been made in 



2 
extending the Q* range of these difficult measurements. 
Electron-proton elastic cross section measurements [3] have 
been made out to a Q 2 of 31 (GeV/c)s. However, the cross 
section d&pends on both the charge and magnetic form factors, 
and separate measurements of these quantities have only been 
made out to a momentum transfer of 3.75 (GeV/c)1 with errors 
on the order of a few percent [4][5][6)[7]. 
Similarly, the electron-neutron elastic cross sections have 
been measured [8] out to a Qa of 10 (GeV/c)2, while the 
neutron form factors have only been separately measured out to 
a momentum transfer of 1.5 (GeV/c)a with large errors 
[9][10][11][12][13] The neutron measurement is more difficult 
due to the lack of free neutron targets. This experiment was 
designed to make precision measurements of the proton charge 
and magnetic form factors [14][15] out to a Q 1 of 8.8 
(GeV/c)2 and neutron form factors out to a Q* of 4.0 (GeV/c)s. 

Figure 1.1: Feynman diagram for electron scattering 
assuming single photon exchange. 



The neutron form factors and their dependence on inelastic 
cross section modeling will be presented here. 

Electron-Nucleon Scattering cross Sections and Fora Factors 
The lowest order Feynman diagram for the electron-

deuteron scattering process is shown in Figure 1.1. It is 
assumed that ti=c=l and the incident and scattered electron are 
extreme relativistic. If, for the moment, it is also assumed 
that the hit nucleon was originally at rest, then the four-
momentum vectors describing the scattering off of an 
individual nucleon in the lab frame coordinates are given as: 

K..= 

'E 0 E' '«"• ' m^+Eo-E' ' 
0 
0 , Kj, -

0 
E'sin(e) ' p , = 0 

0 . * ; -
0 

-E'sin(6) 
Eo. E'cos(e), . 0 , E 0-E'cos(6) 

, ( 1 . 1 ) 

where E 0 is the incident electron energy, E' is the scattered 
electron energy, 9 is the scattering angle, and ra, is the 
nucleon mass. This process is characterized by two Lorentz 
invariant scalars, the four-momentum transfer squared: 

•<K-K')2 = 4E0E'sin2(.f), (1.2) 

assuming that the electron mass can be neglected, and the 
energy transfer, 

V = -£2=E„-E'. m N 

(1.3) 

The invariant mass of the final hadronic state of the hit 
nucleon is given by W where 

W 2= (P + q)2=mN + 2m Nv+q 2. (1.4) 



4 
In an elastic scattering process from a free nucleon 

there are no longer two independent variables. By requiring 
the final state to consist of a single nucleon in its ground 
state it must be true that Qa = 2m„v. The differential cross 
section for the elastic scattering of a spin 1/2 electron off 
of a spinless point nucleon, including the recoil of the hit 
nucleon, and assuming single photon exchange is given by the 
Mott cross section, 

/ do \ „ a 2 c o s 2 < 4 » 
lw^"^I ,"«E.W(4,ci*ii.in»a7r' ( 1 - 5 ) 

a m N 2 
Nucleons are not point-like, however, and their structure is 
described by form factors. The inclusion of this structure 
results in the Rosenbluth cross section, 

'4S-1 -€ 5i(9'L^(q')^ W I ) t i a l ( 4 ) (1.6) 
1 + x 

where T = Q2/4M,,3, G„(Q3) and G,„(Q2) are the Sachs electric and 
magnetic form factors, and N is replaced by p for the proton 
and n for the neutron. The Sachs form factors are often 
expressed in terms of the Dirac, F,(Q2), and the Pauli, F Z{Q 2), 
form factors 

G M H(Q 2)=F 1 1 1{Q 2>*F 2 N(C 2). d-7) 

G E H(0 2)=F 1 N(0 2)-tF i ! N(0 2). (1-8) 

In the limit of no nuclear recoil the form factors become the 
Fourier transforms of the charge and magnetic moment 
distributions of the nucleons. In the limit of Q' - 0 the 
electric form factors are normalized to the total charge of 



the proton and neutron, 

G^IO^l, G E n(0)=0, (1.9) 

and the magnetic form factors are normalized to the anomalous 
magnetic moments, 

G^fO) = U p = 2.793nm, G^tO) =u n = -1.913nm. (1.10) 

Existing data are consistent with GE„(Qa) = 0 and the remaining 
form factors can be approximated by an empirical dipole 
formula, 

G D(Q*) = - 1 . G l ! p ( Q 2 ) " - ^ 2 <02> G^tQ2) 

,. Q 2 I - ' *•' ( 1 - U > 
(0.71)J 

where Q 3 must be in units of (GeV/c)3. The Rosenbluth cross 
section is a function of angle and momentum transfer. By 
measuring the cross section at different angles and the same 
Qs, the individual form factors can be extracted. This is 
called a "Rosenbluth separation". 

If scattering takes place off of a nucleon contained in 
a deuterium nucleus, the process can no longer be considered 
elastic because the weak binding of the deuteron (2.225 HeV) 
generally results in its electrodisintegration. However, since 
the binding is weak the process is nearly elastic and is 
called instead "quasielastic". A complication in using a 
deuterium target is that it is no longer true that the nucleon 
in the nucleus has no inherent motion. The nucleons are bou.id 
together in a confined space and by the uncertainty principle 
have some nonzero momentum, called the Fermi momentum, 
distributed between them. This produces a broadening or 
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smearing of the measured cross sections because the kinematics 
of the allowed final state depend on this variable quantity. 
If we want to study scattering from the neutron then there is 
an additional complication due to the significant contribution 
to the cross section from quasielastic and inelastic 
scattering from the proton. In the quasielastic region the 
deuteron cross section is approximated fairly well by a Plane-
Wave Impulse Approximation (PWIA) calculation [16][17] . The 
inelastic region has contributions due to the production of 
one or more hadrons, the most dominant contribution in the 
region of interest being the 4(1236) resonance production. The 
tail of the inelastic region can extend well into the 
quasielastic region. A careful study and understanding of the 
cross section modeling of these contributions is vital to 
correctly extracting the neutron form factors fi-om the 
measured cross sections. Sample model cross sections for 
electron-deuterium scattering are shown in Figure 1.2. The 
tutal expected cross section, excluding the small elastic 
electron-deuterium contribution, has been broken into its 
constituent contributions, the inelastic deuteriu-u and the 
quasielastic. The electron-proton elastic scattering model 
cross section is also shown for comparison. 

The inelastic electron-deuteron scattering cross section 
is given by 

^ ' V T 0 5 \ (W2(x,Q*)+2W1(x.Q2) tan2(-%)), (1.12) 
dQdE' 4E0

2sin4(|) 

where x=QV2m«v and Wj and W2 are the deuteron structure 
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- \ I 
• Quasielastic 
• Inelastic 

— Total 
•••• Proton elastic 

\ / ' 1 1 
• ̂ ^ < • 

_ « 1 

• \ 

Scattered electron energy, E' 
Figure 1.2: Sample electron-deuterium scattering cross section 
model showing the quasielastic and inelastic contributions. 
Also shown is the electron-proton elastic scattering cross 
section for comparison to the quasielastic. 

functions. We now define T' = v2/Q= (f = r = QV4m„2 = previous 
definition at the quasielastic peak) and express the structure 
functions in terms of the transverse and longitudinal 
virtual photoabsorption cross sections a, and aL: 

W^x.Q') =—!i_a T<x,C 2>, 4n2a (1.13) 

W 2 ( X , Q ^ - U ° T ( X ' Q 2 ) ^ < X - Q 2 ) | , (1.14) 4n*a\ I+T' ) 
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where, K, the equivalent energy needed for a real photon to 
produce the same final mass state is given by 

K=¥-£l. (1-15) 
2Mn 

The differential scattering cross section can now be expressed 

_dJo _0KEl/2\fc ( x , Q*) + ea L(x,0 2)l, (1.16) 
dQdE' 4n"Q2E\l-e/L T L J 

where e, the longitudinal polarization of the virtual photon 
is defined as 

1 
" l + 2(l + T')tan2<-£> ' ( 1 , 1 7 ) 

In the impulse approximation the differential cross 
section can be expressed in terms of a scaling function, F(y), 
a phase factor, K,, and the elastic nucleon cross sections, 

d 2 o 
dQdE' m-mi EJyi- ( i . i 8 ) 

Ky ' p 

The scaling variable, y, is equal in magnitude to the 
longitudinal momentum of the struck nucleon relative to the 
virtual photon direction. The total fermi momentum of the 
struck nucleon, in terms of the longitudinal and transverse 
components, is given by 

P 2 = P L
2+P 7

!=y 2 + PT
8, (1-19) 

and y is determined from the energy conservation equation 

E 0*M d = E' + ,/M^P ! + ̂ M 2* (P + q ) 2 . (1.20) 
F(y) is related to the integral over the deuteron wave 
function. Various proposals have been made as to what is the 
proper form of K,, and a study by Petratos [18] compares 
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these different forms. A comparison of equations 1.16 and 1.18 
using equation 1.6 yields the following results valid at the 
quasielastic peak, 

0T(X,Q2) =-^p--^--x(G*n{Q2) +G^(Q*)) . (1.21) 
K. K y 

o L(x,0 2)=-i2^.-^-(G E
a„(0 2) +G| p(0 2)). (1.22) 

K Ky 
It is convenient for the analysis to define a reduced cross 
section given by 

By plotting o, versus e at a given Q 2 it is simple to extract 
aT and CTL using a line fit to the data. Then by using values 
for G„P(Q2) and G t p(Q 2) which were also measured in this 
experiment, and a model for Ffy)/!^, G m(Q 2) and G I n(Q 2) can be 
extracted. 

Experimental Overview 
Inclusive electron-deuteron scattering cross sections 

were measured for the kinematic points given in Table 1.1. 
Scattered electrons were concurrently measured by two 
spectrometers at the Stanford Linear Accelerator Center (SLAC) 
End Station A as shown in Figure 1.2. The 1.6 GeV/c 
spectrometer was fixed at 90* throughout the experiment and 
the 8 GeV/c spectrometer position was varied between 90° and 
13*. For the deuterium cross section measurements the Nuclear 
Physics Injector (NPI) was used to give an electron beam with 
energies between 1.5 and 5.5 GeV and with average currents 



1.6 GeV Spectrometer 

Toroids 

/ 
Scattering Chamber 

Quadrupole Magnets 

SLAC Electron Beam 
Dipole Magnets 

8 GeV Spectrometer 
Figure 1.3: End station A experimental facility. 
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Table 1.1: NEll deuteron kinematic data points. 
Q 2 E (GeV) E' (GeV) e e SPECT 

1.75 1.511 
1.968 
2.407 
5.507 

0.578 
1.035 
1.474 
4.384 

90.0 
55.2 
41.1 
15.2 

0.250 
0.550 
0.704 
0.950 

8 & 1.6 
8 
8 
8 

2.50 1.968 
2.407 
2.837 
5.507 

0.635 
1.075 
1.504 
4.167 

90.0 
58.8 
45.0 
19.0 

0.227 
0.479 
0.630 
0.913 

8 & 1.6 
8 
8 
8 

3.25 2.407 
2.837 
5.507 

0.675 
1.105 
3.768 

90.0 
61.2 
22.8 

0.206 
0.426 
0.864 

1.6 
8 
8 

4.00 2.837 
5.507 

0.705 
3.i.23 

90.0 
26.9 

0.190 
0.805 

1.6 
8 

between 0.1 and 10 f«A. For hydrogen inelastic cross section 
measurements which will be discussed also, the maximum beam 
energy used was 9.80 GeV and was attained using the NPI in the 
snort pulse SLED (SLAC Energy Doubler) mode. The solid angle 
of the 1.6 GeV/c spectrometer was increased to 8 msr for this 
experiment by the addition of two quadr"pole magnets. The 
detectors and electronics used for this experiment were 
designed to measure electrons amidst a large background of 
pions produced in inelastic scattering reactions. These 
measurements are all part of the SLAC experiment NEll. These 
data were taken in January and February of 1989. 
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2. APPARATUS 
Electron Beai 

Transport System and Energy Measurement 
Electron pulses provided by the NPI [19] [20} were 

accelerated through the final 600 meters of the 3000 meter 
long linear accelerator [21]. The nominal beam rate was 
120 pulses per second (pps) with a typical beeon pulse width of 
1.6 lis and a maximum peak current of around 60 mA. The beam 
was transported to the experimental area. End Station A (ESA), 
by the beam switchyard [22] [23] via the "A-line", 
Figure 2.1. The beam was controlled by beam operators at the 
Main Control Center (MCC) until reaching the final steering 
magnets, A10-A13, at which point the experimenters assumed 
control. 

0 25 50 METERS 

Q10-QU 
I I • • ! • • 

PUI-PU5 

C- Collimators B: Bending Uagnets Ck. Cavity Uonilors 
PM: Pulsed Usenet* SL: Slits R3: Roller Screens 
Q' Quadrupble Magneto A: Steering Uagnetf T: Toroids 

Figure 2.1: 3eam transport system to End Station A. 

The energy of the beam was defined by bending magnets 
B10-B17 and was monitored by a rotating flip-coil located in 
the nominal beam position of a dipole magnet which was nearly 
identical to the eight bending magnets and was in series with 
them. A second check on the beam energy was made with a 
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precision current measuring shunt which was in series with the 
bending magnets. This second method was somewhat less 
reliable and was used only as a check. The energy spread was 
defined by the adjustable slit SL10 and ranged from AE/E = 
0.1% to 0.5% for this experiment. The slit designated as SL11 
was not used for this experiment. 

B&-iig Steering 
The beam position and profile were checked in between 

data taking runs by the automated insertion of two ZnS 
fluorescent screens which were viewed by clssed-circuit 
television. During data collection the beam was monitored by 
two resonant microwave cavities and two sets of secondary 
emission wire arrays. The microwave cavities, located 52 
meters upstream from the target, measured the horizontal and 
vertical beam offsets by producing an RF resonant signal which 
was proportional to the distance deviation from the central 
axis when the beam passes through. One of the wire array sets 
was located two meters upstream of the target and one was 
located 0.95 meters downstream. Each set consisted of on«v 
horizontal and one vertical plane with twenty-five 0.127 mm 
thick aluminum wires. The wire spacing was 1.0 mm. The beam 
monitoring system was controlled via a Digital Microvax II 
computer. Using the cavities and the upstream wire arrays, the 
Microvax also controlled small adjustments in the A10-A13 
steering magnets in order to kec=p the beam well-aligned. 

The quality of the beam was monitored by two plastic 
scintillators, each having a phototube. One was mounted along 
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the beam pipe slightly upstream from the target and was used 
to measure the beam halo or "bad spill". It was desirable to 
keep this as small as possible. The other scintillator was 
mounted about 10 meters from the target and measured the time 
structure of the beam or "good spill". This structure was 
kept as close as possible to a square wave. Both systems were 
displayed via oscilloscopes which could be viewed by both MCC 
and the experimenters in order to make beam adjustments. 

Toroidal Charge Monitors 
The total incident charge on the target was measured by 

two separate and independent ferromagnetic toroidal charge 
monitors [24] [25] located -10 meters upstream from the 
target. When a charge pulse passed through the toroid a 
magnetic field was induced inside the iron which in turn 
induced a current in a wire which was looped several times 
around the toroid. The signal was sent to an RC circuit, so 
with the toroid acting as an inductor, the whole system acted 
as an RLC circuit producing a resonant signal with an 
amplitude proportional to the total incident charge. The 
toroidal charge monitoring system and calibration is discussed 
in greater detail in appendix A. 

Targets 
The target assembly system. Figure 2.2, consisted of long 

and short target cells filled with liquid hydrogen and liquid 
deuteriv n and aluminum targets needed for background 
subtraction. The cell lengths were 15 cm and 4 cm, and all 



15 

; » 

i^^^^s^i^aw"!" 

K ' ^ S « M 

^ . ,. 

\ £ 2 f . " " " - - -^ 

i ;=-=2b£ 2 = i : 

M r . .1 

.**i l 

«-Tungsten Bars-* 

% 

a» 

ffi 

M 

Mount Pace 

•Al 
Beam 
Direction 

Figure 2.2: Target assembly mount as seen from the 1.6 
GeV spectrometer. 

the liquid targets had a radius of 3.22 cm. The two aluminum 
targets were constructed from a single 0.064 mm thick sheet of 
aluminum as shown in Figure 2.2. This target was mounted at 
45° relative to the beamline. The entire assembly mount was 
remotely controlled by the computer to move up and down inside 
the scattering chamber so that the desired target was along 
the beamline. The beam entered the scattering chamber through 
a 0.0254 cm thick aluminum membrane which separated the 
beamline vacuum from the scattering chamber vacuum. A detailed 
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table of target materials seen by the beam and scattered 
electrons is given in Table 2.1. 

The liquid target material was continuously circulated 
through the targets by fan-like pumps. The circulation over 
the entire length of the target was aided by the presence of 
baffle guides. The liquid was at a temperature of 21 K and was 
pressurized to 2.0 atmospheres. Vapor pressure bulbs and 
platinum resistors were located near the inlets and outlets of 
the targets to monitor the target temperature and pressure 
every 10 seconds. These measurements were converted to density 
using cryogenic data [26] [27] and precision calibration 

Table 2.1: Thicknesses of target materials. 

E Material Thick, (cm) 
Materials seen by beam 

Wire arrays 
Scatt. chamber membrane 
Incap 
Long hydrogen 
Short hydrogen 
Long deuterium 
Short deuterium 

Aluminum 
Aluminum 
Al 5052 
H s 

H* 
D3 

0.00400 
0.00254 
0.00762 
14.988 
2.996 

14.925 
4.006 

[ Materials neen by all scattered electrons 
Liquid target Ha or D 2 3.1940 
Endcap Al 3004 0.01143 
Cell wall Al 3004 0.01270 
Insulation Mylar 0.00635 

Materials seen by electrons scattered 
into the 8 GeV spectrometer 

Scatt. chamber exit window 
Air gap 
Quadrupole window 

Al 6061 
Air 
Mylar 

0.03048 
16.00 
0.03048 

Materials seen by electrons scattered 
into the 1.6 GeV spectrometer 

Scatt. chamber exit window Al 5052 0.00762 
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measurements relating resistance to temperature. The average 
densities over the experiment were 0.07055 gm/cm3 for hydrogen 
and 0.16937 gm/cm3 for deuterium. Comparisons were done on 
electron and pion counting rates at different beam currents, 
beam repetition rates, and target circulation rates to study 
possible local boiling effects. No density fluctuations were 
observed within the statistical accuracy of the measurements. 

8 GeV Spectrometer and Detectors 
The 8 GeV spectrometer [28][29], shown in Figure 

2.3, consisted of three quadrupole focusing magnets and two 
bending magnets which each bend 15°. The magnetic fields in 
the quadrupoles were monitored every ten seconds by Hall 
probes and the fields in the bending magnets were monitored by 
nuclear magnetic resonance (NMR) probes. During data runs the 
NMR's were read in the "out" position, meaning out of the 
particle acceptance. Between runs the probes were inserted 
into the uniform field regions and read manually. The 
spectrometer central momemtum, E', was then calculated from 
the relation [30]: 

E'(GeV) =0.41512-B + 0.00050, (2.1) 

where B is the magnetic field measured by the NMR probes in 
kG. The offset used in this relation is small and has a 
comparable error of 0.00037. It accounts for background fields 
such as the earth's magnetic field. In back of the magnets 
there was a lead-shielded hut containing the particle 
detectors. The magnets and the detector package, sat on a 
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frame which was moveable about the pivot. The motorized 
movement of the spectrometer was remote-controlled to sit at 
the desired scattering angle which was known to + 0.005°. This 
spectrometer was capable of analyzing particles up to a 
maximum momentum of 9 GeV/c. 

Optical Properties 
The 8 GeV/c spectrometer was designed for point-to-point 
focusing in the vertical or bend plane and for line-to-point 
focusing in the horizontal or non-bend plane. Point-to-point 
means that particles scattered in the vertical plane with the 
same momentum are focused to the same point at the momentum 
focal plane located in the hut. Line-to-point means that 
particles scattered in the horizontal plane with the same 
scattering angle along the length of the target are focused to 
tha same point at the theta focal plane. 

The "central ray" of the optics refers to the trajectory 
of a particle passing through the optical center of the 
spectrometer magnets. The coordinate system used is relative 
to this trajectory. The distance measured along the central 
ray is denoted by Z, while the horizontal and vertical 
distances measured relative to the central ray are X and Y 
respectively. The other important coordinate quantities to 
define are 5 which is the percent deviation of a particle's 
momentum from the spectrometer central momentum, 6 which is 
the horizontal scattering angle at the target, and <p which is 
the vertical scattering angle at the target. The first order 
optical properties of the magnets are shown in Figure 2.4 and 
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the position and orientation of the focal planes relative to 
the wire chambers are shown in Figure 2.5. A study of the 
optical properties of this magnetic spectrometer has been made 
and the results are recently available [30]. 

Cerenkov Counter 
When a particle passes through a dielectric medium with 

a velocity exceeding the velocity of light in that medium then 
Cerenkov radiation is produced. The purpose of the threshold 
cerenko* counter is to separate electrons from a background of 
lower velocity particles (predominantly pions). The cerenkov 
counter used in the 8 GeV spectrometer hut was 3.30 meters 
long and had 0.41 mm thick type 2024 aluminum entrance and 
exit windows. A spherical mirror, located 3.15 meters from the 
entrance uindow, collected cerenkov light and focused it onto 
a phototube. The mirror was 6.4 mm thick aluminized lucite 
with a coating of magnesium fluoride to prevent oxidation and 
to enhance the reflection of ultraviolet and visible light. 
The phototube was an RCA 8854 jantacon phototube chosen for 
its high gain and good efficiency. The phototube was coated 
with a wavelength shifter to shift the ultraviolet light to 
the visible range where the photocathode was most sensitive. 
The gas used was nitrogen at 450 mm of Hg which has an index 
of refraction of 1.000165 at a temperature of 18° C. This 
translates to a threshold of 28 MeV/c for electrons and 7.5 
GeV for pions. Because the spectrometer momentum was always 
set lower than 7.5 GeV, pions could only produce signals 
through the production of "knock-on" electrons in the entrance 
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plate of the counter. These electrons can produce cerenkov 
radiation. The knock-on probability of a plon producing a 
detectable electron increases with pion momentum and ranged 
from 0.008% to 0.06% for this experiment. 

Wire chambers 
Immediately following the Cerenkov counter were ten 

planes of multiwire proportional counters [31], A charged 
particle passing through a chamber produced ionized atoms and 
electrons in the gas which, because of the high voltage 
applied, were accelerated and produced more ionization. The 
result was an avalanche of particles which collected on the 
nearest anode wire producing a signal proportional to the 
original amount of ionization. 

The 20 /im anode diameter wires were made of gold plated 
tungsten and were spaced at 2.0 ran intervals. The active 
areas of the chambers were 35 cm by 93 cm. The P chambers, 
which measured the particles' momenta, had 176 anode wires and 
the T chambers, which measured the scattering angle, had 480 
anode wires. Because of the long wire length, a support wire 
was necessary in each of the P chambers to prevent 
electrostatic instabilities that could have impaired the 
performance of the chamber. The support wire was made of 
teflon coated beryllium and its presence produced a nearby 
region where the field was depleted. The wires in the T 
chambers were slanted at a 30' angle relative to the Y 
direction in the hut. The cathode planes were made of 0.05 mm 
thick aluminum coated mylar and sat 4.0 mm on either side of 



24 

Tl PI T2 P2 T3 P3 T4 P4 T5 P5 
Figure 2.6: 8 GeV wire chambers indicating wire 
orientation. 

the anode wire planes. A high voltage of 3.6 kV was applied 
for this experiment. The gas used, called "magic gas" was 
composed of 65.75% argon, 30.00% isobutane ((CH3)2CHCH3), 4.00% 
dimethyl acetal formaldehyde (CH,(CHa)2), and 0.25% 
bromotrifluoromethane (CBrP3). This gas flowed continuously 
through the chambers at a rate of 5 cc/minute. 

Scintillators and Hodoscope 
Plastic scintillators [32] are made from polymerized 

styrene which has been infused with an organic scintillator 
material such as anthracene or stilbene. A charged particle 
passing through the material produces ionization which in turn 
excites molecular states of the scintillator material. De-
excitation occurs in the form of fluorescence. It is emitted 
isotropically about the particle trajectory in just a few 
nanoseconds. Transparent light guides made of lucite are 
generally used to couple the scintillator to a phototube. 

The positions of the three planes of scintillators and 
the hodoscope are shown in Figure 2.5. The first plane, SF, 
consisted of five 15.2 by 22.1 cm long strips which lay 
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vertically and overlapped partially in the horizontal 
direction. The SF's had phototubes on the top end. The second 
plane, SM, and the third plane, SR, consisted of three 16.5 by 
114.3 cm long strips which lay horizontally. The SH's and the 
SR's had phototubes on both ends. 

The hodoscope was 15.2 cm thick and was composed of four 
planes, two segmented vertically and two horizontally. The 
vertically segmented planes had five left and five right 
scintillators which were 5.1 by 48.3 cm long and spaced 1.9 cm 
apart. The planes were aligned so that the gaps in one plane 
were covered in the other plane. The horizontally segmented 
planes had eleven scintillators which were 5.1 .by 36.2 cm long 
and spaced 3.8 cm apart. These planes were also a.'.igned so 
that all gaps were covered. The phototubes used were Hamamatsu 
R239 phototubes with a high voltage of 1800 Volts. 

Lead glass shower counter 
The purpose of the lead glass shower counter, shown in 

Figure 2.7, was to measure the energy deposited by an incident 
particle and to help in distinguishing between electrons and 
pions. A highly energetic electron entering the counter will 
interact with the material and produce both Cerenkov and 
bremsstrahlung radiation. Tlie bremsstrahlung photons can 
convert into electron-positron pairs which can also interact 
with the material producing, after several stages, a shower of 
Cerenkov photons which are measured by the phototube. Pions 
entering the counter can only produce an electromagnetic 
shower by first undergoing a photon producing charge exchange 
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Figure ?.7: Lead glass shower counter as 
viewed from above. 

interaction (irp -» ir°n, ir" -» 2y). The photons can pair-create 
to produce the shower, segmentation of the counter along the 
direction of the particle path aids in pion discrimination 
since a shower produced by a pion is more likely to occur 
farther into the counter than an electron shower. 

The 8 GeV spectrometer lead glass shower counter was 
segmented into five layers with six to seven blocks in each 
layer. The first layer, called the pre-radiator (PR) since 
electrons have a high chance of showering here while pions do 
not, contained six F-2 type Pb-glass blocks, each having r. 
thickness of 10.4 t:a (3.22 radiation lengths). These blocks 
were 32 cm tall, 15.8 cm wide, and had a refractive index of 
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1.6200. The entire row was rotated 5.2° about the hut vertical 
axis to suppress the number of particles traveling through the 
cracks between the blocks. The phototubes used were Amperex 
XP2041 for all the blocks. 

The next four layers of blocks were made of SF-5 type Pb-
glass and formed the total absorption counter (TA,TB,TC and 
TD). This experiment did not use the last layer because the 
most energetic electrons observed were well stopped by the TC 
layer. The three rows used each contained seven blocks and had 
a thickness of 14.6 cm (6.8 radiation lengths). The "locks 
were 40 cm tall, 14.9 cm wide and had a refractive iidex of 
1.6727. The TA row was the only row to have phototubes placed 
on the top and bottom of the blocks. This was to maximize the 
light collection since most of the electron's energy was lost 
in this layer. For spectrometer momentum settings greater than 
4.0 GeV 50 dB attenuators were used on the raw signals for the 
TA, TB, and TC blocks to keep the signals from saturating the 
electronics. Detailed information on the shswer counter 
calibration and performance is given in appendix B. 

1.6 GeV Spectrometer and Detectors 
The 1.6 GeV spectrometer, shown in Figure 2.8, consisted 

of two 10Q18 quadrupole focusing magnets and one 90° dipole 
bending magnet. The quadrupoles were 75 cm long each and were 
mounted on this spectrometer for the first time in this 
experiment. A fixed slit collimator located 28.8 cm from the 
target and before the first quadrupole restricted the vertical 
scattering angle of the electrons to be less than 120 mr 
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Figure 2.8: The 1.6 GeV spectrometer. 

relative to the central angle. The collimator was made from 
lead and tungsten. The momentum of the dipole was monitored 
with an NHR probe between all data taking runs. It was 
inserted i.ito the uniform field region remotely. The 
spectrometer central momemtum, E', was then calculated from 
the relation: 

E'(GeV) =0.07 5-B (2.2) 

where B is the magnetic field measured by the NHR probe in kG. 
The particle detectors were located in a shielded hut area 
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above the dipole magnet. This spectrometer sat at a fixed 
scattering angle of 90° for the entire experiment. 

Optical Properties 
With the quadrupole magnets in place, this spectrometer 

was capable of analyzing particles up to a maximum momentum of 
0.S GeV/c (with no quads, the maximum momentum is 1.5 GeV/c). 
Like the 8 GeV spectrometer, it was designed for point to 
point focusing in the bend plane for particles of the same 
momentum and for line to point focusing in the non-bend plane 
for particles with the same scattering angle [33]. In order to 
achieve the line to point focusing the dipole was designed 
with slanted entrance and exit pole faces which effectively 
produce quadrupole focusing in the horizontal plane. In order 
to make the two focal planes coincide in the hut the dipole 
was designed with three sextupole regions produced by curved 
pole faces. The effect of the quadrupole magnets, whose 
magnetic fields were inadvertently set lower than desired, was 
to shift the vertical focal plane by three meters. The 
coordinate system used for this spectrometer is slightly 
different from that of the 8 GeV spectrometer. The distance 
measured along the central ray is still denoted by Z, but the 
horizontal and vertical coordinates are switched. Y is the 
horizontal posi.ion relative to the central ray and X is the 
vertical position. The coordinate, 6, is still the percent 
deviation of a particle's momentum from the spectrometer's 
central momentum, and 6 and <p are the horizontal and vertical 
scattering angles. The optical focusing properties of the 
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magnet are ohown in Figure 2.9 and the design focal plane, 
located at 2 ~ 9 m, relative to the hut detectors is indicated 
in Figure 2.10. Note that in Figure 2.9, the horizontal plane 
optics are focused at Z - 11.5 m instead of the design focal 
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Figure 2.10: The 1.6 GeV spectrometer hut detectors as 
seen from the direction of the target. 
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plane. This is because the quadrupoles fields were 
inadvertantly set slightly lower than desired during the 
experiment. 

fierenkov Counter 
The Cerenkov counter used in the 1.6 GeV spectrometer was 

1.4 meters long, had a diameter of 1.1 meters, and had 0.041 
cm thick entrance and exit windows made of 6061 type aluminum. 
A 0.025 mm thick aluminized mylar mirror sat 1.2 meters from 
the entrance and was tilted 28° about the X coordinate axis in 
the hut in order to focus the light onto a spherical mirror. 
The spherical mirror was made from machined lucite with nickel 
and aluminum deposited on the surface to form the mirror and 
a coating of magnesium fluoride to prevent oxidation and 
improve on ultraviolet light reflection. The spherical mirror 
was tilted 18° about the X coordinate axis and focused the 
light onto a five inch diameter RCA 8854 quantacon phototube 
which had been coated with a wavelength shifter. Mounted 
around the phototube was a light cone made from aluminized 
lucite needed to increase the light collection. The cone 
extended 10.2 cm from the face of the phototube, had an angle 
of 27°, and increased the area of light collection from a five 
inch to an eight inch diameter circle. The mirrors were laser 
aligned before this experiment to optimize the focusing onto 
the phototube and light cone. The gas used was carbon dioxide 
(C02) at atmospheric pressure which has an index of refraction 
of 1.00045 at room temperature. This translates to a threshold 
of 17 Mev/c for electrons and 4.7 GeV/c for pions. A high 
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voltage of 2650 Volts was applied to the phototube. 

Drift chambers 
There were three drift chambers in the 1.6 GeV 

spectrometer hut. Each drift chamber consisted of two X planes 
and two Y planes and several layers of foil. A cross section 
showing the wire configuration in one of the drift chambers is 
shown in Figure 2.11. The entrance and exit foils in the 
chambers were made of 0.076 mm thick aluminized mylar. Each 
plane of wires was sandwiched between foils made of aluminized 
kapton for a total of five kapton foils in each chamber. Field 
shaping wires, needed to create a uniform electric field 
around each anode, alternated every 1.0 cm with the anode 
wires. The distance between anode wires in each plai.e was 2.0 
cm, but since the planes in a set were only 0.9 cm apart, they 
were treated as one plane of wires with 1.0 cm wire spacing. 
Each chamber had 62 X wires and 42 Y wires. A gas composed of 
89.06% argon, 9.92% COa, and 1.02* methane flowed continuously 
through the chambers at a rate of 20 cc/minute. 

When a charged particle goes through a drift chamber, 
ionization is produced in the gas. The chambers were designed 
so that the fields in the vicinity of a given wire are shaped 
to produce a constant drift velocity for the ionization. Thus, 
by measuring the drift times for pairs of wires which produce 
signals the actual position that the particle traversed can be 
measured. The anode wires were 0.2 mm in diameter and had a 
high voltage applied of around 1850 Volts. The field shaping 
-ires were at a voltage of -500 Volts and the kapton foils 
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Figure 2.11: Partial cross sectional view of a set of drift 
chamber wire planes (either X or Y) indicating anode and 
field shaping wiros and kapton foils. The wire diameters 
have been exaggerated in this view. 

were kept at ground. 

scintillators 
There were four planes of scintillators in the 1.6 GeV 

spectrometer hut. Two of these planes were segmented in X and 
two were segmented in Y. The scintillators had light guides 
and phototubes at both ends except for the upper layer of X 
scintillators which only had phototubes at one end. There were 
five lower X (XD's), three lower Y (YD's), six upper X (XU's), 
and four upper Y (YU's) scintillators. The scintillators were 
11 cm wide and were mounted to overlap slightly to prevent 
cracks. The high voltages applied ranged from 1800 to 2200 
Volts and RCA 8575 phototubes were used. 

Lead Glass Shower Counter 
The 1.6 GeV spectrometer lead glass shower counter was 

segmented into two layers along the direction of particle 
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traversal with fourteen blocks in each layer. The fourteen 
blocks were placed in a 7x2 configuration. The first layer was 
called PA and the second layer was called PB. The blocks were 
made of SF-6 type Pb-glass which has a refractive index of 
1.8052 and measured 10 by 10 by 25 cm. The total radiation 
length of the counter was 11.9 r.l. The second layer was 
offset slightly in V to prevent the particles from traveling 
entirely through the crack and escaping detection. The 
phototubes used were three inch Hamamatsu R1911 and the 
applied voltages ranged from 1400 to 1900 Volts. 

Electronics 
8 GeV Electronics 

The raw signals from the detectors were sent to fast 
electronics modules located in the ESA counting house via 
heliax cables for important trigger components and by coaxial 
cables for other components. The electronics implemented 
commercially available NIM and CAMAC modules. The raw lead 
glass phototube signals, PR's and TAD's, and the scintillator 
phototube signals, SF's and SH's, were fed into separate 
linear fan-out units which produced input signals for the 
analog to digital converters (ADC's) and the discriminators. 
The ADC's recorded pulse height information, and the 
discriminators provided logic signals for trigger formation, 
latches, scalers, and time to digital converter (TDC) stop 
gates. The raw PR and TAD signals were also summed before 
being sent to a discriminator for use in the trigger 
electronics. The SF discriminator signals were all sent to the 
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same logical OR, and the SM discriminator signals were sent to 
a logic OR after the signals from the same scintillator but 
different phototubes, had been time averaged. The 
discriminator settings for signals important to the trigger 
are given in Table 2.2. 

Table 2.2: Discriminator threshold settings. 
Signal e SF SM PR TAD 

Disc (mV) 30 40 40 60 60 

A simplified schematic drawing of the 8 GeV electronics 
is shown in Figure 2.12. The trigger was designed to maintain 
a high electron detection efficiency while giving good 
background pion rejection. The first level of the trigger had 
three components, the El-Hi, El-Lo, and PION. El-Hi required 
three out of the four signals CK, PRSUM, TADSUM, SK_OR. This 
combination worked well at higher momenta to detect electrons 
and discriminate against pions. At lower momenta, when the 
electron shower can be completely contained in the PR layer, 
El-Hi loses efficiency. Thus, El-Lo, which always required a 
CK signal, was used for increased efficiency at the lower 
momenta, in addition, El-Lo required two out of the three 
signals PRSUM, SF_OR, and SM_OR. The PION component required 
both the SF_OR and the SM_0R signals and was used to monitor 
the pion background. This trigger was efficient at measuring 
any charged particle passing through including electrons. 

Next, the PION signal was prescaled by a factor which 
ranged from 2* to 2" for this experiment. The prescale factor 
was chosen so that sufficient pions were detected for analysis 
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and study of detector performance, but not so many that the 
electron measurement was hindered. The El-Hi and El-Lo signals 
entered a logical OR to form the El-20 signal which had a 
width of 20 ns. Also formed at this stage were El-40, El-60, 
and El-80 which were the same as El-20, but they had widths of 
40, 60 and 80 ns respectively. These electronics were included 
for measuring electronics deadtime. Additional electronics for 
the deadtime measurement included the PTC-20, PTC-40, PTC-60, 
and PTC-80 signals where PTC was a coincidence signal formed 
from the PR, TAD and £ signals. The number indicates the gate 
width and the signals are counted by scalers. El-20, and 
PION_PRESC entered the PRETRIG logical unit along with RANDOM. 
RAKDOM was a random pulse generated approximately every ten 
seconds to monitor the pedestal levels of the ADC electronics 
and to examine the noise levels in the multiwire proportional 
chambers. PRETRIG required one of these three signals along 
with a beam gate which signaled the presence of the beam. Due 
to limitations on the rate at which the computer could log 
event information, it was necessary to restrict the trigger 
rate to once per beam pulse. This was the purpose of the gate 
generator located between PRE-TRIG and TRIG. The gate 
generator allowed only the first PRE-TRIG signal through by 
creating a gate lasting longer than the beam pulse which 
masked further PRE-TRIG signals. Once TRIG, the final trigger, 
was formed it was used to send an interrupt signal to the 
computer to indicate that the electronics information should 
be read and logged. TRIG was also used for the TDC start 
pulses, the gates on the ADC's and the reset signals for the 
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latches. 

There was also additional electronics not shown in Figure 
2.12. The multiwire proportional chamber signals were read 
whenever a TRIG signal was formed. Readout cards were mounted 
on the chairiars themselves. Each card could handle a group of 
eight wires and contained amplifiers and dual one shot delays 
for a total delay of 900 ns. These delayed signals were 
latched if a trigger was formed and were read out serially by 
a CAMAC wire chamber readout module which processed the data 
for logging onto magnetic tape. There was a limit of 64 wire 
groups which could be stored per trigger. The electronics also 
included many scalers such as those needed to calculate 
deadtime and one-per-pulse corrections which are discussed in 
the next chapter, and coincidence modules for monitoring 
accidental coincidences between various trigger components. 

1.6 GeV Electronics 
The raw PA and PB were first sent to amplifiers. The 

amplifier outputs were sent to ADC's, and then in groups of 
four, the signals were sent to fan in/cut modules. The output 
of the fan in/out were sent to a discriminator, which produced 
logic inputs for the TDC's and scalers, and to another fan 
in/out module where all the signals in a given layer were 
combined. The PA combined signal was sent to two 
discriminators with high and low discriminator thresholds 
giving PA_HI and PA_L0. The PA and the PB signal were fanned 
in together and sent to a discriminator to form the SH signal, 
and the PB was sent to a discriminator to form the PB signal. 
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The drift chamber wire signals were processed separately 

for each individual wire. Each signal was first fed i^to a 
discriminator to widen the pulse and then to a gate and delay 
circuit designed to reduce spurious noise in the chambers. The 
signals were delayed about 400 ns. and then gated with a 
trigger induced 400 ns. gate to produ :e the wire chamber TDC 
starts. The trigger forms the TDC stop. 

The scintillator signals were sent directly to 
discriminators which produced TDC inputs and inputs to logical 
OR units for combining the signals in a given layer of 
scintillators. These signals are called XDOR, YDOR, XUOR, and 
YUOR. XDOR and YDOR formed the SD signal, and XOOR and YUOR 
formed the SU signal through logical AND modules. Also, the SC 
signal was formed by requiring three out of the XDOR, YDOR, 
XUOR, and YDOR signals. The discriminator threshold settings 
for important trigger components are shown in Table 2.3. 

Table 2.3: Discriminator threshold settings. || 
Signal C PALO PAHI PB SH 1 
Disc (mV) 100 280 550 150 750 1 

A simplified trigger electronics diagram is shown in 
Figure 2.13. Like the 8 GeV trigger, the 1.6 Gev trigger was 
designed for high electron detection efficiency and good pion 
rejection while allowing a controlled sample of pions to 
generate a trigger. The trigger components were similar to 
those in the 8 GeV electronics. El_Hi required PA, SH, and SC 
to all be true. El~Lo required £K, and two out of three of the 
PA, SU, and SD signals. PION required SC and NO_£K and was 
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Figure 2.13: 1.6 GeV spectrometer trigger electronics 



42 
prescaled by a factor ranging from 2* to 2" forming the 
PION_PRESC signal. EL-20 was formed from an OR of El-Hi and 
El-J J and PRETRIG reguired the beam gate and one out of El-20, 
PION_PRESC, and RANDOM which was the same random trigger used 
for the 8 GeV electronics. TRIG was formed from the PRETRIG 
output using a gate generator to restrict the triggers to one 
per beam pulse similarly to the 8 GeV electronics. TRIG 
signaled the computer to read the electronics and generated 
TDC start signals, ADC gates and latch gates, and the common 
stop for the drift wire chamber TDC's. 

Additional electronics not shown in Figure 2.13 included 
many scalers such as those needed to calculate important 
corrections like deadtime and one-per-pulse corrections which 
are discussed in detail in the next chapter. Also, there were 
several coincidence modules used to monitor random 
coincidences between key trigger components. 

Data Acquisition 
Electronics data were interfaced to a PDP-11 computer for 

each event via CAMAC electronics and were read every time a 
trigger interrupt was sent. The PDP transferred the 
information to a VAX 11/780 computer for magnetic tape logging 
and for an online sampling analysis of the events. The online 
analysis was very important for diagnostic testing of most 
aspects of the experiment. The VAX was also responsible for 
monitoring at a sampling rate of every ten seconds such 
quantities as target temperature measurements, magnet 
currents and high voltages. A link between the VAX and MCC 
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Figure 2.14: Data acquisition system 

provided important information on the beam energy and the slit 
setting. The microvax computer controlled beam steering, 
toroids, and monitored the cavities and wire arrays. It 
transferred this information to the VAX for tape logging. A 
schematic diagram of the data acquisition system is shown in 
Figure 2.14. 
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3. DATA ANALYSIS 
Introduction 

The experimental data, as stored on magnetic tape, were 
divided into many "runs" which differed in kinematic settings 
and the target type. Generally, several runs made up a 
kinematic point and targets were routinely rotated. The data 
analysis, from the raw data stored on magnetic tapes to the 
final results, consisted of several distinct stages as shown 
in Figure 3.1. The purpose of the first stage, PASS 0, was to 
rewrite the magnetic tapes so as to exclude bad or aborted 
runs and to remove any useless data. During this condensing 
process, a large data file was created to store important 
checkpoint information for each run. A checkpoint was a 
subdivision of a data run defined to be three minutes of real 
running time. If a problem occurred within a checkpoint, the 
checkpoint could be eliminated rather than the entire run. 
Also, a checkpoint could be eliminated for one spectrometer's 
data and not the other's. A careful study of possible 
checkpoint problems was made taking into consideration such 
things as magnet stability, beam steering, scaler counting 
rates, etc... When a bad checkpoint was found a flag in the 
data file was set accordingly so that the checkpoint was not 
included in the subsequent analysis. 

The second stage (PASS 1) included event selection, 
tracking, detector performance studies and spectrometer optics 
studies. During this stage a new data file was created 
containing events histogrammed in reconstructed S and 6 at the 
target for each run. As discussed earlier, 6 is defined to be 
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Figure 3.1: Flow chart showing the stages of the data 
analysis. 
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the percent deviation of the particle's momentum from the 
spectrometer central momentum, and 6 is the horizontal 
scattering angle at the target. Histograms were saved for both 
electrons and pions and for several different cuts on the 
vertical scattering angle. Also stored in this data file were 
shower counter energy spectra corresponding to each of the 
saved 4-9 histograms, Cerankov ADC spectra, efficiency 
information, scalers, and toroid and beam steering 
information. At this point all data were stored on the 
computer hard disk and magnetic tapes were no longer 
necessary. 

In the third stage, PASS 2, runs of identical kinematics 
and target were combined. Pion contributions to the electron 
spectra were calculated and subtracted, incident charge on the 
target was calculated with all the necessary corrections, all 
energy, momentum, and scattering angle corrections were made, 
and target density corrections were made. A new data file was 
saved for each spectrometer. The data files contained, for 
each kinematic point, r.he summed 5-0 histograms still saved 
for several vertical angle cuts, kinematic information, and 
the necessary corrections for conversion to cross section. 

The final stage of the analysis, PASS 3, converted the 
data into cross sections, da/dndw2, using the spectrometer 
acceptance function and the corrections saved in PASS 2. W2 is 
the missing final mass state of the hit nucleon which, after 
correcting for the slight 6 dependence is equivalent to E', 
the scattered electron energy. Kinematic points which slightly 
overlapped were corrected to the same kinematics and were 
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combined. Aluminum and positron contributions were subtracted 
and radiative corrections were applied. The analysis then 
split into the inelastic and the quasielastic analysis. The 
goal of the inelastic analysis was to study and fit the 
hydrogen inelastic data and to determine the contribution of 
the inelastic tail at the deuteron quasielastic peak by 
smearing the hydrogen fits with models. The quasielastic 
analysis involved understanding the shape of the peak due to 
smearing effects, making relativistic corrections and 
extracting the form factors. 

8 GeV Event Analysis 

The track finding procedure [15] was similar for both the 
P-type and T-type chambers which were discussed earlier. 
Tracks in the vertical direction were found with the P-type 
chambers and those in the horizontal direction were found with 
the T-type chambers. Adjacent wires which fired in a chamber 
were treated as a group. The "hit" position in a given chamber 
was defined as the centroid of the group randomized by one 
wire spacing, ±0.5 mm. The tracking algorithm looped over 
pairs of chambers. If both chambers in the pair contained hits 
a line was defined and the remaining chambers were checked for 
hits passing through the same track. Final tracks were found 
by doing a linear .least squares fit including all chambers 
with hits. These tracks required at least three P-type and 
three T-type chambers and at least seven chambers total. In 
the event that multiple tracks were found purging was done 
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based on the shower energy for the tracks, the reconstructed 
target coordinates, XPLANE cuts, the hodoscope, the number of 
total chambers in the fit, and the chi-square of the fit. 
XPLANE was a quantity defined by the X and dx coordinates in 
the hut, where dx is the name given to dx/dZ or the horizontal 
angle in the hut. Similarly, the quantity dY is really dY/dZ 
or ti;-. vertical angle in the hut. The XPLANE distribution for 
many Events was very sharply peaked around zero if the 
particle track rays pointed back to the target. This quantity 
was closely related to the reconstructed target position along 
the length of the target. 

The tracking efficiency for electrons was measured using 
a cleaii sample of electrons which was obtained by requiring a 
Cerenkov signal above an ADC value of 50, and by requiring the 
energy deposited in the lead glass shower counter (normalized 
to the particle momentum as measured by tracking) to be 
betweeti 1. o and 1.7. This high cut on the deposited energy 
helped insure that the calculation was for electrons and not 
pions. Also, the efficiency calculation required that at least 
one and no more than three scintillators fired in the 
vertically segmented hodoscope and also in the horizontally 
segmented hodoscope. Edge scintillators were not included in 
this requirement to avoid using tracks which skimmed along the 
wire chamber edges and generally did not reconstruct to the 
target well. The measured efficiency was 0.9991. Kinematic 
quantities at the target were reconstructed from each event 
measured in the hut using the spectrometer reverse matrix 
coefficients given in Table 3.1 assuming that X and Y are in 
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Table 3.1: First and second order reverse TRANSPORT 
coefficients for the 8 GeV spectrometer giving target 
coordinates, x,8,tp, and S in terms of hut coordinates 
at the focal plane. OFX and cFDX are momentum 
dependent offsets given b y :. , , OFX = -0.6832 + 0.0017 E c' + 0.0044 E c ' 2 , 
OFDX = -0.8019 - 0.0025| E ' + 0.0049 E C ' K where E ' 
is the spectrometer central momentum. 

x (cm) 6 (mr) V (mr) * (%) 
X (cm)+OFX 4.88079 0.20871 

dX (mr)+OFDX -4.57703 0.0091S 
Y (cm) -0.03381 -0.33793 
dY (mr) -0.92823 0.00028 
X X 0.00297 0.00011 
X dX -0.00572 -0.00025 
X Y 0.00924 0.01547 
X dY 0.00062 0.00015 

dX dX 0.00269 0.00014 
dX Y -0.00436 -0.01471 
dX dY -0.00071 -0.00017 
Y Y -0.00516 0.00017 
Y dY -0.00050 0.00136 

dYdY -0.00002 

cm and dX and dY are in mr. Target coordinates are obtained by 
multiplying the hut coordinates by the coefficients in Table 
3.1 and summing over the nonzero contributions where a blank 
spot in the table means the coefficient is zero. These 
coefficients were obtained from a TRANSPORT [34] model 
which was tuned to agree with measurements of the forward 
matrix elements made using a floating wire technique [30]. 
Since only four quantities were measured by the wire chambers 
and there are five target coordinates (x,y,6,ip,<S), it was 
necessary to assume that the particle originated from the 
central beam axis in the vertical direction in order to obtain 
a one-to-one correspondence. That is, no distribution in 
reconstructed y was allowed. This is a reasonable assumption 
given that the beam spot size in the vertical direction was 
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only on the order of three millimeters. 

Electron and pion identification 
once a single good track was found in the wire chambers, 

the event was required to satisfy several criteria as listed 
here to be called an "electron": 

1. The track must have been inside the good fiducial 
region defined by the active area of the hut 
detectors which was limited by the size of the lead 
glass shower counter. 

2. The Cerenkov ADC signal must have been higher than 50 
channels. 

3. The track shower energy normalized to the momentum of 
the particle track must have been greater than 0.7. 

4. The reconstructed kinematic quantities must have been 
within the acceptance of the spectrometer defined as: 
|&p/p| < 3.6%, |A8| < 6.4 mr, and |&<p| < 28 mr. 

"Pion" events were also defined and were required to satisfy 
the following criteria: 

1. The event was required to satisfy both criteria 1 and 
4 of the electron definition. 

2. There must not have been a Cerenkov ADC signal above 
the pedestal. 

3. The normalized track shower energy must have been less 
than 0.6. 

4. The normalized track shower energy seen in the first 
layer of blocks, PR, must have been less than 0.2. 

5. The pion latch in the electronics must have been set. 
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This latch should have been set for any particle which 
passed through the spectrometer since it depended on 
scintillator signals only. It was needed to 
discriminate against random events, and to get the 
correct pion prescaling factor. 

The electron and pion events were histogrammed separately in 
reconstructed 8 and S = Ap/p where the 8 bins were 0.8 mr. 
wide and the 6 bins were 0.2% wide. 

Shower Energy 
Electron and pion events can be distinguished from each 

other by looking at the normalized energy deposited in the 
shower counter. Raw ADC signals with pedestals subtracted were 
converted into energy for each block using the shower block 
calibration data as discussed in detail in Appendix B. The 
energy for each track was then calculated by summing over the 
energy of the blocks through which the track passed as well as 
adjacent blocks. Adjacent blocks were included to capture 
possible light leakage due to the transverse spread of the 
shower in the lead glass blocks. The layer of TC blocks was 
only included in this sum for spectrometer momenta greater 
than 4.0 GeV/c. The energy was then normalized by dividing by 
the measured particle momentum as defined by the measured hut 
coordinate, Y, and the leading order reconstruction 
coefficient (See Table 3.1). 

A typical shower spectrum for a deuterium target is shown 
ir. Figure 3.2 indicating the same shower energy spectrum for 
those events which did not fire the Serenkov counter and for 
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Figure 3.2: (a): Typical shower spectrum for the 8 GeV 
spectrometer shower counter requiring a track found in the 
wire chambers, (b): Same shower spectrum as in (a) except 
with the additional requirement of getting a Cerenkov ADC 
signal above 50. 

those events which had a Cerenkov ADC cut above 50. Both 
spectra required that a track was found. The first spectrum 
contains a large pion contribution and thus shows the shower 
counter response to pions. The second shows that requiring the 
Cerenkov signal greatly reduces the pions in the spectrum, but 
leaves the large electron peak at a normalized shower energy 

of 1.0 intact. The average FWHM energy resolution of the 
shower counter was « 17.5%/yE', and its efficiency for 
detecting electrons above the shower cut of 0.7 was 99.4%. 
This efficiency was measured on a run-by-run basis by 
calculating the percentage of shower events above the cut of 
0.7 for a clean electron sample. This electron sample was 
obtained by requiring "electron" criteria 1, 2, and 4 defined 
earlier with the additional restrictions that only one track 
must have been found from the wire chambers (no track 
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purging), at least nine of the ten chambers must have fired, 
and the guantity XPLANE defined in the tracking section was 
required to be within cuts of ± 15.0 cm. A plot of the points 
used in the efficiency calculation are shown in Figure 3.3. 
These data are for hydrogen target runs with the ratio of pion 
to electron rates less than 1.0. This cut on ir/e ratio was 
necessary because a large background of pions can skew the 
measurement of the electron efficiency. The efficiency from 

8 GeV Shower Counter Efficiency 
1.005 

1 

t 0.995 
.a 

0.985 

0.98 
0.01 0.1 

ir/e 
Figure 3.3: Calculated electron detection efficiencies for 
the 8 GeV spectrometer shower counter using hydrogen target 
runs where the ratio of pion to electron counting rates was 
less than 1.0. 

1 
' • 
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tht data in Figure 3.3 was calculated using an error weighted 
average. 

Cerenkov Counter 
Typical Cerenkov ADC spectra for electrons and pions are 

shown in Figure 3.4 for scattering from a hydrogen target. A 
Poisson curve was calculated for the electron spectrum using 
an average oi 6.8 photoelectrons. The pion spectrum clearly 
shows a single photoelectron peak just to the right of the 
pedestal peak (which was truncated to emphasize the pion 
events). The position of the pion peak motivated using an ADC 
cut of 50 channels for improved electron identification. 

A calculation of the efficiency was done using the 
Poisson fit and computing the fractit jl area above the ADC 
cut of 50. This calculation yielded an efficiency of 98.9%. 
The measured efficiency for detecting € '.ectrons above this ADC 
cut of 50 was found to be 99.0% which is in very good 
agreement with the calculated efficiency. The measured 
efficiency was calculated using an electron sample wnich 

required "electron" criteria 1 and 4 (see P. 50), the quantity 
XPLANE was required to be within cuts of ± 15.0 cm, and the 
normalized track shower energy was required to be greater than 
1.0. This high shower cut was made to eliminate background 
pions from the pion tail and thus, to ensure a good electron 
sample. Figure 3.5 shows the measured efficiencies versus the 
ratio of pion to electron rates. These data points include 
hydrogen and deuterium target runs. The line shown is an error 
weighted fit to the de,ta which yields the measured efficiency 
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Figure 3.4: 8 GeV spectrometer Cerenkov counter ADC spectra 
for electrons and pions. A Poisson cvrve was calculated for 
the electron spectrum using an averat,a of 6.8 
photoelectrons. The small pion peak corresponds to one 
photoe1ectron. 
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Figure 3.5: Run-by-run electron detection efficiencies 
versus ir/e ratio for hydrogen and deuterium targets. A fit 
to the data is also shown which yields the measured overall 
efficiency at jr/e = 0.0. 

when extrapolated to a ir/e ratio of zero. A study was made of 
the X and Y hut position dependence of the efficiency. Mo 
significant position dependence was found. 

pion subtraction 
Pion subtraction was necessary to account for the small, 

but non-negligible probability of a pion event which fired the 
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Cerenkov counter and gave a normalized shower energy signal 
above the cut of 0.7. It was necessary to save shower spectra 
corresponding to the electron and pion definitions given 
earlier excluding the cuts on the shower energies. The pion 
peak in the pion spectrum was scaled down to the pion peak in 
the electron spectrum to obtain a scale factor using the sum 
of all the pion counts in the vicinity of the pion peak. The 
fraction of pion events above the cut was calculated from the 
pion spectrum. By multiplying this fraction by the scale 
factor we obtained the fraction of pion events above the cut 
in the electron spectrum. Since it was not known which of the 
electron 4-8 bins contained pions, the subtraction was done 
evenly on a bin by bin basis. Each bin of the pion 6-6 
histogram was multiplied by the fraction of pions above the 
electron cut and was subtracted bin by bin from the electron 
histogram. This produced a non-integer number of counts in 
each bin. This correction was calculated for each kinematic 
point, first summing the pion spectra for all the runs 
contained in the point. The largest corrections found were 
0.075% for the hydrogen targets and 0.15% for the deuterium 
targets. 

Efficiency. Electronic, and Computer corrections 
A summary of the detector efficiencies discussed in the 

previous sections is given in Table 3.2. The total efficiency 
for detecting electrons was found by multiplying these 
individual efficiencies together since they were uncorrelated. 

The electronic dead time correction was calculated using 



58 

Table 3.2: Summary of 
analysis of the 8 GeV 

important efficiencies for 
spectrometer data. 

tracking shower Cerenkov electron 
efficiency 0.9991 0.9941 0.9904 0.9837 

the scaler rates of a coincidence of PR, TAD and ft (PTC) where 
the scaler inputs differed in their gate width. Gate widths of 
40, 60 and 80 ns were used, while the 20 ns gate width scaler 
was discarded due to double pulsing. The EL-20, EL-40, EL-60, 
and EL-80 scalers which were also meant for calculating the 
deadtime were not used because both EL-20 and EL-40 were 
double pulsing. A linear extrapolation to a gate width of 0 ns 
was done to give the scaler rate corresponding to no dead 
time. This scaler rate was divided by the 40 ns scaler rate to 
obtain the dead time correction. This correction ranged from 
1.000 to 1.009 for this experiment. 

The sample fraction was needed for a few runs where the 
computer failed to save all the events which should have been 
recorded. It was calculated from the ratio of the trigger 
scaler to the software event counter. For most runs these 
counters were the same. In the worst case the sample fraction 
correction reached 1.0058. 

The one per pulse correction accounted for the inability 
of the computer to save more than one event per beam pulse. 
After each computer trigger occurred, a trigger veto pulse was 
created lasting the length of the beam pulse. This pulse was 
put in coincidence with the PTC-40 pulse and summed by the 
PTC-40V scaler. The one per pulse correction was defined to be 
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the ratio of the PTC-40 scaler to the PTC-40V scaler. For a 
few runs where the PTC-40 scaler counts were low, a similar 
calculation was used with the less restrictive EL-40 and the 
EL-40V scalers. EL-40 was formed from an OR of EL-HI and EL-LO 
triggers and had a pulse width of 40 ns. This correction was 
small for the majority of runs, but for some very high rate 
runs became as large as 1.2. A Poisson calculation was also 
done to obtain the expected correction using the average 
number of triggers (PRETRIG) per beam spill. The agreement 
with the measured correction was good. The two quantities 
typically agreed to 0.2%. 

8 GeV Acceptance Function 
The acceptance function of a magnetic spectrometer 

describes the momentum dependence of the solid angle for the 
cross sections being measured. It is a function of the 
horizontal and vertical scattering angles, 6 and ip, and of the 
momentum deviation from the spectrometer central momentum, 6. 

Generally, the acceptance function is also a function of 
target length, but the data presented here was all taken with 
the long 15 cm targets so the target length dependence was not 
an issue. 

Monte Carlo model 
The purpose of the Monte Carlo program was to produce an 

acceptance function by simulating the physical properties of 
the spectrometer. Scattered electron events were generated at 
the target and transported to the hut area to determine which 
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particles made it all the way through. The interaction point 
inside the target was chosen randomly in x and y assuming the 
beam falls off as a Gaussian distribution and randomly along 
the length of the target, z. The scattering parameters 6, 6, 
and <p are also randomly generated within the desired limits. 

Assuming the spectrometer momentum was set to 8.0 GeV, 
the particles were transported through the spectrometer using 
several sets of forward TRANSPORT coefficients. Each set of 
coefficients transported the particles to a certain point 
along the spectrometer such that an aperture check could be 
done. The choice of spectrometer momentum of 8.0 GeV was made 
because multiple scattering effects are small. A correction 
for tns momentum dependence of multiple scattering was applied 
separately and will be discussed. Any particle hitting an 
aperture anywhere along the way was assumed lost. Particles 
which reached the spectrometer hut were transported through 
the detectors, taking into account multiple scattering effects 
due to passing through materials along the way, such as the 
Cerenkov counter windows and gas. Particle positions found at 
each wire chamber were randomly adjusted within the expected 
resolution of the wire chambers, a, = 2.3 mm and o y = 1.0 mm, 
and a line was fit to these coordinates to simulate the data 
tracking algorithm and produce coordinates at the focal plane. 
The fic'uTial cut used in the data analysis was checked and the 
events were reconstructed at the target using the same reverse 
TRANSPORT coefficients used in the data analysis. These events 
were then histogrammed in 6, 0, and tp bins. 

The acceptance function was calculated in each bin by 



taking the ratio of the number of particles in the 
reconstructed event histogram to the original number of 
generated particles and normalizing to the size of each bin. 
The acceptance function was then integrated over <p using four 
different <p cuts corresponding to those used in the data 
analysis. This gave four reduced acceptance functions. A 3-D 
surface plot of the reduced acceptance function with the 
largest <p cut, -28.0 < <p < +28.0 mr, is shown in Figure 3.6. 
Projections of these acceptance functions on the S and 8 axes 

are shown in Figure 3.7 for all four <p cuts. As the ip cut 

Figure 3.6: 8 GeV spectrometer acceptance vs, 6 and 9 for 
<p < | 28.01 mr and for a target length of 15 cm. Acceptance 
was normalized to 1.0 where 1.0 in s given 6-6 bin means 
all particles originating from this bin made it to the 
hut. 



62 

I 

2S.O «= v < + 2S.O 
— 2 4 . 0 < » < + 24.0 

- • - 2 0 . 0 - < v < + 2 0 . 0 
10.0-<v»< -•-10.0 

Figure 3.7: 8 GeV spectrometer acceptance function projected 
against the S and 8 axes. The acceptance is normalized in 
each bin to 1.0, and four curves are shown, one for each <p 
cut. 

becomes more narrow the function approaches that of "perfect" 
or flat acceptance. 

In addition to calculating the acceptance function, the 
Honte Carlo also calculated several corrections. During the 
integration over <p process, the root mean square value for ip 
was calculated for each <5-9 bin and for each <p range. This 
quantity was used to correct the horizontal scattering angle. 
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0, for each bin to the nominal scattering angle. This 
correction was small, and never exceeded 0.25%. The Monte 
Carlo also calculates two corrections to the acceptance 
function. One correction is for the momentum dependence of the 
multiple scattering effect and one is for the change in 
effective target length as the spectrometer rotates about the 
pivot. At high momenta the effect on the acceptance function 
due to multiple scattering of the particles is small compared 
to that at low momenta. This is a bin by bin correction which 
basically widens the distribution in 8, <p, and 6, and for low 
momenta averages around 2.0%. The target length correction is 
necessary because at forward angles the target length as seen 
by the spectrometer is smaller than the true target length. 
This is also a bin by bin correction. The average correction 
can be approximated by the expression 1.0 - 10"5(Tsin9)2 which 
at 90' and at a full target length, T, of 15 cm is equal to 
0.25%. 

Acceptance vs. data studies 
It is very important to test for compatibility between 

the acceptance function and the measured data. One way to do 
this is to make sure the calculated cross sections agree for 
each of the <p cut ranges. The cross section calculation will 
be discussed in greater detail later in this chapter. Figure 
3.8 shows three plots of cross section ratios, <pcutl/<pcut2, 
<pcutl/ipcut3, and <pcutl/<pcut4, where ipcutl < 128.01, <pcut2 < 
124.01 , ipcut3 < )20.o|, and <pcut4 < |10.0|. Each ipcut is in 
ntr. The points on these plots are cross sections summed over 
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3.8: Ratio plots of summed cross sections. From top to 
<pcutl/cpcut2, ipcutl/<pcut3, and <pcutl/ipcut4, where ipcutl 
largest cut, and ipcut4 is the smallest cut. 

the kinematic point which is denoted by momentum and the error 
bars shown are statistical. The points were observed to lie 
along the line where the ratio is equal to 1.0 within the 
total expected errors on the cross sections. A similar check 
with similar results was also done with the proton elastic 
cross section data. 

Another way to check the acceptance function is to take 
small spectrometer momentum steps within the same kinematic 
point and verify that the cross section spectra agree in the 
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overlapping regions. Figure 3.9 is a sample overlap spectrum 
for the point: E = 5.507 GeV and Q a = 2.50 (GeV/c)* where E' 
was set as 4.001, 4.167, and 4.334 GeV. It can be seen that 
the overlap is guite good. 

Finally, a check on the acceptance was also made with the 
proton elastic cross section data to make sure that the 
acceptance function had no significant 6 dependence relative 
to the model cross section. A study was made of the elastic 
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Figure 3.9: Cross section overlap spectrum for the 8 GeV 
spectrometer with E = 5.507 GeV and Q 2 = 2.50 (GeV/c)2. Data 
was measured at spectrometer momenta which differed by 
several percent. 
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cross section versus theta. This cross section was normalized 
to the total cross section summed over all 6. Since all the 
appropriate 6 corrections were applied to these cross section, 
there should be no theta significant dependence unless there 
is a problem with the acceptance function. The results of this 
study showed that there was no significant theta dependence. 

1.6 GeV Event Analysis 
Tracking 

In order to analyze the tracking event data, it was 
necessary to calibrate the drift cumber TDC's, line up the 
drift time spoctra for each TDC channel using drift time 
offsets, and line up the sum time spectra for adjacent wires 
using sum time offsets. Each TDC channel was carefully 
calibrated at the end of this experiment using a pulser-
generated random trigger to generate both the start and the 
stop pulses of the TDC's with known delays for the stop signal 
using various length cables. All cable time delays were double 
checked using a pulser and an oscilloscope. The TDC signals 
were read by the computer for each delay and a fit was done to 
convert the TDC signal to real time from start to stop for 
each TDC channel. 

The next step was to align the drift time spectra for 
each wire. Drift chamber TDC data was read, converted to time, 
and histogrammed for each wire. The start signal for the TDC's 
during the experiment was formed from the wire signals while 
the stops were formed from the trigger. Sample drift time 
spectra for a single run are shown for each chamber in Figure 
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Figure 3.10: Sample drift time spectra summed over all wires 
in each chamber. Vertical lines indicate drift distances of 
1.0 cm (left side) and 0.0 cm (right side). 

3.10 using deuterium target data. Each spectrum was summed 
over all wires where the individual wire spectra had already 
been aligned at the arbitrarily chosen point of 370.0 ns. 
Ideally, these spectra s."-ould have a square wave distribution, 
but distortions of the field near and far from the wires can 
produce nonlinearities. The "two-step" distribution indicates 
that the drift velocities were somewhat greater for hits 
occurring within the nearest 0.5 cm of an anode wire. The 
edges of this spectrum are indicated by vertical lines and 
correspond to distances from the wire of 0.0 and 1.0 cm. The 
line on the right is the 0.0 cm line, and this was the point 
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used to align the individual wire drift spectra. 

The 0.0 cm edge for the individual wire drift time 
spectrum was found by looking at data points in the vicinity 
of the edge and finding an edge point such that the slope of 
the li.ie going through the points was maximized. An offset, was 
defined such that the edges lined up at 370.0 ns. A drift 
velocity of 0.005 cm/ns corresponded to a typical drift 
spectrum width of 200 ns and a wire spacing of l.o cm. Figure 
3.11 shows a plot of drift time offsets versus wire number for 
wire chamber XI. The change in offsets from the odd/even wire 
planes is evident as well as a shift corresponding to a change 
in TDc modules at wire number 33. It was necessary to find 
four such sets of offsets to cove'- the entire experiment due 
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Figure 3.11: One set of drift time offsets for wire chamber 
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to various changes in running conditions. Due to the field 
nonlinearities mentioned above there was some uncertainty as 
to the true time w.dth of these spectra. To help account for 
this it was necessary to define offsets for the sum time peaks 
of adjacent wires. 

Once the drii c times had been corrected for offsets the 
sum time spectra were accumulated for pairs of adjacent wires 
which fired. A peak was formed near the desired sum time of 
200.0 ns. Sample sum time peafcs for a single ran are shown in 
Figure 3.12 for each chamber. These spectra include sum times 
for all pairs where the sum time offsets had already been 
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Figure 3.12: Sample sum time spectra for each chamber and 
for all pairs of wires in the 1.6 GeV spectrometer drift 
chambers. 
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applied, and a cut was applied to exclude the sum if the 
difference in drift times was less than 16.0 ns (See Figure 
3.13 and associated discussion). It should be noted tluit 
chamber Y2 looks particularly bad compared to the other 
chambers for this run because for this run the wires in 
chamber Y2 were exhibiting a large amount of cross talk. The 
cross talk problem varied in severity from chamber-to-chamber 
and from run-to-run and will be discussed in detail shortly. 
Sum time offset corrections were found so that the peaks for 
individual pairs were all aligned at 200.0 ns. The width of 
this peak is indicative of the chamber tracking resolution 
when a pair of wires fired. Clearly, the X chamber resolution 
is worse than the Y cha-nber resolution. The measured 
resolution can be improved for the x chambers by correcting 
for the change in expected sum time for large angle tracks 
because of the 0.9 cm separation between the even and odd wire 
planes. Figure 3.13 shows the sane sum tine spectra given in 
Figure 3.12 for the X chambers with these corrections applied. 
Table 3.3 shows the resolutions of the chambers calculated 
from these spectra. The XI chamber resolution was worse than 
the others because the field shaping wires were not able to 
hold the proper high voltage and it had to be lowered. The 
overall chamber resolutions were somewhat larger than these 
numbers because these do not account for the resolution 
degradation when only a single wire was used to define a hit 
position. 

The peak positions for the sum time spectra were 
calculated using just the data greater than half the peak 



71 

Wire Clumber XI Wire Clumber X2 Wire Chamber X3 

a 1500 

J , : \ 

0 50 100IS0200 250300 350 
Corocud mm iZm* (tu) 

0 SO 100130200250300350 
CoffMU4 w a t ia* (M) 

0 50 1001S0200250300350 
Comet* M time (M) 

Figure 3.13: X chamber sum time spectra corrected for track 
angle dependence of sum times. Compare to figure 3.12. 

Table 3.3: Drift chamber resolutions for good 
pairs 

XI X2 X3 Yl Y2 Y3 I 
| a (mm) 1 . 9 1 . 4 1 . 5 0 . 7 1 . 2 0 . 7 | 

fl a_corr (mm) 1 . 4 1 . 0 1 . 0 

height in order to stay away from the large tails. Typical sum 
time offsets are shown in figure 3.14 for wire chamber XI with 
different symbols used to designate whether an even or an odd 
numbered wire was on the left side of the pair. The two sets 
of symbols balance around an offset of 10.0 ns. A set of sum 
time offsets was calculated for each set of drift time offsets 
needed. 

After applying the drift time offsets and the sum time 
offsets for each event, cuts on allowed drift and sum times 
were used to reduce noise and random signals in the chambers. 
The drift time cuts used were 140.0 < drift time < 400.0 ns. 
The cuts on the sum times varied with each chamber due to 
differences in tracking resolution and are given in Table 3.4. 
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Figure 3.14: One set of sum tine offsets for wire chamber 
XI. Open diamonds correspond to left even wire + right odd 
wire. Filled diamonds correspond to left odd wire + right 
even wire assuming wires are ordered from left to right. 

Table 3.4: Drift chamber sum time cuts used in tracking 
algorithm 

XI X2 X3 Yl Y2 Y3 
Lo cut (ns) 120.0 120.0 120.0 140.0 140.0 150.0 
Hi cut (ns) 300.0 280.0 280.0 250.0 280.0 250.0 

The behavior of these drift chambers during the 
experiment was less than satisfactory. There were many noisy 
wires, and there was cross talk between wires. This made for 
a very difficult analysis. Apparently the cross talk problem 
was because the wires were coated with a layer of residue 
which was possibly due to using a bad gas mixture in the 
chambers. The cross talk problem varied in its severity over 
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the chamber itself and over time. Typically, a real hit would 
occur within - 1 to 2 mm of an anode wire, causing that wire 
to fire. Adjacent wires which were susceptible to cross talk 
would produce a similar signal often masking the real signal 
from being recorded for the wire which should have formed a 
good pair. Figure 3.15 indicates the severity of this problem. 
This figure shows a plot of drift time differences between 
adjacent wires for the same run used to obtain the sum time 
spectra in Figure 3.12. It was summed over all pairs of wires 
which fired in each wire plane. Ideally, these distributions 
should be uniform, but the large peaks near 0.0 are due to 
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Figure 3.15: Drift time difference plots for each chamber 
and for all pairs of wires in the 1.6 GeV spectrometer drift 
chambers. 
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cross talk. Note that chamber Y2 did not behave this poorly 
for all runs, and that these plots include all pairs of wires 
which fired in the chambers. The tracking algorithm was 
designed to not use possible cross talk events if an event 
could be found that did not exhibit the cross talk behavior. 

One very important feature used in the tracking program 
was that of hodoscope masking. "Hodoscope" refers to the 
collection of scintillators contained within the 1.6 GeV 
spectrometer detector package. The goal of the hodoscope 
masking was to block from tracking consideration any wires 

XU Scintillators 

XD Scintillators 
Figure 3.16: Schematic showing hodoscope masking for the 
1.6 GeV spectrometer detectors. The shaded scintillators 
are the ones which "fired" and the shaded regions of the 
wire chambers indicate the "allowed" wire regions. 
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which did not intersect the "allowed" range defined by the 
scintillators which fired. A schematic of this concept is 
shown in Figure 3.16 where the shaded scintillators indicate 
which scintillators fired and the shaded regions shown on the 
drift chambers are the "allowed" wire regions. Note that the 
actual "allowed" regions were slightly larger than those 
indicated in figure 3.16 to allow for particle pos: ion 
deviations due to multiple scattering. Also, if uultiple 
scintillators fired, the "allowed" regions were widened 
accordingly. Hodoscope masking was extremely successful in 
rejecting useless wire chamber information and in decreasing 
the amount of computer time needed to analyze the data. 
However, in the unlikely event that no scintillator fired, 
the hodoscope masking was not used. Also, if not enough wires 
were found to form a track in the first pass of the tracking 
algorithm, a second pass was made with the hodoscope masking 
turned off. 

The next step was to calculate all the "hit" positions in 
each chamber, A "good" pair was defined to lie a pair of 
adjacent wires firing which had a good sum time within the sum 
time cuts (see Table 3.4). The drift times were converted into 
drift distances which were combined to calculate a hit 
position between the two wires. The error on the position for 
track fitting purposes was defined to be 0.1 cm. An "OK" pair 
was invented to smooth out bumpy tracking coordinate 
distributions due to wire cross talk. An "OK" pair was 
defined if a "good" pair could not be found, and if two 
adjacent wires had sit '.ar and small drift distances. The hit 
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position used by the tracking fits was found by randomizing 
between the two wire positions, and the error was defined to 
be 0.5 cm. If neither a "good" or "ok" pair could be defined 
then the wire position was used as the hit position, and the 
error was defined to be that wire's measui >d drift distance 
since the hit could have occurred on either side of the wire. 

Once all the possible hit positions were defined, the 
tracking algorithm calculated the likely track candidates. For 
X and V coordinates separately, the two chambers with the 
least number of hit positions were considered. Tracks formed 
by hit positions in these chambers were extrapolated to the 
third chamber, and only hit positions within 4.0 cm of these 
positions were considered. This cut down on unnecessary 
calculations for unlikely track candidates. If the third 
chamber contained no hits in the desired range then a two-
chamber track was defined. Otherwise three-chamber tracks were 
f- -d by doing an error weighted linear fit to the hit 
positions. A track was also required to have at least one pair 
of hits, where "good" pairs took precedence over "OK" pairs. 
If a track was found with two or three pairs then all 
subsequent tracks found were required to contain at least as 
many pairs. Also, tracks found must have been within the 
detector fiducial region of the spectrometer and must have 
originated within the vacuum tank exit aperture at the top of 
the magnet. 

Track purging was performed if multiple tracks had been 
found based on several criteria. If some of the tracks passed 
a given criterion then they were kept. If no tracks passed the 
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criterion then no purging was done. These criteria included 
(in the order of purging): 

1. Tracks below a normalized shower track energy of 0.6 
were purged. 

2. Tracks pointing more than 2.0 cm away from a 
scintillator hit position were purged. The 
scintillator hit positions were calculated for the 
scintillators with tubes at both ends using the 
phototube timing information. The resolution for the 
scintillator hit positions was - 2-4 cm. 

3. Tracks giving reconstructed target coordinates outside 
the spectrometer acceptance were purged. 

4. Tracks defined by less than the total number of 
chambers were purged. 

5. Tracks were purged based on the total number of wire 
pairs used in the fits. 

6. Tracks having a corrected large angle sum time for the 
X chambers outside cuts were purged (see Figure 3.13). 
The cuts were 20.0 to 30.0 r.s tighter than those given 
in Table 3.4. 

7. Tracks were purged based on the chi-square of the fit. 
If more than one track still remained at this point then one 
was chosen at random. 

The tracking efficiency for electrons was measured using 
a clean sample of electrons. This sample was obtained by 
requiring the Cerenkov ADC signal to be above 25, the total 
normalized shower energy in the lead glass shower counter to 
be above 0.6, the normalized shower energy in the first layer 
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of the lead glass counter to be above 0.5, and exactly one 
scintillator per scintillator plane firing. Also, these 
scintillators were required to be aligned spatially such that 
a track originating from the target could have passed through 
all of them. This measured efficiency was 0.9932. 

Kinemati- quantities at the target were reconstructed 
from each event measured in the hut using the spectrometer 
reverse matrix coefficients given in Table 3.5. These 
coefficients were obtained by fitting Monte Carlo generated 
rays which passed through the spectrometer, where X and Y in 
the hut were in cm and dx and dY were in mr. The quantities dx 
and dY are really dX/dZ and dY/dZ where Z is the direction of 
the central ray through the spectrometer. The Monte Carlo 
program will be discussed in greater detail later. The 
reconstruction coefficients included second and third order 
coefficients. The :\nput rays for the reconstruction fit 
constrained |y| < 7.2 cm, \S\ < 5.0 %, |0| < 40.C mr, and |ip| 
< 90.0 mr. Also, these rays could originate any xere wichin a 
beam height |x| < 0.25 cm. The average deviations between the 
original rays and the fit were calculated to be 0.05 cm in y, 
0.02 % in S, 0.48 mr in 6, and 0.34 mr in ip. Similarly to the 
8 GeV spectrometer reconstruction coefficients, for fitting 
purposes it was assumed that the particle originated from the 
central beam axis in the vertical direction. 

Electron and pion identification 
Once an event was indicated by the trigger and a track 

had been found, the event had to be identified. An "electron" 
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Table 3.5 : First, second and third order reverse 
transport coefficients for the 1.6 GeV spectrometer 
giving target coordinates y, 8, ip, and S in terras of hut 
coordinates. For example, y at the target is obtained by: 
y = 0.804 

y (cm) 6 (mr) V (mr) 6 (%) 
1 0.804E+0 -0.829E+1 0.527E+1 -0.467E-1 
X 0.247E-2 0.271E-2 0.189E+1 0.226E+0 
dX -0.782E-3 0.287E-2 -0.119E+1 0.450E-2 
Y 0.381E+0 0.208E+1 0.147E-3 -0.631E-3 
dY -0.375E+0 0.577E+0 0.154E-2 0.156E-3 

X X -0.180E-4 0.113E-3 -0.257E-1 0.853E-3 
X d X 0.4Z5E-5 -0.232E-4 0.126E-1 0.615E-4 
X Y 0.103E-1 -0.492E-1 0.544E-3 -0.638E-5 
x dy -0.301E-2 D.1S6E-1 -0-316E-3 0.184E-5 

dX dX 0.703E-6 -0.775E-5 -0.792E-3 -0.201E-4 
d X Y 0.712E-3 -0.470E-2 -0.129E-3 0.239E-5 
dX dY -0.366E-3 0.147E-2 0.795E-4 -0.260E-6 
Y Y 0.130E-3 •-0.126E-2 -0.283E-2 0.113E-2 
YdY -0.145E-3 0.141E-2 0.527E-2 -0.116E-2 

dYdY 0.458E-4 -0.495E-3 -0.161E-2 0.331E-3 
X X X -0.921E-5 0.300E-4 -0.140E-3 0.312E-4 
X X d X 0.560E-5 -0.210E-4 0.160E-3 -0.224E-4 
X X Y 0.176E-3 -0.379E-3 0.248E-5 0.338E-5 
X X dY -0.248E-4 -0.702E-4 0.329E-5 -0.150E-5 
X dX dX -0.149E-5 0.514E-5 -0.498E-4 0.552E-5 
X d X Y -0.306E-4 -0.177E-3 0.129E-5 -0.178E-8 
X d X d Y -0.940E-5 0.169E-3 0.526E-5 0.638E-6 
X Y Y -0.955E-5 0.669E-5 0.103E-3 0.236E-4 
X•Y•dY -0.320E-5 0.316E-4 -0.246E-3 -0.164E-4 
X•dY-dY -0.514E-6 -0.262E-6 0.875E-4 0.199E-5 
dX-dX-dX 0.145E-6 -0.499E-6 0.335E-5 -0.434E-6 
dX-dXy -0.637E-5 0.857E-4 -0.108E-5 0.272E-6 
dX-dX dY 0.498E-5 -0.436E-4 -0.122E-6 -0.700E-7 
dX•¥•Y 0.312E-C -0.241E-4 -0.211E-3 -0.466E-5 
dX-Y•dY -0.229E-6 0.949E-5 0.272E-3 0.364E-5 
dX-dY-dY 0.138E-6 -0.217E-5 -0.815E-4 -0.654E-r, 
Y Y Y 0.385E-5 -0.166E-5 -0.3ZfE-4 0.943E-6 

event was required to satisfy the 'jllowing criteria: 
1. The Cerenkov ADC signal must have been above the cut 

of 25 channels. 
2. The normalized track shower energy must have been 

above the cut of 0.6. 



BO 
3. The reconstructed kinematic quantities must have been 

within the defined acceptance of the spectrometer: 
<S = |Ap/p| < 4.0%, |A8| < 40 mr, and |Aip| < 120 mr. 

A "pion" event was required to satisfy the following criteria: 
1. Requirement 3 of the electron definition. 
2. The pior-. prescaler latch in the electronics must have 

been set. 
3. The aarmalxzsd track shower energy must have baen 

below the cut of 0.6. 
4. The Cerenkov ADC signal must have been below the cut 

of 25 channels. 
The electron and pion events were separately histogrammed in 
reconstructed 6 and « where the 6 bins were 4.0 mr wide and 
the S bins were 0.4% wide. For both electrons and pions, foiir 
different histograms were saved corresponding to foiir 
different <p cut ranges: ipCUTl = |<p| S 120.0 mr, <pCTJT2 = | v| < 
100.0 mr, ipCUT3 = |ip| < 80.0 m:, and ipCUT4 = |ip| S 60.0 mf. 
Corrections for pions mis-identified as electrons were carried 
out in the same manner as they were for the 8 GeV data' 
discussed earlier. 

Shower energy 
Pedestal subtracted ADC signals from the shower counter 

phototubes were converted into energy for each block using the 
shower block calibration data. The total normalized energy 
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deposited in the block could then be calculated from 

F sh £ (ADCjA-PED 1 A)C t t , £ (ADC i B -PED i B )C i B 

ttot - z_, p * 2-i p 
( 3 . 1 ) 

14 14 
= i , E i A C i A + ^ E i B C i B 

iA=l iB=l 

where p,. was the central momentum of the spectrometer, A 
refers to the lower (PA) layer, B refers to the upper (PB) 
layer, c 1 A and C„ are the calibration coefficients, E 1 A and E,» 
are the individual normalized block energies, and the sums 
extend over the fourteen blocks in each layer. 

The blocks were calibrated using data taken with the 
deuterium target, "he energy of each block was normalized to 
the spectrometer momentum, and the block coefficients were 
preset to reasonable values for the first iteration of the 
coefficient calculation. The block in the PA layer containing 
more than half of the total PA energy was called the primary 
block. If the track found in the tracking routine pointed to 
this block and to the block immediately above it in the PB 
layer then both were included in the shower coefficient 
calculations. For tracks pointing to block j, the 
multiplicative corrections to the coefficients for the blocks 
were calculated by minimizing, for many events, the chi-square 
quantity: 

t\= £ < l - X » C j A E i A - X j B C j B E J B > 2 , ( 3 . 2 ) 
svxnts 

where X,, and Xj, are corrections to the calibration 
coefficients, and j ranges from 1 to 14. This calibration 
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process works because the total normalized energy deposited in 
the shower counter is l.o. The coefficient calculation was an 
iterative process. When the block energies were being 
calculated correctly then the least-square corrections to the 
coefficients were consistent with 1.0 within errors. 
Coefficient calculations were done at several spectrometer 
momenta, but because of the small momentum range in the 
spectrometer, no significant momentum dependence to the 
coefficients was found. 

Once the coefficients were found, the energy for each 
track was calculated by summing over block energies found for 
blocks through which the track shower passed as well as for 
blocks which were within 3.0 cm of the track path. A typical 
shower spectrum for a deuterium target is shown in Figure 3.17 
where the shower energy has been normalized to the momentum of 
the spectrometer. The first plot shows a shower spectrum which 
required only that a track must have been found. The second 
spectrum also required a Cerenkov ADC signal above a channel 
cut of 25. The ability to discriminate against pions with the 
Cerenkov ADC signal is apparent. The bump which appears in the 
low energy tail region of the electron peak in the first 
spectrum is due to pions which lost enough energy in the PA 
layer of the lead glass shower counter to produce an EL-LO 
trigger in the electronics. The other pions in the spectrum 
have been suppressed by the prescaling of the pion triggers, 
and so the pion tail due to the EL-LO trigger appears 
enhanced. 

The average FWHM energy resolution of the shower counter 
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Figure 3.17: (a): Typical spectrum for the 1.6 GeV 
spectrometer shower counter requiring a track found in the 
wire chambers, (b): Same shower spectrum as in (a) with the 
additional requirement of having a Cerenkov ADC signal above 
25. 

was * 12.9%/,/E' where E' is in GeV. The shower counter 
efficiency for detecting electrons above the shower cut of 0.6 
was 98.0%. This efficiency was measured by ca^ulating the 
percentage of electron events detected which produced a shower 
energy above the cut of 0.6 for a clean electron sample. This 
sample was obtained by requiring "electron" criteria 1 and 3 
defined earlier with the additional restrictions that the 
reconstructed target length, y, be within the limits -11.o < 
y < 9.0, and the scintillators which fired were required to be 
aligned spatially such that a track could have passed through 
them. The asymmetric cuts on y were consistent with the 
observed measured distribution. A plot of the points used to 
calculate the efficiency versus the electron to pion rate are 
shown in Figure 3.18. The line shown is= an error weighted fit 
to the data which yields the measured efficiency when 
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1.6 GeV Shower Counter Efficiency 
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Figure 3.18: Measured electron detection efficiencies for 
tiia 1.6 GeV spectrometer shower counter using hydrogen and 
deuterium target runs. A fit to the data yields the measured 
overall efficiency at rr/e = 0.0. 

extrapolated to a jr/e ratio of zero. The efficiency was also 
calculated from a Gaussian distribution centered at 1.0 using 
the above resolution and cut of 0.6. The result was consistent 
with 100%. This large difference from the measured efficiency 
indicates that the inefficiency of the detector is mostly due 
to electrons slipping through cracks between the lead glass 
blocks and to leakage out the back, and is not due to the 
shower energy cut. 
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gerenkov Counter 

Figure 3.19 shows a typical Cerenkov ADC spectrum from 
data taken with a hydrogen target. A Poisson fit to the data 
indicates an average of 7.8 photoelectrons detected for a 
typical event. The pion ADC spectra shows no significant 
counts above the pedestal of the ADC. The measured efficiency 
for detecting electrons above an ADC cut of 25 was 99.9%. The 
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Figure 3.19: 1.6 GeV spectrometer Cerenkov counter spectrum 
with a Poisson curve calculated using an average of 7.8 
photoelectrons. 
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electron sample used to determine this efficiency was obtained 
by requiring "electron" criteria 1 and 2 as well as requiring 
that the reconstructed target length, y, and the scintillators 
satisfy the same conditions given above for the shower 
efficiency calculation. Also, the normalized track energy 
deposited in the PA layer was required to be above 0.35. A 
plot of the points used in the efficiency calculation are 

1.6 GeV Cerenkov Efficiency 

1000 

Figure 3.20: Run-by-run electron detection efficiencies 
versus 7r/e ratio for hydrogen and deuterium targets. A fit 
to the data is also shown which yields the measured overall 
efficiency at ir/e equal to zero. 
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shown in Figure 3.20 versus the ratio of pion to electron 
rates. These data are for both hydrogen and deuterium target 
runs. The line shown is an error weighted fit to the data 
which yields the measured efficiency when extrapolated to a 
ir/e ratio of zero. The efficiency was also calculated using 
the Poisson fit to the data and the ADC cut of 25. This 
calculation yielded an efficiency of 99.96% which is in very 
good agreement with the measured value. 

Efficiency. Electronic, and Computer Correction 
A summary of the detector efficiencies discussed in the 

previous sections is given in Table 3.6. The total efficiency 
for detecting electrons was found by multiplying these 
individual efficiencies together since they are uncorrelated. 

The electronic dead time correction was calculated using 
scaler rates CAB40, CAB60, and CAB80 where CAB refers to a 

Table 3.6: Summary of important efficiencies for 
analysis of the 1.6 GeV spectrometer data. 

tracking shower Cerenkov electron 
efficiency 0.9932 0.9803 0.9992 0.9729 

coincidence output of the Cerenkov signal, PAlo and PB 
signals, and the number refers to the coincidence circuit 
output width in nanoseconds. PAlo and PB were discriminator 
signals produced after first summing over the lead glass block 
signals in the first layer (PA) and the second layer (PB). The 
CAB20 scaler was not used to calculate this correction because 
of double pulsing. CAB20 double pulsed because the Cerenkov 
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signal was double pulsing, and the PAlo and PB signals were 
long enough such that CAB20 also double pulsed. A linear 
extrapolation to a gate width of 0.0 ns was done to give the 
scaler rate corresponding to no deadtime. This scaler rate was 
divided by the CAB40 scaler to obtain the dead time 
correction. This was a small correction ranging from 1.000 to 
1.003 for this experiment. 

The sample fraction correction was needed to correct a 
few runs where the computer failed to record all of the events 
on tape. It was calculated from the ratio of the trigger 
scaler to the software event counter. With the exception of 
one run, this correction ranged from 1.000 to 1.004. The worst 
run, which was bad for the data in both spectrometers, had a 
sample fraction correction of 1.043. 

The one per pulse correction was needed because the 
computer was unable to save more than one event per beam 
pulse, but more than one event could actually occur. Similarly 
to the 8 GeV electronics, when a trigger occurred a veto pulse 
was created which lasted the length of the beam pulse. This 
pulse was put into coincidence with the CAB40 pulse and 
counted by the CAB40V scaler. Thus, this scaler counted the 
number of beam pulses where a CAB coincidence occurred. The 
CAB40 scaler counted the number of times a CAB coincidence 
occurred regardless of the number of beam pulses. The one per 
pulse correction was given by the scaler ratio of 
CAB40/CAB40V. For a few runs where the CAB40 scaler counts 
were low, the less restrictive EL40 and EL40V scalers were 
used in a similar calculation where EL fcas the electron 
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trigger formed by an OR of ELLO and ELHI (See electronics 
diagram, Figure 2.13). This correction was as high as 1.113 
for some of the high rate runs. 

1.6 GeV Acceptance Function 
Monte Carlo model 

The purpose of the Monte Carlo program for the 1.6 GeV 
spectrometer was three-fold. Firstly, it simulated the elastic 
scattering process at the target and the physical properties 
of the spectrometer in order to compare with real elastic 
measurements made from hydrogen targets. This feature enabled 
us to ascertain that the spectrometer was being modelled 
properly. Secondly, it produced an acceptance function for use 
in the data analysis programs. Thirdly, it produced 
reconstruction coefficients used for reconstructing target 
coordinates from hut coordinates. 

The elastic scattering portion of the Monte Carlo program 
was given the four-momentum transfer, Q 2, the central 
scattering angle, 6, and the desired number of successful 
events, defined as generated events making it through the 
spectrometer without hitting any apertures. The central 
incident energy was calculated from these inputs. Electron 
events were randomly generated about the central energy, the 
target length, the beam height and width, and the vertical and 
horizontal scattering angles using input information on the 
allowed ranges for each of these quantities. The generated 
particle in the beam was transported to the interaction point 
taking into account multiple scattering, ionization energy 
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losses, and radiative energy losses in all materials traversed 
along the way. The generated particle's scattering energy was 
calculated for an elastic interaction, and the particle was 
transported to the hut by ray tracing through the optical 
system. Again, multiple scattering, ionization energy losses, 
and radiative energy losses were taken into account for all 
materials traversed by the scattered particle. Any particles 
which failed to pass through all apertures along the way were 
thrown out. 

Events which made it through to the hut were saved and 
could be directly compared to measured data. A comparison of 
Monte Carlo data and real data was done at three different 
kinematic points. This comparison failed to agree until 
important improvements were made to the Monte carlo model. One 
such improvement was the development of an elaborate ray trace 
model through the quadrupole and dipole magnets. This replaced 
an old transport model which did not allow for many aperture 
checks and did not take into account field distortions of the 
dipole magnet at its entrance due to the presence of the 
quadrupole mirror plate, and at its exit due to the presence 
of an iron plate used to hold shielding and to protect the 
detector stack from the fringe fields. A ray trace model 
through ttK: quadrupoles was developed from fits made to field 
gradient measurements which were taken for a previous 
experiment. A ray trace model for the dipole was developed 
from old wire float data [35] and from fringe field 
calculations using TOSCA code [36] for the entrance and 
POISSON code [37] for the exit region. These field 



91 
calculations were checked against a limited set af ftinge 
field measurements taken before this experiment. 

Another important improvement was a recalibration of the 
quadrupole power supplies after the experiment. It turned out 
that the true currents of the quadrupoles were lower than the 
setpoint currents. Ql was set 1.07% low and Q2 was set 1.75% 
low. The fact that these currents were set improperly caused 
the vertical focal plane of the spectrometer to shift by 2 and 
1/2 meters. This is evident in figure 2.9 where it can be seen 
that the vertical focal plane occurs at Z = 9 m. and the 
horizontal focal plane occurs at Z = 11.5 m. 

Another important improvement was the result of recent 
survey measurements made in an attempt to reconcile problems 
we were having with the Monte Carlo program. These survey 
measurements indicated a misalignment between the quadrupole 
and dipole central axes of - 3.2 mr. Once this problem was 
fixed the elastic Monte Carlo data agreed reasonably well with 
the real measured data. A sample plot will be shown in the 
next section. 

The acceptance function for the 1.6 GeV spectrometer was 
also calculated in the Monte Carlo program. Bins for S, 6, and 
ip were defined in the input file as well as the number of 
events to generate per bin. The 6 and 6 bins corresponded to 
the same binning used for data storage. In addition, there 
were twelve ip bins of width 20 mr for a total phi range of 
-120 mr < <p < 120 mr. Events were randomly generated within 
each bin and randomly along the target length and beam height. 
Each event was transported through the spectrometer using the 
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ray trace model. 

There were many aperture checks along the way, especially 
inside the quadrupoles. During the installation of the 
quadrupoles the vacuum pipe was compressed in one direction to 
make the pipe compatible with the dipole magnet's rectangular 
vacuum pipe. This made the round pipe become more and more 
ellipsoidal as it neared the dipole. Careful survey 
measurements were made and ellipsoidal fits done at many steps 
along the pipe. These fits defined the apertures inside the 
pipe. Events were thrown out that did not pass entirely 
through all apertures. 

Events reaching the hut area were transported through the 
detectors. The coordinates were corrected for multiple 
scattering effects in each detector layer traversed, and 
detector apertures were checked. The particle positions found 
at each drift chamber were randomly adjusted within the 
average wire chamber resolution, and a track was found by 
fitting these coordinates to simulate the data tracking 
algorithm. The final hut coordinates were defined by 
intersecting the track at the focal plane. The events were 
reconstructed at the target using reconstruction coefficients 
and were rebinned in S, 8, and ip. 

The acceptance function was calculated by taking the 
ratio of the number of particles in each reconstructed 6, 6, 
and <p bin to the original number of generated particles and 
normalizing to the size of each bin. The acceptance function 
was integrated over <p using four different ip cuts 
corresponding to the same ones used in the data analysis. This 
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resulted in four reduced acceptance functions. These were not 
the final acceptance functions, however. Similarly to the 8 
GeV spectrometer acceptance functions test, the elastic cross 
section data was used to study the 9 dependence of the 
acceptance function. The idea is to study the cross section as 
a function of 6 normalized to the total cross section. All 6 
dependent corrections are made beforehand so this distribution 
should be flat as a function of 6. If it is not flat then the 
0 dependence of the acceptance function must be wrong. This 
was the case with the 1.6 GeV spectrometer acceptance 
functions. Attempts were made to solve this problem in the 
Monte Carlo program, but they were unsuccessful. 

It was decided to create a new corrected acceptance 
function using the old acceptance function described above, 
the measured data, and model cross sections. For each set of 
deuterium data taken in the 1.6 GeV spectrometer, ratios of 
measured to expected counts were calculated on a 5-6 bin-by-
bin basis. Expected counts were calculated using model cross 
sections, the old acceptance function, radiative corrections, 
resolution corrections, and the factor Ckl„ which is defined 
later (Eg. 3.4) in this chapter. See the discussion in the raw 
cross section calculation section and the resolution 
correction to see how this was done. Note that for this 
calculation, however, that a model cross section is converted 
to expected counts whereas the cross section calculation 
converts measured counts into measured cross sections. This 
ratio was calculated for each 6-Q bin. 

The next step was to combine sets of data within each Q2 
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point. There were generally three to four sets of data taken 
for each Q2 point which differed in the spectrometer central 
momentum setting (See Figure 3.28 in the next section for an 
example of the data sets combined) . These sets of data were 
combined in each <S-8 bin using an error weighted average 
Next, the ratio functions were normalized at each Q1 such that 
the error weighted average over ail 6-6 bins yielded 1.0. 
Finally, the four normalized ratio functions were then 
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Figure 3.21: Elastic normalized cross section plots showing 
the 8 dependence for the old and the new, corrected 
acceptance function. There should be no dependence since all 
the 8 corrections have been applied to the cross secticns. 
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combined in quadrature by an error weighted average in each 
bin to produce one final function used for correcting the old 
acceptance function. The correction was applied 
mmtiplicatively on a bin-by-bin basis. Figure 3.21 shows a 
plot of the elastic normalized cross sections as a function of 
0 for before and after applying this new correction. The old 
acceptance clearly shows an unacceptable 9 dependence, while 
most of this dependence has been removed, &s desired, for the 
corrected acceptance. 

Figure 3.22 shows a 3-b surface plot of the reduced 
acceptance function with the largest <p cut, ip < 1120.0) mr. 
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Figure 3.22: 1.6 GeV spectrometer acceptance vs. 6 and 9 for 
~120<(p<120 mr and for a shielded 15 cm target. Acceptance in 
feach bin is normalized to be 1.0 it all generated particles 
originating from the bin make it all the way through to the 
hut. 
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This plot has been normalized so that perfect acceptance in a 
given bfn is 1.0. Projections of these acceptance functions oh 
the S and 6 axes are shown in figure 3.23 for all four <p cuts. 
The plot versus 6 used 6 cuts of ±48 mr, and the plot versus 
8 used 6 cuts of ±4.0%. It is interesting to note that the 
normalised acceptances in Figures 3.22 and 3.23 are at their 
maximum around 0.4 to 0.5 instead of 1.0. This is due to the 
very strong correlation between scattering angle and hit 
target position. For a given scattering angle only hits from 
a limited region of the target can make it through the 
spectrometer. This Y-6 correlation is shown in Figure 3.24 
along with the 6-<p correlation. These are scatter plots 
showing the correlation in particle coordinates for particles 
which made it all the way through the spectrometer. 
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Figure 3.23: 1.6 GeV spectrometer acceptance function for 
all ip cuts projected against the S and 9 axes. The 
acceptance is normalized in each S or 9 bin to be 1.0 for 
perfect acceptance. 
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Figure 3.24: Scatter plots showing the correlations in 
y-8 and in 6-t? for particles which made it all the way 
through the spectrometer in the 1.6 GeV Monte Carlo 
code. 



98 
Another important job that the Monte Carlo performed was 

to produce a set of reconstruction coefficients which 
reconstructed the target coordinates of the event from the 
measured coordinates in the hut. A data set was generated 
using two events in each S, 0, and v> bin. The events which 
made it through the spectrometer had corresponding coordinates 
in the hut. A fit was done to this data to produce offsets, 
first, second, and third order coefficients as shown in Table 
3.5. Only data which is within specified limits on the 
reconstructed coordinates was included in the fit. These 
limits were given in the discussion accompanying Table 3.5. A 
few third order coefficients were left out because the 
coefficients found from the fit were large and compensating. 
That is, they had a tendency to cancel each other out, but any 
errors in the measured hut coordinates did t.ot cancel and were 
magnified since the coefficients were large. 

Acceptance vs. data studies 
Several tests were done to insure compatibility between 

the Monte Carlo output and the measured data. As mentioned 
earlier comparisons were done between elastic data taken with 
the hydrogen target and the Monte carlo data. Plots for the 
kinematic point E = 1.511 GeV are shown in Figure 3.24. This 
figure shows two surface plots showing the elastic stripe in 
the hut coordinates x and y. The top plot is measured data and 
the bottom plot is Monte Carlo generated data. The two data 
sets agree well for the most part. The real data is slightly 
more peaked in the central region, but the Monte Carlo data 
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Figure 3.25: Surface plots showing the elastic stripe in the 
hut for electron scattering off of protons. The top plot is 
measured data. The bottom plot is Honte Carlo data. Both 
sets of data are for the kinematic point, E=i.5li GeV. 
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has a somewhat wider distribution. The number of events in the 
two plots is the same. 

Another test is to make sure that the measured deuterium 
cross sections are in agreement for each of the <p cut ranges. 
Figure 3.26 shows cross section ratio plots for the largest <p 
cut data divided by the three smaller <p cut sets of data. 
These comparisons are independent of any model cross sections. 
The cross sections for each ip cut are integrated over the same 
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Figure 3.26: Ratio plots of summed cross sections, 
rrom top to bottom: ipcutl/ipcut2, ipcutl/<pcut3, and 
ipcutl/«pcut4, where <pcutl is the largest cut, and 
ipcut4 is the v.uallest cut. 
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range of W2. The kinematic points are denoted by momentum and 
the error bars shown are statistical. The points should 
intersect the ratio =1.0 line. It can be seen that the ratios 
are reasonably close to this line. Figure 3.27 shows a plot of 
measured deuterium data and Monte Carlo data versus ip. The 
Monte Carlo data were normalized to the measured data so that 
both had the same number of total counts. The cuts on 6 were 
± 32 mr, and the cuts on S were ± 3.6%. The agreement between 
the data and the Monte Carlo ip dependence is quite good. 
Additional tests were done to verify that the <p dependence of 
the data was modelled properly by the Konte carlo. These tests 
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Figure 3.27: Counts versus ip are shown for a deuterium 
target data run and for Monte Carlo generated inelastic 
data. 
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include studying ratios of cross sections at different <p cuts 
versus S and 6. These tests were particularly useful in 
spotting problem areas while the Monte Carlo program was in 
the tuning stage. 

Another test for the acceptance function is to compare 
the cross saction spectra for data taken at slightly different 
momenta. If the acceptance function is good then good overlap 
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Figure 3.28: Deuterium cross section overlap spectrum for 
the 1.6 GeV spectrometer with E = 1.968 GeV and Q 2 = 2.50 
(GeV/c)2. Data was measured at spectrometer momenta which 
differed by several percent. 
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between the spectra should be observed. A sample overlap plot 
for deuterium data is shown in Figure 3.28 for the kinematic 
point: E = 1.968 GeV and Q a = 2.50 (GeV/c)2. The different data 
sets correspond to central momenta of 0.584, 0.635, and 0.660 
GeV/c. The cross sections shown have no radiative corrections 
applied, nor has there been any subtractions for the aluminum 
and hydrogen contributions. Overlapping data were taken at 
most of the kinematic points measured to make sure the 
acceptance function worked well at all momenta. 

For each W 2 bin which had multiple data points 
contributing, ratios were calculated of the individual cross 
sections to the total cross section at that point. These 
ratios were combined using an error weighted average. The 
ratios were combined in three different regions corresponding 
to low x, medium x, and high x, where x is the Bjorken scaling 
variable defined as Q2/2M,,v. A value of x equal to 1 
corresponds to elastic scattering, and this was assigned to 
the medium x category. Note that low x corresponds to high W2. 
An average over all the kinematic points yielded: ratio(low 
x)/ratio(med x) = 0.993 ± 0.007 and ratio(high x)/ratio(med x) 
= 0.997 ± 0.006. The fact that these are consistent with one 
is a quantitative verification that the overlap between the 
different momentum data sets is quite good. 

Target Density 
Energy was deposited in the liquid targets when the 

electron beam was passing through. This energy caused a 
temperature increase and a density decrease. The temperature 
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and pressure were monitored by platinum resistors and vapor 
pressure bulbs which were place at both the entrance and exit 
regions of the liquid target material into the target cell. 
The platinum resistors were calibrated before this experiment 
and a fit was done to the calibration data in order to 
determine the temperature from the measured resistance. The 
best fit found was a second-order polynomial fit to the 
logarithm of the resistance. The vapor pressure bulbs were 
converted to temperature using cryogenic data [26]. The 
densities were then calculated from the temperature also using 
cryogenic data [27], and then average densities were 
calculated. A summary of the data used is given in Table 3.7. 
It should be noted that the hydrogen density point at 23 K is 
not real because at 2 atm H 2 is a gas. This number was 
estimated in order to constrain the fits to the data. The 
temperature fit to the bulb pressure data was a second-order 
polynomial fit to {Bulb pressure - 6.982), and the density 
data fit was a second-order polynomial fit to (T-T0) where 

Table 3.7: Summary of cryogenic data used to 
extract liquid target densities. 
Temperature 

(K) 
Bulb Pressure 

(psi) 
H 2 Density 
(gm/cm3) 

D2 Density 
(gm/cra3) 

18 6.982 0.07339 
19 9.886 0.07234 0.1733 
20 13.550 0.07124 0.1712 
21 18.120 0.07005 0.1690 
22 23.670 0.06878 0.1667 
23 30.406 0.06742 0.1644 
24 0.1618 
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reference temperatures, T0, of 18 and 19 were used for the 
hydrogen and deuterium fits respectively. 

The average densities calculated for individual 
checkpoints within a run were combined to an average, weighted 
by the toroid charge measured for each checkpoint. A plot 
showing the ratio of these checkpoint averaged densities for 
the vapor pressure bulbs relative to the platinum resistors is 
shown in Figure 3.29 for the long deuterium target for data 
taken with and without the beam incident on the target. The 
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Figure 3.29: Ratio of average densities measured by the 
vapor pressure bulbs to those from the platinum resistors. 
Data is for the long deuterium target only, and data with 
and without beam incident on target are shown. 
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vapor pressure bulbs were consistently 0.2% lower than the 
resistor densities. The density used in the cross section 
calculation was an average of these two numbers. 

The average density versus run number for the long 
deuterium target is shown in Figure 3.30. Different symbols 
indicate whether the beam was incident on this target for that 
particular run. The average density for runs with the beam on 
the targets was 0.16937 gm/cm3 which was 0.26% lower than the 
average density when the beam was not on the target. Also, the 
density was observed to vary linearly with beam current. 
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Figure 3.30: Average density for the long deuterium target 
versus run number. Different symbols are used to designate 
whether the beam was incident on the target or not. 
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It is believed that the circulation of liguid target material 
was fast enough such that the local density (near the beam) 
was not significantly different from the average measured 
density. Tests were done during tho experiment to study count 
rate as a function of circulation speed to verify that the 
chosen circulation speed was sufficiently high. Studies were 
also made using measured particle counting rates as a function 
of beam current and beam repetition rate to look for possible 
local boiling effects in the target. The results were 
consistent with no boiling. 

Energy Calibration 
The constraint that the elastic electron-proton cross 

section peak must sit at W 2 = H^, is a useful way to calibrate 
the incident and final electron energies. If the measured 
elastic peaks [15] do not sit at M/ then the position can be 
corrected by changing the incident energy, E, the spectrometer 
momentum setting, E', the spectrometer angle setting, 6, or 
any combination of the above. For the 8 GeV spectrometer, 
survey and wire float [30] measurements indicate that the 
error on E' was ± 0.05% and on 9 was ±0.1 mr. The point-to-
point error on the beam energy was ±0.05%. The elastic peak 
analysis showed that to align the peaks properly, shifts, on 
the average, would be needed of 0.04% in E', 0.4 mr in 9, or 
0.09% in E. The shift necessary in 8 was way outside the 
uncertainty so this was ruled out. Since the necessary shift 
in E' was well-within the tolerance, it was decided to apply 
an overall shift of 0.04% to all E'. The W 2 peaks were then 
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aligned on the average, but there -•=»= still some scatter. This 
scatter was removed, and the individual peaks were aligned by 
applying the appropriate corrections on a point-by-point basis 
to E. 

For the 1.6 GeV spectrometer the error on 9 was ±1.0 mr. 
The beam energy corrections made for the 8 GeV spectrometer 
data were also applied for the 1.6 GeV data. An additional 
average correction of 0.09% was applied to all E' values to 
align the 1.6 GeV Ws peaks. 

Combining Runs 
The data taken for a given target, spectrometer, and ip 

cut, were combined in two separate steps. First, runs within 
a kinematic point were combined, and second, kinematic points 
taken at the same beam energy and scattering angle, but 
different momentum settings were combined. The latter weis not 
done until after the cross sections had been calculated, and 
will be discussed in more detail in the next section. For runs 
within a kinematic point, the 5-6 histograms tor electrons 
were summed bin-by-t>in. At this point the pion subtraction was 

performed. Run quantities which were needed for calculating 
cross sections (see the discussion in the next section) were 
combined together in the factor C^ where 

C - C d t ' C l p p ' C 3 f ' C e f f f , , . . 
R u n" N- -N ' ' 

"inc " p 

Cat is the oead time correction, C l p p is the one per pulse 
correction, C., is the sample fraction correction, C._.f is the 
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electron efficiency correction, N11TC is the number of electrons 
incident en the target, and N p is the number of target 
particles per cm2. N p is defined as N,pL/A where N„ is 
Avogadro's number, p is the target density in gm/cm1, L is the 
target length in cm, and A is the atomic mass of the target in 
atomic mass units. The C,u„ quantities were combined for each 
run to produce the corresponding quantity for the kinematic 
point, CB1„: 

C - l-° 
CRUH 

where the sum was over all runs contained in the kinematic 
point. CK1„ was used to convert counts into cross section for 
each kinematic point in a later step to be discussed. 

Raw Cross Section Calculation 
This section discusses the process of converting the 6-0 

histograms, the reduced acceptance functions, and the quantity 
(:„!„ to the deuterium differential cross sections, do/dndW2. 
Note that at a constant value of fl, da/dndE' is equivalent to 
da/dndW2. The following steps were followed to calculate these 
cross sections corrected to a central scattering angle for 
each kinematic point,6k: 

1. The relation, W 2 = M/ + 2K,(E-E') - 4EE'sin2(8/2) was used 
to create a mapping between each 6-6 bin and each W 2 bin. 
Note that t'.ie W 2 bin edges will cross the 4-8 plane 
diagonally. Assuming a total 4-8 plane area of l.o 
the mapping gives the fractional area contributed from 
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each S-6 bin to each WJ bin. Since S and 6 were 
calculated relative to central values, this mapping had 
to be calculated for each kinematic point. The mapping 
function is F(lJfl,,I„), where It, I,, and I u are the 
binning indices for the S, 8, and W a bins respectively. 
The sum of F over all indices yields 1.0. Note that the 
S-6 bins were believed to be small enough such that they 
could be treated as uniform. That is, no weighting was 
done to take into account the possibility of cross 
section variation within a given S-6 bin. 

2. Counts for each w 2 bin, NU(I„), were accumulated from 
counts in each S-6 bin, N(I < fI () by the formula: 

Nw<Iw>=£I><I 8,I e)-F(I B,I e,I w). (3.5) 

An acceptance function for the N„ spectrum, A„, was 
the next quantity to calculate, but various corrections 
should be discussed first (items 3-6). 

3. The units of the acceptance function as calculated by the 
Monte Carlo programs were in msr-%. This was converted to 
msrdW 2 by multiplying by C„(I,) = (dE'/d*) • (dW2/dE'): 

CM(I„) =( 1^](2M I > +«E Ksin 2(e(I e>/2) , (3-6) 

where P 0 was the spectrometer central momentum, E„ was the 
average beam energy for the kinematic point, and 6(1,) is 
the value of 9 corresponding to each 6 bin. 

4. The calculated acceptance function had no cross sect on 
dependence built into it. However, the cross section 
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varied enough over the 5-8 plane to warrant a bin-by-bin 
correction of the acceptance so that it varied 
accordingly with that of the data. This correction was 
achieved by the function ^(I^.I, ,IU) which is merely a 
ratio of deuterium model cross sections. This function is 
given by: 

d 2%(E,E', c d ^ D - i d Q d ^ - ' - ^ ' H { 3 7 ) 

Slii'^^nl-r— V- (3.7) 
( d § 7 ~ ( E ' E ' ( l M ' e K ) ' e K ) ) 

where E'(I„,6K) is the momentum corresponding to the W 2 

bin indexed by I„ and the central scattering angle for 
the kinematic point, 6„. This correction also corrects 
all bins to the central scattering angle. The calculation 
of the model cross sections will be discussed in greater 
detail later. 
Generally, there were several kinematic points which had 
similar, but not exact, kinematics, and it was desirable 
to correct all of these points to the same nominal 
kinematics in order to combine them. This correction was 
achieved by the function CS(I„) which is also a ratio of 
deuterium model cross sections. 

(MI,)- N d f t d W 2 ' < _ . (3.8) 
'(iw,eK),eK)j 

(dndw 2^" 0 1" 'E ' ( I w ' e K o m ) ' e "°*>J 
where E„„ was the nominal beam energy, and 6„„ was the 
nominal scattering angle. Note the cancellation which 
occurs when C x and C 2 are multiplied together. 
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6. Radiative corrections which will be discussed in greater 

detail in Appendix C, were calculated as a function of W2 

and 6. The 9 dependence of the corrections was taken into 
account by the function RC, (I, , I„) which is a ratio of the 
radiative correction at the nominal scattering angle to 
the radiative correction corresponding to a given 8 bin. 

7. The corrected acceptance function versus W s can now be 
expressed: 

A Hd„) =^£A(I 8,I e)-F(I s,I e,I w) -CW(I6) ( 3 > 1 0 ) 

' -C. (I,. Ie, IH) -C2 (Iw) -RCe(Ie, IM) , 

where A(l(,la) is the acceptance function generated 
from the Monte Carlo. 

8. Finally, the cross section and the statistical error on 
the cross section were calculated: 

d 2o , T , _N w(I w)-C K l n - U w > = -dQdW 2 w A W(I W) (3 li) 
d'° (I ))- >/ 5" T 1« r' c^" dQdW 2 w j A W(I W) 

It should be noted that similar calculations were done 
for the data measured with the long hydrogen target and the 
long aluminum target. However, since it was not as important 
to keep the errors on these quantities small as it was for the 
deuterium cross sections, not as much care was taken in 
applying the corrections during the conversion process. No 9 
dependence to the radiative corrections was applied, and the 
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cross section dependence correction, C w only corrected for 
the 8 and not the momentum dependence since it w^s more 
important. It should also be. noted that this calculation was 
done separately for data at each of the four ip cuts. 

The next step was to combine the data with different 
central momentum settings which had been corrected to the same 
nominal kinematics. Figure 3.9 and Figure 3.27 are sample 
plots from each spectrometer showing the overlap of these data 
sets before they had been combined together. The data points 
contributing to a single W 2 bin were combined using an error 
weighted average. This averaging process was performed for 
each W a bin, thus producing a single spectrum of raw cross 
sections at each kinematic point. 

Aluminum Background subtraction 
For the 8 GeV spectrometer measured data it was necessary 

to subtract the contribution to the cross section due to 
scattering from the aluminum incap and endcap. The aluminum 
background for the cross sections measured in the 1.6 GeV 
spectrometer was negligible due to the presence of the 
tungsten shields. The measured aluminum cross section was 
scaled by the amount of aluminum seen in the aluminum targets 
divided by the amount of aluminum seen in the liquid targets, 
and was corrected for the difference in densities used to 
calculate the liquid target cross sections and the aluminum 
cross sections. In other words, the liquid target cross 
sections (with aluminum contributions) were calculated using 
the liquid target density while the aluminum cross sections 



114 
wer-; calculated using the aluminum density. It was necessary 
to account for this in the subtraction. The resulting quantity 
was then subtracted from the liquid target cross sections on 
a bin-by-bin basis. 

dfldtV- Pliq C l i q 

where p A L is the density of aluminum in gm/cm3, p l l q was the 
density of the liquid target in gm/cia3, t l L was the thickness 
of aluminum seen by the beam in the liquid targets in cm, and 
t l l q was the thickness of the liquid target in cm. The average 
aluminum contribution to the deuterium cross sections was 2.0% 
and to the inelastic hydrogen cross sections was 6.0%. 

Pair Production Background subtraction 
There was a contribution to the measured cross sections 

due to electron-positron pair production taking place at the 
target. The photons producing the pair production originated 
primarily from JT° decay. The magnitude of this contribution 
was measured by reversing the polarities of the magnets and 
measuring the positron cross sections. The largest pair 
production contributions to the deuterium cross section 
occurred at a beam energy of 2.837 GeV for both spectrometers. 
The contribution was 0.5% for the 8 GeV spectrometer data and 
was 2.3% for the 1.6 GeV spectrometer data where the average 
was done over W 2. Note that this is the largest measured 
contribution and that most of the data had a small or 
negligible contribution from pair production. 
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Hydrogen Contanination of Target sw .raction 

It was clear from the measured cross sections that there 
was some amount of hydrogen contamination in the deuterium 
target because of the presence of an obvious bump at the 
guasielastic peak due to elastic electron-proton scattering. 
The target material was analyzed in its gaseous state and a 
contamination of 2,5% was measured. This, however, was too 
large to properly account for the bump observed in the data. 
This discrepancy was not resolved, but it is believed that the 
contamination percentage could be different when the target is 
in the liquid state because of the difference in the 
condensation temperatures of hydrogen and deuterium. The 
amount of contamination was calculated by varying the 
contamination factor and minimizing the x* °f the ratio of the 
cross section data to the model as compared to the average 
ratio. The best fit occurred for a contamination factor of 
0.85% by weight. The calculated factor was used for the 
subsequent subtraction of the hydrogen contamination in the 
deuterium target. It should be noted that the central angle 
radiative corrections were applied after all the target 
contamination subtractions took place. 

Resolution Unfolding 
Ionization energy losses, multiple scattering, 

spectrometer optics, the spread in the beam energy, and d;ita 
binning limitations are all determining factors in the 
electron momentum resolution. The smearing of the cross 
sections due to this resolution was corrected using a Gaussian 
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shaped resolution function. A correction factor was calculated 
for each kinematic point as a function of W2 by taking the 
ratio of the model deuterium cross sections (no resolution 
effects) to the same model cross section which had been 
convoluted with the resolution function. This correction 
factor was applied to the measured cross section. The 
resolutions (o) used in the resolution function were measured 
by fitting a Gaussian peak to the de-radiated elastic e-p 
cross section peaks which were also measured in this 
experiment [15]. The measured resolutions ranged from 0.014 to 
0.023 GeV2 for the 8 GeV data and from 0.019 to 0.031 GeV2 for 
the 1.6 GeV data (measured in W2 units). The resolutions can 
also be estimated by summing in quadrature the expected 
contributions from each of the factors listed above. However, 
since elastic e-p data were measured at each of the desired 
quasielastic e-d points, this calculation was only used as a 
check that the measured values were reasonable. 

1.6 GeV Spectrometer Normalization 
Since the 1.6 GeV spectrometer's solid angle was much 

less well known than that of the 8 GeV spectrometer [30], a 
si-;le overall normalization factor was applied to all the 1.6 
G^V cross section measurements. A study was made on a W 2 bin-
by-bin basis to determine whether the normalization varied 
over the momentum acceptance range of the l. 6 GeV 
spectrometer. For threa Q s points and at all W 2 where there 
were at least two 8 GeV data points, the reduced cross 
sections, for the 8 GeV data on]y, were fit versus epsilon. 
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These fits were extrapolated to the epsilon of the 1.6 GeV 
data and a normalization factor was calculated by taking the 
ratio of the fit cross sections to the 1.6 measures cross 
sections. No W2 dependence to the normalization was found 
within errors. The average normalization was calculated for 
each of the three Q* points. There was not enough 8 GeV data 

1.6 GeV Normalization 
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Figure 3.31: 1.6 Gev normalization plotted versus w 2 for 
three Q1 points. No significant variation over W 2 is seen so 
the applied normalization was found using an error weighted 
average. 
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to normalize at the Q* = 4.0 (GeV/c)2 point. Within errors the 
normalization did not vary with Q J, so an overall 
normalization factor was found by doing a weighted average. 
The result for the overall normalization was 1.012 ± 0.010. 
Figure 3.31 shows plots of the normalizations versus W2 at 
each Q 2 point where the normalization was studied. 

Proton Inelastic Data 
There are two important reasons for measuring the proton 

inelastic cross section in the region of the A resonance. 
First, these measurements are necessary in order to help 
develop a good model of the inelastic contribution to the 
quasielastic deuterium cross section. This is crucial to a 
precision measurement of the neutron form factors at large Q2 

where the tail contribution is significant. Second, there is 
a need for data on baryon excitation cross sections and 
transition form factors, especially at large Q 2, in order to 
test existing theories and models. The following tables 
summarize the measured inelastic electron-proton cross 
sections and their errors. A discussion on the errors is given 
in Chapter 4. 
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Table 3.8: Proton inelastic cross sections at 
E = 5.507 and 6 = 15.146°. Cross section and 

1 error units are in (nb/(sr GeV 2). 
W 2 

(GeV2) 
Rad. 

Corr. 
do/dtldW2 ±Stat. 

error 
±Total 
error 

1 1.165 
[ 1.195 

1.225 
1.255 
1.285 
1.315 
1.345 
1.375 
1.405 
1.435 
1.465 
1.495 
1.525 
1.555 
1.585 
1.615 
1.645 
1.675 
1.705 
1.735 

2.097 
1.794 
1.690 
1.636 
1.602 
1.580 
1.565 
1.552 
1.539 
1.519 
1.487 
1.443 
1.391 
1.338 
1.291 
1.253 
1.225 
1.204 
1.190 
1.181 

1.4:S+00 
1.82E+00 
2.37E+00 
3.84E+00 
6.00E+00 
7.78E+00 
1.06E+01 
1.42E+01 
1.86E+01 
2.45E+01 
2.79E+01 
2.97E+01 
2.88E+01 
2.61E+01 
2.46E+01 
2.24E+01 
2.23E+01 
2.17E+01 
2.04E+01 
2.33E+01 

0.40E+00 
0.36E+00 
0.37E+00 
0.41E+00 
0.442+00 
0.46E+00 
0.51E+00 
0.57E+00 
0.62E+00 
0.70E+00 
0.73E+00 
0.75E+00 
0./4E+00 
0.73E+00 
0.74E+00 
0.75E+00 
0.83E+00 
0.98E+00 
0.12E+01 
0.21E+01 

0.40E+00 
0.37E+00 
0.37E+00 
0.41E+00 
0.45E+00 
0.49E+00 
0.55E+00 
0.63E+00 
0.72E+00 
0.84E+00 
0.91E+00 
0.94E+00 
0.93E+00 
0.88E+00 
0.87E+00 
0.87E+00 
0.94E+00 
0.11E+01 
0.13E+01 
0.22E+01 

Table 3.9: Proton inelastic cross sections at 
E = 5.507 and 8 = 15.981°. Cross section and 
error units are in (nb/(sr•GeV2). 
W 2 

(GeV2) 
Rad. 
Corr. 

dcr/dndW2 ±Stat. 
error 

±Total 
error 

1.160 
1.200 
1.240 
1.280 
1.320 
1.360 
1.400 
1.440 
1.480 
1.520 
1.560 
1.600 
1.640 
1.68C 

1 1.720 

1.956 
1.781 
1.668 
1.613 
1.582 
1.563 
1.545 
1.519 
1.473 
1.409 
1.434 
1.290 
1.253 
1.230 
1.217 

1.51E-01 
3.30E-01 
5.83E-01 
8.02E-01 
1.20E+00 
1.91E+00 
2.88E+00 
3.71E+00 
4.42E+00 
4.55E+00 
4.37E+00 
3.92E+00 
3.81E+00 
3.68E+00 
3.59E+00 

0.46E-01 
0.44E-01 
0.47E-01 
0.50E-01 
0.57E-01 
0.70E-01 
0.82E-01 
0.91E-01 
0.98E-01 
0.10E+00 
0.10E+00 
0.10E+00 
0.12E+00 
0.15E+00 
0.21E+00 

0.46E-01 
0.45E-01 
0.48E-01 
0.53E-01 
0.62E-01 
0.79E-01 
0.99E-01 
0.12E+00 
0.13E+00 
0.13E+00 
0.13E+00 
0.13E+00 
0.14E+00 
0.16E+00 
O.23E+00 
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Table 3.10: Proton inelastic cross sections at 
E = 5.507 and 6 = 22.805°. Cross section and 
error units are in (nb/(sr-GeV2). 
W 2 

(GeV2) 
Rad. 

Corr. 
do/dndW= +Stat. 

error 
±Total 
error 

1.175 
1.225 
1.275 
1.325 
1.375 
1.425 
1.475 
1.525 
1.575 
1.625 
1.675 
1.725 
1.775 

1.971 
1.696 
1.614 
1.574 
1.550 
1.525 
1.477 
1.402 
1.329 
1.279 
1.251 
1.237 
1.233 

3.66E-02 
9.61E-02 
1.68E-01 
2.70E-01 
4.88E-01 
7.30E-01 
9.43E-01 
9.76E-01 
9.73E-01 
8.82E-01 
9.64E-01 
9.00E-01 
9.96E-01 

0.87E-02 
0.85E-02 
0.98E-02 
0.12E-01 
0.17E-01 
0.20E-01 
0.22E-01 
0.23E-01 
0.24E-01 
0.25E-01 
0.34E-01 
0.51E-01 
0.23E+00 

0.87E-02 
0.87E-02 
0.10E-01 
0.13E-01 
0.19E-01 
0.24E-01 
0.28E-01 
0.29E-01 
0.30E-01 
0.31E-01 
0.39E-01 
0.54E-01 
0.23E+00 

Table 3.11: Proton inelastic cross sections at 
E = 5.507 and 6 = 26.823°. Cross section and 
error units are in (nb/(sr-GeV2). 

(GeV2) 
Rad. 

Corr. 
dc/dndW2 +Stat. 

error 
±Total 
error 

1.175 
1.225 
1.275 
1.325 
1.375 
1.425 
1.475 
1.525 
1.575 
1.625 
1.675 
1.725 
1.775 

1.961 
1.689 
1.606 
1.565 
1.540 
1.516 
1.470 
1.400 
1.333 
1.289 
1.264 
1.252 
1.246 

1.10E-02 
2.66E-02 
4.13E-02 
7.43E-02 
1.23E-01 
1.80E-01 
2.41E-01 
2.57E-01 
2.63E-01 
2.61E-01 
2.68E-01 
2.67E-01 
2.45E-01 

0.28E-02 
0.26E-02 
0.28E-02 
0.34E-02 
0.39E-02 
0.46E-02 
0.52E-02 
0.54E-02 
0.57E-02 
0.64E-02 
0.82E-02 
0.12E-01 
0.41E-01 

0.28E-02 
0.27E-02 
0.29E-02 
0.37E-02 
0.46E-02 
0.57E-02 
0.69E-02 
0.73E-02 
0.76E-02 
0.81E-02 
0.97E-02 
0.13E-01 
0.41E-01 
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Table 3.12: Proton inelastic cross sections at 
E = 9.300 and 9 = 13.248°. Cross section and 
error units are in (nb/(sr GeV 2). 

(Gev=) 
Rad. 
Corr. 

do/dndW2 ±Stat. 
error 

±Total 
error 

1.175 
1.225 
1.275 
1.325 
1.375 
1.425 
1.475 
1.525 
1.575 
1.625 
1.675 
1.725 

2.102 
1.804 
1.716 
1.671 
1.645 
1.619 
1.570 
1.497 
1.427 
1.382 
1.357 
1.345 

8.58E-02 
1.76E-01 
2.95E-01 
4.67E-01 
7.82E-01 
1.15E+00 
1.46E+00 
1.47E+00 
1.42E+00 
1.37E+00 
1.49E+00 
1.34E+00 

0.25E-01 
0.24E-01 
0.25E-01 
0.28E-01 
0.36E-01 
0.42E-01 
0.49E-01 
0.54E-01 
0.60E-01 
0.69E-01 
0.91E-01 
0.14E+00 

0.25E-01 
0.24E-01 
0.26E-01 
0.29E-01 
0.39E-01 
0.47E-01 
0.57E-01 
0.61E-01 
0.66E-01 
0.74E-01 
0.95E-01 
0.14E+00 

Table 3.13: Proton inelastic cross sections at 
E = 9.800 and 0 = 15.367°. Cross section and 

1 error units are in (nb/(sr • GeV 2). 

(GeV2) 
Had. 
Corr. da/dfldW2 

±Stat. 
error 

+Total 
error 

• 1.188 
1.262 
1.337 
1.412 
1.488 
1.563 
1.637 
1.713 
1.787 

1.986 
1.741 
1.668 
1.630 
1.561 
1.459 
1.399 
1.375 
1.364 

3.05E-02 
6.85E-02 
1.35E-01 
2.23E-01 
3.36E-01 
3.92E-01 
3.90E-01 
3.82E-01 
4.77E-01 

0.73E-02 
0.74E-02 
0.89E-02 
0.11E-01 
0.14E-01 
0.17E-01 
0.22E-01 
0.33E-01 
0.16E+00 

0.73E-02 
0.75E-02 
0.93E-02 
0.12E-01 
0.16E-01 
0.19E-01 
0.23E-01 
0.33E-01 
0.16E+00 

Table 3.14: Proton inelastic cross sections at 
E = 9.800 and 9 = 17.516°. Cross section and 
error units are in (nb/(sr GeV 2). 

(GeV*) 
Rad. 

Corr. 
d<j/dndW2 ±Stat. 

error 
iTotal 
error 

1.188 
1.262 
1.337 
1.412 
1.488 
1.563 
1.637 
1.713 
1.787 

1.993 
1.743 
1.666 
1.626 
1.561 
1.470 
1.414 
1.394 
1.382 

6.85E-03 
2.85E-02 
4.18E-02 
7.74E-02 
1.00E-01 
1.15E-01 
1.25E-01 
1.21E-01 
1.25E-01 

0.25E-02 
0.28E-02 
0.32E-02 
0.41.S-02 
0.50E-02 
0.61E-02 
0.80E-02 
0.12E-01 
0.39E-01 

0.25E-02 
0.28E-02 
0.33E-02 
0.44E-02 
0.54E-02 
0.65E-02 
0.83E-02 
0.12E-01 
0.39E-01 
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Table 3. 15: Proton inelastic cross sections at 
E = 9.800 and e = 19.753 . Cross section and 
error units are in (nb/(sr-GeV2). 
W= Rad. do/dndW* ±Stat. ±Total 

(GeV2) Corr. error error 
1.262 1.992 1.09E-02 0.18E-02 0.18E-02 
1.337 1.739 1.28E-02 0.19E-02 0.19E-02 
1.412 1.660 2.01E-02 0.24E-02 0.24E-02 
1.487 1.617 3.57E-02 0.33E-02 0.33E-02 
1.563 1.557 3.37E-02 0.35E-02 0.36E-02 
1.637 1.476 4.20E-02 0.49E-02 0.49E-02 
1.713 1.429 4.77E-02 0.73E-02 0.73E-02 
1.787 1.407 5.39E-02 0.16E-01 0.16E-01 

Proton Inelastic Model 
The inelastic model was actually a fit to the measured 

hydrogen cross section data, where the fit coefficients had a 
polynomial Q* dependence. In order to constrain and improve 
the fits to the measured data, additional data were also 
considered. All inclusive electron scattering resonance region 
data measured up until the mid 1970's were evaluated and 
parameterized by Brasse, et al. [38] This parameterization 
was used to generate cross sections which were used in the fit 
at two low values of Q !, 1.0 and 1.3 GeV/c. Higher 0/ data were 
included from SLAC experiment E133 [39]. These data were 
in the range 2.4 < Q 2 < 9.8 (GeV/c)2. The components of the fit 
included a nonresonant background contribution as well as 
resonant contributions from the three lowest lying nucieon 
resonances. Details on this fit will be given after a 
background discussion on helicity amplitudes for A(1232) 
electroproduction. 
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The term helicity refers to the projection of a 

particle's spin along its direction of motion. It can be shown [40] 
that helicity is conserved in a vector interaction. Since 
photon and gluon exchange are both vector interactions 
helicity is conserved in the limit that the quark masses can 
be neglected. Perturbative QCD [41] asserts that at very 
high Q s this translates into hadron helicity conservation as 
well. Thus, it is convenient to use helicity amplitudes when 
studying nucleon resonance production in order to test PQCD. 
Tliere are three independent helicity amplitudes (sometimes 
called helicity form factors) for electromagnetic N-4 
transitions. Using the same notation as Carlson [42], 
C(Q 2) is the helicity conserving amplitude, G„(Q2) corresponds 
to one unit of helicity change, and G_(Qa) corresponds to two 
units of helicity change. G. is the dominant amplitude since 
each unit of helicity change results in a damping of the 
amplitude by a factor 0(m/Q) [42], where m is some mass scale. 
These damping factors can be established by analyzing the 
lowest order Feynman diagrams contributing to the N-»A 
transition. Vainshtein and zakharov [43] have given rules 
for simply analyzing these diagrams within the quark model, 
assuming that the quark helicities are conserved. 

It is very common to see the helicity amplitudes in terms 
of A 1 / 2(Q S) and A 3 / a(Q s) which contribute to only the transverse 
virtual photoabsorption cross section. Thus, they are called 
the transverse helicity amplitudes. The total inelastic 
electron-proton inclusive scattering cross section can be 
written as a sum over transverse and longitudinal components 
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as shown earlier in Eq. 1.16. For the 4(1232) resonance: 

A: (02) =e -^-- G. (Q2>, Aj(0 2)=e M"-G.(Q 2), (3.13) 

where e is electron charge. The other helicity amplitude, 
G 0(Q 2), only contributes to the longitudinal cross section. 
Existing resonance cross section measurements (including these 
data) are consistent with the longitudinal contribution being 
zero. This is in contrast to the nonresonant cross section 
which has a non-negligible longitudinal contribution. To 
simplify the following formulae, the quantity A,(Q2) is defined 
to be 

|A H(0 2)| 2=(|A J :(0 2)f + U^(D 2)| 2). (3-14) 

Transition form factors are defined in terms of the 
helicity amplitudes. Stoler [44] defines a dimensionless 
transition form factor, F A(Q 2): 

|F,(Q2)|2 = -j^^(M 4
2-M p

2)|A H(Q 2)| 2. (3.15) 

Another common representation of the transition form factor is 
G„"(Q2) [45] which is the magnetic dipole transition form 
factor for 4(1232) excitation. G„*(Q2) is related to the 
transverse helicity amplitudes by the formula: 

[GH-(Q2)|2. 1 Mf'"f |AH(Q2)12, (3.16) 
1 ' 4ita v 2 + Q 2 

where v is fixed at the 4 resonance peak for a given Q 5. 
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The differential scattering cross section was defined in 

Eq. 1.16 in terras of the transverse and longitudinal virtual 
photoabsorption cross sections. The transverse virtual 
photoabsorption cross section of the 4(1232) resonance can be 
related to the transverse helicity amplitudes using a 
relativistic Breit-Wigner formula, as in the work by 
Stoler [46], 

PMirx 
(W 2-M1) 2+(M AD 2 T

|A„(Q 2)| 2, (3.17) 

where the kinematic factor, 8, has been corrected from the 
formula given in the Stoler paper. The correct expression for 
the 4 resonance is given by: 

2WMJ KAKl 

M £ \ U K * J 

The p a r t i a l widths a re defined: 

(3.18) 

r =r, 2L 
P„*A 

p;i+x< 
p ; 2 * x 2 

i\=r A 

K4 +X' ( 3 . 1 9 ) 

where a value of 120 MeV was used for ra, and the total width, 
r was set equal to r» since the only decay channel for the 
4(1232) resonance is single pion emission. The photon width 
contribution to r was neglected. The quantities K and K" are 
given by the expressions: 

K=-W
2-M^ 
2 M P 

K" = W
2-M| 
2W (3.20) 

K and K* are the equivalent energies of a real photon which, 
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when absorbed by a proton, produce a final mass state, W, in 
the laboratory and in the center of mass frames respectively. 
K and K" evaluated at W = Ma are denoted by KA and Ka" 
respectively. The pion momentum in the center of mass system 
of the proton-pion decay state is given by 

P ; W . * 1 ^ , P„VP;< M 4). (3.21) 

The quantity, X, is a fit parameter which determines the mass 
variation of the resonance widths [47]. Photoproduction 
data fits [48] yield a value for X of 0.160 GeV for the 
A(1232) resonance. The results are fairly insensitive to this 
parameter, but a x' best-fit to all the data yielded a value 
of 0.148 GeV. Equations 3.17 to 3.21 were used in the cross 
section fitting procedure to accuunt for the 4(1232) resonance 
contribution. The transition form factors were then extracted 
from the fit. 

The new NE11 data only extended just past the 4(1232) 
resonance, while the Brasse and E133 cross sections clearly 
had contributions from at least two higher mass state 
resonances. In order to do a global fit to the entire set of 
data, two higher mass state resonances were modeled using the 
simpler nonrelativistic Breit-Wigner formula: 

r 
°i = Ai<Q 2> ' i • (3.22) 

The index, i = 2 or 3 denotes the second or third resonance 
and r, and KL are the widths and masses of the resonance. The 
coefficients, A w are fitting parameters. The more complicated 
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relativistic Breit-Wigner formula was not used because tne 
transition form factors from these data and for these 
resonances have been studied previously [46]. Also, the 
analysis is considerably more complicated due to multiple 
decay channels, and we were only interested in fitting the 
total cross section in this region in order to develop a model 
cross secUion. T?ie nonrelativistic Breit-Wigner formula was 
sufficient for this purpose. The first of the two included 
higher resonances was the Si:l(1535) which is the prominent 
resonance in this region for the Q 2 range of the data. The 
second resonance was the F1S(1680) which is known to be 
dominant at lower Q 3. The masses were allowed to vary co 
obtain tha best x = agreement with the data. The mass found for 
the S.JISSS) wap 1.504 GeV. The best mass for the FlB(l680) 
resonance varied with Q 2, however, indicating that perhaps 
other resonances are contributing in this region at high Q2. 
A Q2-dependent mass was allowed, therefore, of tfce form 
M = 1.680(1 + aQ 2/1000) where the parameter a was varied to 
find the best fit value of 2.28. Resonance widths of 71 and 95 
HeV were used for the S„(1535) and the F15{1680) respectively. 

The large nonresonant background contribution to the 
transverse cross section was included using a fit with the 
following polynomial-like form [49]: 

' f - E C . W A l ^ (3.23) 
n=I 

where C„(Q2) are fit parameters and W^ = H p + M, is the pion 
production threshold. This form gives the correct behavior at 
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pion production threshold. The nonresonant background 
contribution to the longitudinal cross section was assumed to 
be proportional to the transverse portion with the usual 
parameter R = aJor. A value of R = 0.15 was assumed. Figure 
3.3 2 shows a sample of some of the data used in the fits and 
the relative contributions from each of the components 
discussed above. Note that the error bars on the generated 
3rasse data have been artificially inflated so that these data 
do not overwhelm the fitting. 

The global fit to the data was found by allowing the 
coefficients from each of the contributions to have a Q 2 

dependence. These fit coefficients were |Fj 2 from Eqs. 3.15 
and 3.17, Aj and A 2 from Eq. 3.22, and C w C 2, and C 3 from Eq. 
3.23. A third-order polynomial Q a dependence was used for all 
the coefficients except for |FA|2 which used a fourth-order 
polynomial. The results of the fit are given in Table 3.16 and 
are expected to be valid over the Q 2 range 1-10 (GeV/c)2. Using 
these coefficients and the formulae given above, the proton 
transverse virtual photoabsorption cross section is obtained 
in units of lib and normalized to the dipole fora factor 

Table 3.16: Results from global fit to the proton 
inelastic cross section data. Each coefficient has a 
polynomial dependence in Q2. 

1.0 Q 2 Q 4 Q* Q' 
|F.|2 1.44E+1 -3.52E+0 3.84E-1 -2.31E-2 5.92E-4 
A, 9.97E+0 1.05E+1 6.72E+0 -4.61E-1 
A 2 5.15E+1 -7.05E+1 4.11E+1 -2.72E+0 
c, 3.57E+2 2.29E+3 2.22E+2 -1.86E+1 
c2 -7.30E+3 9.74E+2 2.91E+3 -2.42E+2 
e, 4.44E+3 5.89E+3 -7.34E+3 5.98E+2 
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Figure 3.32: Sample transverse virtual photon cross 
sections, one from each data set. curves indicate 
nonresonant, resonant and total cross sections from the 
global data fit. 
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squared, (GD(Q2))2 = 1.0/(1.0 + Q 3/0.71)\ The longitudinal 
resonant component is obtained using R = aL/ar = 0, while the 
longitudinal nonresonant component is obtained using R «= a^/aT 

= 0.15. The model proton inelastic cross sections is then 
obtained by multiplying the components by (GD(Q2))2 ^nd by 
using Eq. 1.16. 

AJJL2321 Resonance Transition Form Factors 
The A(1232) resonance transition form factors were 

extracted from fits to the cross section data using the 
formulae given in the last section for each individual Q 2 data 
point. The NEll data did not include contributions from the 
higher mass state resonances. The results are shown in Figure 
3.33 and in Table 3.17. The form factors have been normalized 
t o F D l p o l. which is equal to 3.0*GD where G D is the dipole form 
factor defined earlier. The factor of 3.0 is the effective 
magnetic moment of the A resonance. Also included on this plot 
is the global Q 2 fit to the form factors as given in Table 
3.16, a prediction from a diquark model [50] developed by 
Kron, schurmann, and Schweiger, and asymptotic predictions 

T a b l e 3 . 1 7 : N E l l A ( 1 2 3 2 ) t r a n s i t i o n f o r m f a c t o r r e s u l t s 
n o r m a l i z e d t o F D l p o l . = 3 . 0 / ( 1 . 0 + Q V 0 . 7 1 ) 2 . 

_Q_* ( G e V / c ) 2 F 4 ( Q 2 ) / F D 1 1 > O I . ± ( S t a t . e r r o r ) ± ( T o t a l e r r o r ) 

1 . 6 4 0 1 . 1 3 0 . 0 3 6 0 . 0 4 2 
2 . 3 4 3 0 . 9 9 0 . 0 3 5 0 . 0 4 0 
3 . 0 4 6 0 . 9 0 0 . 0 3 9 0 . 0 4 3 
3 . 7 4 9 0 . 7 5 0 . 0 4 0 0 . 0 4 4 
3 . 8 5 9 0 . 8 9 0 . 0 6 4 0 . 0 6 6 
4 . 8 2 4 0 . 6 0 0 . 1 1 4 0 . 1 1 5 
5 . 7 8 9 0 . 4 5 0 . 1 5 8 0 . 1 6 0 
6 . 7 5 4 0 . 6 6 0 . 1 9 2 0 . 1 9 2 
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Figure 3.33: M1232) transition form factors extracted 
from data fits at each Q 2 point. Comparison to the diquark 
model of Kroll, et al [51], is shown, as well as the 
global Q 2 fit. 

due to Carlson and Poor [42][51] using different nucleon 
distribution amplitudes (GS, KS, CZ, see below) for the N-»A 
transition calculation. 

A distribution amplitude is the momentum-space wave 
function which has been integrated over the transverse 
momenta. The helicity amplitude predictions of Carlson and 
Poor were found using nucleon distriDUtion amplitudes from 
Chernyak and Zhitnitsky (CZ) [521, King and Sachrajda (KS) 
[53], and Gari and Stefanis (GS) [54], and QCD sum rule 
constraints on the moments of the distribution amplitude for 
the A(1232) resonance. 

The asymptotic predictions from Carlson and Poor are 
actually only for the dominant transverse helicity amplitude, 
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Ai/s(Q2) , and are given by: 

fo.02 GeV 5 / 2 (CZ(52] )] 
Q 3|A 1 / 2(Q 2)|=0.03 GeV 5 / 2 (KS[53])[ (3.24) 

[0.17 GeV ! / 2 (GS[54] )j 
In order to compare with F a(Q 2), some assumption must be made 
about the contribution from A 3 / 2(Q 2) • Perturbative QCD predicts 
that A 1 / 2(Q 2) falls as 1/Q3 and A 3 / 2(Q S) falls as 1/Q5, but this 
has not been established experimentally. The points shown in 
Figure 3.33 were calculated at the Q 2 shown assuming that the 
contribution from Aj^fQ2) could be neglected. 

The diquark model was originally developed to study the 
elastic electromagnetic nucleon form factors, but has recently 
been extended to study the 4(1232) transition form factors as 
well [55]. The formula for the virtual photon transverse 
cross section in this model is given by: 

«T=-^S-\ | A I ( Q 2 ) M A 3 ( Q 2 ) 

I > 4 | * ° amptmi-mp2) j l 9 + 3 J' 

h . (0 2 ) = c V 6 - i i f f v

pf* f c b q d y ^ ( V l ) <fr? (x x ) 

{ - o s ( Q 2 ) K v F ^ ' (Q 2) + a ^ Q 2 ) F j " <Q2) 
X I V I 

[t^,{x1+y1) - K v d - X j ) ( 1 - y j ] } , 
I 

h. (Q 2) = 0 ^ - 1 ^ f v P f a f d x ^ y , * 4 ( y ^ S t x J 

( 3 - 2 5 ) 

( 3 . 2 6 ) 

9mv 
8m^ o s ( 0 2 ) F v 3 ' ( 0 2 ) a a ( § 2 

Q'- (1-Xi) (1 -y j ) x 1 y 1 

- F ^ ' ( 0 a ) 

ficvd+xx) d + y 1 ) + 2 K v ( x 1 - y 1 ) - ( i - x 1 ) ( l - y j l 
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The diquark model is discussed in more detail in Chapter 4 in 
the discussion on nucleon form factor models. All of the above 
variables are defined in this discussion with the exception of 

f A = \Z2~fv
P, ^(X) =B4»?(x)[l.0-5.15x-5.45X2j. (3.27) 

where B is just the normalization for the distribution 
amplitude function used in the model. 

It can be concluded that the 4(1232) transition form 
factor falls off more rapidly with increasing Q 2 than the 
nucleon form factor and also more rapidly than the transition 
form factors for the 3^(1535) and the F15(168o) resonances as 
analyzed by Stoler [46]. Plots showing the proton form factors 
as measured in this experiment will be given later this 
chapter. The implications of the observed fall-off are not 
entirely clear, but this is not the prediction of leading-
order pQCD which is that F 4/F D l p o l. •* constant at large Q2. A 
raultipole analysis for photoproduction cross section data in 
the A(1232) region at Q 2 below 0.45 (GeV/c)2 has been done 
[56]. in this region, pQCD is not expected to be valid. 
The results show that 4(1232) production is primarily a spin-
flip transition, and that the A^fQ 2) helicity amplitude is 
dominant. It is possible that at the higher Q 2 of this 
experiment, the A 3 / 2(i ) amplitude is still dominating over the 
Ai/2 amplitude, which would explain the fall-off of F̂ F,,,,̂ . 
with increasing Q2. 
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Quasielastic Cross Section Hodel 
The neutron form factor extraction procedure is model 

dependent. In order to correctly extract these quantities the 
quasielastic cross section model should be able to adequately 
model tho shape of the quasielastic peak. The deuterium 
quasielastic cross section model used in this analysis was 
based on a simplified version of the theoretical 
nonrelativistic PWIA model due to McGee [17][57] and 
Durand [16][58]. Starting with this model as given by 
Bartel, et al. [59 ], only the terms which were 
proportional to us(k) and ws(k) were kept. The quantities u and 
w are the s-state and d-state momentum-space amplitudes of the 
deuteron wave function, and k is the laboratory momentum of 
the spectator nucleon in the impulse approximation. The result 
is given by 

d*Q _Mg E ( ? Y [U2<fc>+W2(fc>1kdk (3.28) 
dQdE' 2 q E ' ( P « M n ^ T 

where q is the magnitude of the vector three-momentum carried 
by the interacting photon, E' corresponds to elastic 
scattering given the incident energy, E, and the scattering 
angle, 6, and op(E,6) and o„(E,8) are the nucleon elastic cross 
sections as given by the Rosenbluth formula, Eq. 1.6. The 
quantities k.ln and k„„ are the minimum and maximum allowed 
values for the longitudinal Fermi momentum carried by the 
struck nucleon relative to the photon direction as determined 
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by the energy conservation formula: 

E + M d = E' + ̂ Mp+k z+^W 2+ (k + q ) 2 , (3.29) 

where W is the final mass state of the hit nucleon. A reduced 
cross section can now be defined by: 

e(l+rV d 2 ° dQdE' 
T O , 

(3.30) 

where T' = v'/Q2, e was defined in Eq. 1.17 and oKM was 
defined in Eq. 1.5. The transverse and longitudinal 
components, P̂  and RL, can be calculated using Eqs. 1.6, 3.27, 
and 3.29 yielding the expressions: 

RT(E',Q*) -i£ -L (<£<Q») + <&W))7 f'Wkdk 
2q E *L fi^g 

(3.31) 
RL(E',0») - - ^ - ^ ( Q ' ) + GE

2
n(Q*)) f t ' W k g * . 

Note that a study comparing the full HcGee PWIA model to the 
simplified model described above show < 2 % differences in the 
peak region [66]. The wave function, f2(k) = u2(k) + w 2(k), in 
this study was parameterized using three different 
nonrelativistic nucleon-nucleon potentials, Paris [60], 
Bonn [61], and the Reid soft core [62] potentials. 
These wave functions are similar and only start to 
significantly disagree for the less probable high momentum 
components which correspond to the short range part of the 
nucleon-nucleon interaction [63]. These high momentum 
components only contribute to the tail regions of the 
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quasielastic crosr section, and thus do not have a big effect 
on this model calculation. However, the inelastic tail which 
contributes in the quasielastic peak region can be sensitive 
to these high momentum components. Results from a study on 
this possibility will be discussed in the next section. 

Also included in this model was a relativistic correction 
using calculations by Keister ;64] based on a light-cone 
dynamics formulation [65]. The effect of this correction 
on the final extracted form factors was well within the 
calculated errors. Arother relativistic correction due to 
Gross is currently under investigation, but preliminary tests 
indicate that this correction also has a small effect on the 
final form factors. 

Corrections were not made for final state interactions 
(FSl) and meson exchange currents (MEC) because the necessary 
theoretical calculations have not been done for the kinematics 
of this experiment. A careful study of these contributions to 
the form factors should become available as the calculations 
are finished [u6]. Calculations by Laget [67][68] 
and Arenhovel [69][70] were presented by Petratos 
[71] for backward angle electron-deuterium cross sections in 
the range 0.75 < Q 2 < 2.57 (Gev/cja. These calculations include 
FSl and MEC effects and clearly indicate that these effects 
are minimal at the quasielastic peak, but can be large in the 
tail regions. The efi'ects due to FSl are expected to decrease 
with increasing Q 2 [17], and they should affect the 
longitudinal and transverse components of the cross section by 
about the same amount (See Eq. 3.30). To first order the 
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effects due to HEC only contribute to the transverse component 
of the cross section [67] and thus only affect the measured 
value of Onn (Q J). The magnitude of this correction is not well 
known, but the effect increases as W 2 increases from tne 
quasielastic peak region into the "dip" region which is 
located between the quasielastic peak and the 4(1232) 
resonance. 

Fermi Smearing Models 
The term "smearing" refers to the effect on measured 

cross sections due to the Fermi motion of nucleons within a 
nucleus compared to the cross sections measured off of free 
nucleons. There are severt"1. different formalisms available 
on how this smearing process should be carried out. Several 
different approaches will be presented here and compared with 
one another. The formulae presented will be in terms of the 
inelastic structure functions, W x and W 2, which were defined 
in Chapter 1. These formulae give the smeared model structure 
functions for the proton only (denoted by superscript p). 
After all the smearing methods are presented a discussion will 
be given on how the deuteron inelastic cross section is found 
from these smeared proton structure functions. The unsmeared 
proton inelastic structure functions for all mathods were 
obtained from the proton inelastic model which was discussed 
earlier in this chapter. 

The first smearing model is a simple and quick smearing 
method based on the simple McGee-Durand representation of the 
quasielastic cross section and was developed by P. Bosted 
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[72]. Any good smearing model should be able to adequately 
reproduce the quasielastic cross section by assuming a delta 
function elastic peak at W = M, as the input to the smearing 
formula. This model goes one step further. If the cross 
section formula given in Eq. 3.28 represents the Fermi 
smearing of a delta function proton elastic peak at W = M,,, 
then the inelastic smeared cross section at a given kinematic 
point can be obtained by replacing the elastic cross section 
portion of Eq. 3.28 with an integration over the inelastic 
proton cross section (a sum over the smeared contributions 
from many delta functions at the desired kinematic point). The 
formula for this smearing method in terms of the structure 
function, W 1 ( is given by the expression: 

WI PSM(V,Q 2)= rW,p(W,Oz)-^dW /V(k) kfo • (3.32) J 2q J /,.2 ...2 **„ ^ M J 

The lower limit of the K integration was defined by the pion 
production threshold, W.ln = Hp + M„. The upper integration 
limit was chosen to be sufficiently large such that the 
smeared contributions from that cutoff point were negligible 
for the largest W bin where the smeared cross section was 
needed. This smearing formula assumes a normalization: 

J V (k)k2dk = l. (3.33) 

This smearing method is quick because the integrand from 
the integral over k is independent of kinematics (the limits 
of integration are not). The integral from k.Jn = 0.0 to k„„ = 
'.<ic can be evaluated at many values of k, giving a function. 
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I(k,). The smearing formula is then effectively reduced to a 
single integration where the integral over k is reduced to the 
factor I(k„„) - I(k, l n). Note that this smearing method only 
involves one smearing formula whereas the following models all 
have two smearing formulae. The assumption was made for this 
first model that the ratio o^/a, for the smeared cross sections 
was constant, just as this ratio was assumed constant for the 
proton model cross sections. 

The second smearing model uses the formalism of Atwood-
West [73] as given by Bodek, et aJ. [74], and includes 
off-mass-shell effect modifications. This approach is based on 
an incoherent impulse approximation which assumes that only 
one of the two nucleons participates in the interaction and 
the two nucleons have no additional interactions between then. 
The other nucleon, referred to as the spectator, is on the 
mass shell and is unaffected by the interaction. The 
interacting nucleon is initially off mass shell, but is 
brought back on to the mass shell with the absorption of the 
virtual photon. The kinematics of the smearing formulae are 
given in the laboratory frame where, 

q= (0,0,q3,v) = virtual photon 4-momentum, 
p a= (0,0,0,Md) = deuteron 4-momentum, 
P s

= (Pi/P2'P3'E«' = spectator nucleon 4-momentum, 
p= l-P3,M d-E 3) = interacting nucleon 4-momentum, (3.3 ) 

Pc = ̂ Pi +P% - transverse nucleon momentum. 

Es=y'p2
6 + Mp = spectator nucleon total energy. 
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The smearing formulae are given in terms of the inelastic 
structure functions W, and W 2: 

Wi? M(v.Q 2) = j > ( p ) 

tf2sM(v,Q2) = jV<P) 

Iw^v.O 2) + W 2
p ( v , Q 2 ) - ^ 

2M 2 
d 3 p , 

mv'q, J I v ) 

(3.35) 
PtQ 2 

2Mp
2q3-

lw2
p(?,Q2)d'-p, 

where W, and W 2 in the integrands are the proton off-mass-shell 
structure functions. These will be discussed in more detail 
shortly. The remaining kinematic factors are defined: 

v' = ̂  = T ^ ( ( M d _ E s ) v + P 3 q 3 ) ' 
(p + q ) 2 = ( M d - E a ! 2 - p | + 2M pv'-Q 2, 
W 2 - M 2 + Q * 

2M„ 

(3.36) 

The wave functions considered are the same as those used for 
the quasielastic modelling. The normalization assumed is: 

JV (p)d3p = l (3.37) 

The third, fourth, and fifth smearing models are all due 
to sargsyan, Frankfurt, and strikman [75][76]. The 
third method calculates the smearing formulae using the 
impulse approximation in terms of light-cone quantum mechanics 
and its associated light-cone variables. Note that the 
structure function, F 2 in the original formula of the 
Sargsyan, Frankfurt, and Strikman paper [75] has been 
converted to W a using the relation F 3(v,Q 2) = vW 2(v,Q 2), and a 
typographical error in this same formula has been corrected. 



The formulae are given by: 
141 

W!PcM(V,Q2) = / V ( E ) 3 l k 2 

W p(v,Q 2) + W 2
P ( 5 , Q 2 ) — H - d 3k. 

W/SK (v .o1) = / V (K) |(i ->-cos6)2|a + mv."q J 

M, 

2ME ^ 

'- ̂  (sin28)k2 

2M' 

2M„a W2
p(?,0->d3k, 

(3.38) 

where it is important to note that the integration variable, 
k, is not the same integration variable, p, given in smear 
model 2. The variables k and a are light cone variables, and 
the spectator four-momentum is defined in terras of them: 

a = n 
H 

*l/22.+Mi (3.39) 

Ps •(-k 1,-k a,B.-M d(-?^)> 1 

where the vector k = (k 1 (k 2,k 3), k| = JcJ + kf, and (2 - a)/2 is 
defined to be the fraction of the deutcron momentum carried by 
the spectator nucleon in the frame where the deuteron momentum 
is infinite. The remaining kinematic factors are defined: 

• 2» Q 2 

, q-(pd-ps) _ 1 

M 0 ' 

(v+q3) «M d (v-q3) (M d
2 kf+Mp'V 

{ 2 2-a ) 

W 2=(q + P d - p s ) 2 = |-M|-( T^)(k t
2
 + M 2) + 2M t,v' + M 2 - 0 2 

(3.40) 

5 = 
2Mp 
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The variables q and p a are defined the same as in Eq. 3.34, 
and the wave function normalization is given by Eq. 3.37. 

The fourth smearing model involves a slight modification 
of smearing model 3 to account for a possible "EMC effect" in 
the deuteron at large x, where x, the Bjorken variable, is 
defined to be QV(2M pv). The "EMC effect" is basically a 
measured observation that the properties of loosely bound and 
tightly bound nucleons diffar [77][78][79]. This 
smearing model uses an EMC correction found using a quark 
color charge screening model [80]. This is not the only 
model which can explain the EMC effect. The EMC correction 
factor is given by q(x,k). This correction multiplies the free 
nucleon structure functions which appear in Eq. 3.38 to 
convert them to bound nucleon structure functions. The form of 
the correction is given by: 

H(x,k) = 1+ (6<k)-l) 

6(k) 

x-0.3 
x 0 - 0 . 3 

x<0.3 

0.3 s x s x 0 

X>X„~0.6-0.7 

(3.41) 

where: 

8(k) = 1. t2"P 2 
(3.42) 

£„ is the binding energy of the deuteron, and AE„ is the 
characteristic excitation energy of a nucleon inside the 
nucleus. Since isospin is conserved and the isospin of the 
deuteron is zero, this quantity is expected [80] to be on the 
order of 2(M4 - M„) - (M,.(1440) - M„) - 0.6-0.8 GeV. The 
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results are fairly insensitive to the choice of iEd. A value 
of 0.6 was used. 

The fifth and last smearing model [75] is the same as 
model 2, discussed above, except that a correction has been 
made on the normalization of the deuteron wave function based 
on baryon charge conservation [81]. This correction factor 
multiplies the integrands in Eq. 3.35, and is given by N(p): 

N ( p ) = 2 ( M W M p
2 + p ^ (3-43) 

M d 

In smearing models 2-5, the input structure functions in 
the integrands, W t and W2, should be the proton off-mass shell 
structure functions. However, it is not clear how the on-shall 
and the off-shell structure functions are related, and 
different prescriptions have been suggested. The use of 
different off-shell structure functions may help in estimating 
systematic uncertainties in the smeared model cross sections. 
The simplest representation is to naively set the off-shell 
and on-shell structure functions equal to each other: 

Wip<«.Qa>lofE.*.ii=WiP<».Qa)L.*.ii. ,, , 
(3.44) 

W2
P(v,Q^) | O E E_ s h e l l = W2

p(v,Q2) | o n. B h o l l, 

where Q* is not affected by the Fermi motion since it is 
completely determined by the electron kinematics, and v is the 
energy as dictated by conservation of energy such that the 
nucleon is brought back on-mass-shell upon absorption of the 
photon. The approximation of no off-shell correction implies 
that the interacting nucleon is not far off the mass shell 
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which is presumably true for the weakly bound deuteron system. 

A possible off-shell correction is discussed in the 
reference, Bodek, et al. [74]. The longitudinal virtual 
photoabsorption cross section for the deuteron, o u a, is 
expressed in terras of the smeared proton and neutron structure 
functions, and the limit is taken as Q 2 - 0. According to 
gauge invariance a^ must vanish in this limit. This is 
equivalent to requiring that the photoabsorption cross 
sections for real and virtual photons are the same at Q s = 0. 
The smeared neutron structure functions can be obtained from 
the smeared proton structure function formulae by replacing W,p 

and Wj" by W," and W2" respectively, and the deuteron structure 
function is taken to be the sum of the smeared proton and 
neutron structure functions. The relationship between the 
structure functions and the transverse and longitudinal 
virtual photoabsorption cross sections is given by: 

Wj(v,Q 2)=—£-o T(v,Q 2), 
3.45 

W 2(v,Q 2)= —g-f- ¥ )[oT(v,Q2) +0LiV,Q*)]. 

where K is the same as that given earlier in Eq. 3.20. It can 
be shown [74] [82] that in the limit as Q a -* o a physical 
result can only be achieved if an off-shell correction is 
applied such as: 

W ^ S . Q 2 ) loff-sheu^^.Q 2) loi-sh.ii. 
, y> (3.45) 

or: 

http://loi-sh.ii
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W1
P(«.02>loff-,h.U=(-f)W'«*'02»lon-.h.l.. ( 3 - 4 6 . 

W/fv.Q") | o t f. s heil=W/<V,Q s) L-aheii. 

or some linear combination of these two corrections. The 
kinematic variables used in the above equations were defined 
in Eq. 3.36. 

There is some ambiguity in the above off-shell 
corrections, and there is no reason why the off-shell 
correction should not have a Q 2 dependence. Kustio and 
Moravczik [83] have identified a possible set of off-shell 
structure functions as: 

W / f v . Q * ) lof£-shell=Wl P<*'Q 2> Ion-shell-
/ -2 0 2 \ ( 3 . 4 7 ) 

W 2

P ( v , Q * ) l o £ £ - s h e l l = ( ^ | 7 j W 2 P ( v , Q 2 ) L - a h e U ' 

This off-shell correction to the W 2 structure function is 
equivalent to assuming that there is no off-shell correction 
applied to the transverse and longitudinal photoabsorption 
cross sections, aT and o L. This is generally assumed to be true 
for hadronic scattering and has been carried over to electron 
scattering. This off-shell correction is also completely 
consistent with the constraint mentioned above that o,.d -> o as 
Q 2 - 0, and there are no ambiguities. The effect on the 
smeared model cross sections and to the extracted neutron form 
factors due to these various off-shell corrections will be 
investigated and discussed later. 
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Deuteriun Inelastic Cross Section Model 

The inelastic deuterium cross section model was formed 
using the above smearing models and the proton inelastic cross 
section model discussed earlier. For fitting purposes the 
resonant and nonresonant contributions to the structure 
functions in rhe smearing formulae were treated separately. 
The resonant component consisted of the sum over the 
contributing resonance cross sections which was dominated by 
the A(1232) in the region of interest, and the nonresonant 
background component was modeled using Eq. 3.23. W, and W 2 used 
in the integrands of the smearing formulae were calculated 
using Eq. 3.45 where the ratio aja-, for the nonresonant 
component was parameterized by R„ = 0.15, and for the resonant 
component was parameterized by R, = 0.0. After the smearing 
process was performed the smeared proton longitudinal and 
transverse cross sections for the resonant and nonresonant 
components were extracted, again using Eq. 3.45. 

The single most important assumption made in the fitting 
procedure was that the shape of the smeared neutron cross 
sections is the same as that of the smeared proton cross 
sections for each of the cross section components. Thus, the 
deuterium cross section data was fit using only the smeared 
proton cross sections components as input, and the 
coefficients found give information on the neutron 
contribution to the deuterium cross section, or equivalently 
information on the ratio of aja„ for each of the cross section 
components. The quantity R c was assumed to be zero for the 
smeared structure functions in all of the smearing models. 
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Smearing models 2-4 were capable of calculating this quantity, 
but testing indicated that it v*s negligible for this 
experiment's kinematics. For smearing model i, since only one 
smearing formula was used, R n r for the smeared structure 
functions was assumed to remain constant, and the same value 
of R„r = 0.15 that was used for the proton nonresonant 
inelastic cross sections was also used for the smeared proton 
cross sections. The other smearing models, however, predicted 
non-constant values for R„r in the vicinity of the quasielastic 

II 
OS 

OL/OT Model Cross Section Ratios 
0.18 

0.02. 

tf-iXKOeV/c)2 

smeared proton 

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 
W 2 (OftV2) 

Figure 3.34: Predicted values for R = oL/aT (nonresonant) for each of the five smearing models for the smeared proton 
cross sections. The models predict some shape dependence to 
R at low W\ 
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peak. Figure 3.34 shows a sample plot of R = R,, for each of 
the five smearing models, with the Paris deuteron wave 
function and with the off-shell correction given in Eq.3.47 
for the smeared proton structure functions. It is clear that 
the R curves approach a constant at large W 2 for a fixed Q 2 

which is consistent with deep-inelastic electron scattering 
cross section measurements [84]. It is also clear that the 
smearing models predicts a suppression of the inelastic 
longitudinal cross section in the vicinity of the quasielastic 
peak. 

A global Q 2 fit to all of the inelastic deuterium data 
was done in conjunction with the form factor fits which will 
be discussed in the next section, assuming that the total 
deuterium cross section is just the sum of the quasielastic 
and inelastic contributions, aa = o^,, + a l M 1. The fit to o l M 1 

was done with two parameters: 

•l»l-C B«K*«O?)*C I0i. (3-48) 
where oT™ and o,.™ are the transverse and longitudinal 
nonresonant contributions to the smeared proton cross section, 
and ar

r is the resonant contributions to the smeared proton 
transverse cross section. The fit coefficients are c n r and C r. 
Figures 3.35 and 3.36 show sample deuterium reduced cross 
section plots from each spectrometer (See Eq. 3.30 for the 
reduced cross section definition). These plots also show the 
contributions resulting from fits to the data for the 
quasielastic cross section, the inelastic cross section, and 
the total deuterium cress section. The fitting method 
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Figure 3.35: Sample 8 GeV spectrometer deuterium reduced 
cross section data with cross section fits broken up into 
the quasielastic and inelastic contributions. The data is 
normalized to the dipole form factor squared. 
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1.6 GeV Reduced Cross Sections 
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Figure 3.36: Sample 1.6 GeV spectrometer deuterium reduced 
cross section data with cross sections fits broken up into 
the quasielastic and inelastic contributions. The data is 
normalized to the dipole form factor squared. 



151 

cot-responds to area method I which is described in the next 
chapter. The inelastic model used for these fits used smearing 
mo(Jel 3 with the off-mass-shell correction given by Eq> 3.47 
and the Paris deuteron wave function. 

a„/op ratios in the A(1232) region 

It was mentioned earlier that the neutron and proton 
cross sections were assumed to have the same shape in ft2, if 
is also assumed that aln.! = ap + a„, where a p and a„ are the 
proton a ,d neutron smeared cross sections, then the ratio of 
neutron to proton cross sections, <J„/<JP can be estimated for 
each of the inelastic contributions from the fit coefficients. 

For example, {o„/op)"r, the ratio for the nonresonant cross 
sections, is estimated from C n r - 1 (compare Lj.3.48 with the 

Table 3.18: Estimated ratios of o„/cp for the inelastic 
resonant and nonresonant cross section components from 
fits to measured deuterium cross sections using various 
smearing models, off-mass-still corrections in the 
smeairing models, and deuteron wave function 
Parameterizations. I„ = 1,5 indicates the smearing model 
used, I o f r = 3.44, 3.45, 3.47 refers to the equation number where the off-mass-shell corrections were 
defined. I„, = P, B, or R refers to the Paris, Bonn, and 1 
Reid deuteron wave functions. Errors are statistical. | 

I.. —off I« (<r*/<ip) n r (a«/or)< 1 
1 
2 
3 
4 1 5 
3 
3 
3 
3 

none 
3.47 
3.47 
3.47 
3.47 
3.44 
3.45 
3.47 
3.47 

P 
P 
P 
P 
P 
P 
P 
B 
R 

0.54 ± 0.04 
0.39 ± 0.04 
0.34 ± 0.04 
0.44 ± 0.04 
0.37 ± 0.04 
0.33 + 0.04 
0.33 ± 0.04 
0.34 ± C.04 
0.33 ± 0.04 

1.34 ± 0.03 
1.11 ± 0.03 
1.10 ± 0.03 
1.15 t 0.03 | 
1.10 ± 0.03 1 
1.07 ± 0.03 
1.13 ± 0.03 
1.07 ± 0.03 
1.12 ± 0.03 1 



152 
expression for alrl.i given above). Table 3.18 summarizes these 
quantities as calculated from the fit coefficients under a 
variety of model assumptions. Figure 3.37 shows previous 
measurements made of the ratio o„/op for the resonance 
contribution to the inelastic cross section at the 4(1232) 
resonance [49]. Note that the new measurements shown in Table 
3.18 are the result to fitting the data at all Q s, assuming 
that the Q s dependence is small. These new results are 
slightly higher than the previous measurements shown in Figure 
3.37. This could be due to combining all the Q 2 data for the 
new results into a single fit parameter, or it could be do 

On/Op at A(1232) Resonance 
1.2 

1.1 

1 

< 0.9 
to 

0.8 

0.7 

0.6 
0 0.25 0.5 0.75 1 1.25 1.5 

Q 2 [(GeV/c)2] 
Figure 3.37: Previous data [49] showing o„/ap for the 
resonance component of the inelastic cross sections at the 
A(1232) resonance. 
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to differences in the models used to extract the two sets of 
results, or the ratio might really have a Q s dependence. Also, 
the result using smear model 1 is far off from the other 
models which could be because this method is only a crude 
approximation to the other smearing methods. A study of the 
possible Q 5 dependence to these ratios is currently under 
investigation. 

Deuterium model cross section ratios 
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0.6 
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' ^f / 
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, i . , , i 

0.8 1 1.2 1.4 
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1.6 

Figure 3.3B: Ratio of inelastic to total deuterium model 
cross sections at the two extreme kinematic points of this 
experiment for all five smearing models. 6 was set to 20.0° 
for both sets of calculations. 
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Inelastic aodel comparisons 

Figures 3.38, 3.39, and 3.40 show plots of the model 
deuterium inelastic cross sections divided by the total model 
cross sections for each of the model assumptions given in 
Table 3.18. Figure 3.38 shows the cross section ratios for 
each smearing model, using the off-shell correction given in 
Eq. 3.47 and the Paris deuteron wave function, for two 
kinematic spectra, both of which were calculated at 8 = 20.0°. 
Figure 3.39 shows the cross section ratios for three different 

1 
</3 

c 

Deuterium Cross Section Ratios 
For Different Off-Shell Corrections 

0.1 -

—Correction 1 
-Correction 2 

Correction 3 

_ ^ ^ X QuasieUMic peak position 

0.8 1 1.2 
W 2 (GeV2) 

Figure 3.39: Ratio of inelastic to total deuterium mode. 
cross sections at Q 2 = 4.0 (GeV/c)s for three possible off-
shell corrections. Corrections 1, 2, and 3 correspond to 
definitions given by Eqs. 3.47, 3.44 and 3.45. 
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Deuterium Cross Section Ratios 
For Different Deuterium Wavefunctions 
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Figure 3.40: Ratio of inelastic to total deuterium model 
cross sections evaluated at Q 2 = 4.0 (GeV/c)2 using three 
different deuterium wave function parameterizations. 

off-mass-shell corrections using smearing model 3 and the 
Paris deuteron wave function evaluated at Q s = 4.0 (GeV/c)2 and 
6 = 20.0°. Figure 3.40 shows the cross section ratios for the 
Paris, Bonn, and Reid deuteron wave functions, using smear 
model 3 and the off-shell correction given in Eq. 3.47 and 
also evaluated at Q 2 = 4.0 (GeV/c)2 and 6 = 20.0°. 

It can be seen from Figures 3.38-3.40 that once the fits 
to the deuterium cross sections have been done, the resultant 
model deuterium cross sections are very similar and only start 
to significantly diverge at low W2 where the inelastic cross 
section is very small compared to the quasielastic cross 

I 
(A 

c 
0.1 
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section. This indicates that the different inelastic modeling 
should not give appreciably different results for the 
measurement of the neutron charge and magnetic form factors. 



4: FORM FACTORS 
Font Factor Models 

There are several formalisms which have been used and 
developed over the years which attempt to understand the 
nucleon form factors using physical principles. Some of these 
"models" involve free parameters which are fit to existing 
data. The types of models can be broken up into six 
categories. These categories involve calculations based on: 

1. Vector Meson Dominance (VMD). 
2. Perturbative Quantum ChromoDynamics (pQCD). 
i. Hybrid combinations of the above two categories. 
\. Dimensional scaling and QCD sum rules. 
>. Constituent quark and diquark models. 
i. Lattice gauge QCD (low Q2) 
There are several different sets of form factor 

definitions. The isoscalar and isovector nucleon form factors, 
F I S and FIV, are combined to form the Dirac, (FJ, and Pauli, 
(Fi), nucleon form factors* 

F l p(Q 2) =-i(P1
IS(Q2> +Fr(Q 2) ) -

F l n(Q 2)=-|<F 1
I S(Q 2)-F 1

I V(Q 2)), 
F i p(Q 2)=-|(K sF 2

I S(Q 2) + K VF 2
I V(Q 2)), 

im-HaPHi 
where K S and K„ are linear combinations of the proton and 
neutron anomalous magnetic moments (defined in chapter l). 
They are given by Ka=fjp-IV-l = 3.706 and Kv=|Up+fin-l = -0.120. 
The Dirac and Pauli form factors can then be combined to form 
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the familiar Sachs proton and neutron form factors: 

G«p(Q 2>=F l p<Q 2)+F 2 D(Q 2), 
G E P { O * ) = F I P ( O 2 ) - - 5 1 F 2 P < Q 2 > , 

4 M (4.2) 
G M n l Q ^ F l J O 2 ) " ^ © 2 ) , 
G E n(Q 2)=F l n(0 2)-^ rF 2 n(Q^. 

Vector Meson Dominance Models 
The VMD models/fits have generally been used at low Q 2 

and involve a superposition of photon couplings to various 
vector mesons (Jp = 1"). The vector mesons can be divided into 
two categories depending on their isospin. The isoscalar, or 
isospin singlet, vector mesons and their observed higher mass 
states (masses in parentheses are in MeV) [85] are the 
u(782), u'(1390), a " (1600), cp(1020) and the not-well-
established ip'(1680) state. The isovector, or isospin 
triplet, vector mesons and the higher mass states are the 
p(768), p'(1450), and p"(1700). 

The form factor describing the photon-nucleon interaction 
via vector meson coupling is written as the product of a meson 
propagator term and a meson-nucleon form factor: 

F ( g 2 ) . ̂ < g 2 > t ( 4 # 3 ) 

where Mv is the vector meson mass. The l.o/(M= + Q s) factor is 
commonly called a "pole" terra whereas this factor squared is 
called a "dipole", such as in the dipole representation of the 
neutron and proton form factors. The VMD models which will be 
discussed were developed in the 1970's before many of the 
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higher mass meson states were observed experimentally. Thus, 
expected higher mass state contributions to the form factors 
were often included using best-fit parameterization. Some of 
the most successful and popular VHD models are discussed here 
ancj cire used for comparisons with the measured data. In 
general, the fits are done simultaneously to all four nucleon 
form factors using all data available at the time the fit was 
dorie. Figure 4.1 shows a schematic of the direct photon-
nucleon interaction and the photon-nucleon interaction via an 
intermediary vector meson. 

The VMD model by Iachello, Jackson, and Lande [86] 
(IJL) is a five-parameter fit which allows both vector and 
tensor coupling of the vector mesons. The functional form of 
the fit is given by: 

F!ls(02)=g(Q2) 

FftC 2) =g(02) 

( I B B ) , B M " H-B "* 
[ ( 1 p « P + ) P " M 2

+ Q 2 P * M | * Q 2 J 

(1 n ) , 0 M? + 8 r p M . / « 
"* ""' "" (M 2

 + 0 2 ) + ( 4M| + 0 2 ) r ,o(Q 2)/M„ 

F*S(Q2) = g(Q2) 

F2'V(Q2) = g<02) 

(l^-aJ —- -+a» . , 
* M 2 - Q 2 *M*2-Q2 

Mp^8r,M./n 
(4.4) 

<M2 + Q 2) + <4M,2
 + Q 2)I>(Q 2)/M„ 

where M represents various meson masses. The function g(Q*) is 

an intrinsic nucleon form factor, 

g(0 2 

[1-Y023: 
(4.5) 
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Figure 4.1: Diagram of the nucleon-photon interaction via 
a direct interaction and by a vector meson coupling. 

The function a(Q2l is used to account for the finite width of 
the p meson, r„ = 112 MeV, and is given by: 

ftMl + Q 2 - ^ ] ( 4. 6 ) 
2 M > J" 

A fit to the available data in 1973 yielded the following 
parameter values: 

y = 0.25(GeV/c)"2, 
p„=0.672, 0B=1.1O2, (4.7) 
p+=0.112, a+=-0.052, 

where the B and a parameters represent a product of the 
coupling constants at the yV vertex and at the VNN vertex. 
Note that the factors K S and K V have been absorbed into the 
isoscalar and isovector form factors as shown in Eq. 4.1. 

The VMD model by Blatnik and Zovko [87] (BZ) includes 

o(0 2)=-
*N 

4K+Q'' In 
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photon couplings with the three ground state vector mesons and 

with three higher mass states p',p",and a'. There are four 

free parameters which are related to the coupling constants. 

This model uses the asymptotic form factor constraint that 

Q'GfQ1) - 0.0 as Q 2 -• °°, where G(Q S) is any one of the Sachs 

form factors. The functional form for the form factors is 

given by: 

2--2i(H^ + 2M 2b v) 
2 4M 2 

R 3 ( Q 2 ) 

R V ( Q 2 ) , 

G M(Q 2) =(-=• +1*.' 

RMO 2) 

R V(Q 2) = 

|b sQ 2JR s(Q 2) 
| + ( i v _ ^ b v Q 2 J R v ( Q 2 ) (4.8) 

*QZ) m++Q : 

V m
2 V n,2 ̂  

,m0* + Q 2 

where M is the nucleon mass and the + and - signs correspond 

to proton and neutron form factors respectively. The 

quantities /i* and n" were fixed at -0.060 and 1.853 

respectively in order to give the correct values for the form 

factors in the limit as Q s - 0. The mass of the p " was 

assured to be 1.5 GeV. The best fit parameters were 

determined to be: 

ny=l.l4 GeV, m(i>; = 1.18 GeV, 
-0.91 GeV' = -1.10 GeV (1.9) 
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The VMD model by Hohler et al. [88] is from their 

fit, 8.2, one of the many fits attempted. This VMD model gives 
the expected asymptotic large Q 2 dependence for the Pauli form 
factor (Q"), but not for the Dirac form factor (Q- 6) 
indicating that it may only be moderately successful at 
describing the form factors at an intermediate Q2-. This 
asymptotic dependence is discussed in greater detail in the 
next section. The functional form for the form factors is 
basically a sum over a product of pole-terms for each vector 
meson included. This form factor function is given by: 

F»(o*>=E-2iiXJ-. F r ' (Q J )=Fr p (Q 2 >*E- a - r^ ' (4.io) 
v mv + 0 2 V IV + Q 

where the p meson terms are given by: 

0.955+ 
2Fr-"(02>= °- 0 9 0( 1 + -Q^5-) 

0.536 

5 .335 + 0 .962 1 + 
2F/V-* (02) { 0.268J 

(4.11) 

1 + 0.603 

A discussion on why the typical pole-term formula was not used 
for the p meson is also given by this reference. This fit was 
chosen over the other fits in the paper because it had the 
best overall x V n agreement with the data. There were a total 
of four isovector and three isoscalar vector mesons. These 
mesons included p, o, and ip as well as a higher mass state 
isoscalar meson which is arbitrarily labeled as V=3, and three 
higher mass state isovector mesons which are labeled V'=i,2 
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and 3. There are a total of 16 different free parameters for 
this fit : 

aj(v=o>) =0.71, a, (V=4>) =-0.64, aj(v=3) =-0.13 
a2(V=u) =-0.11, a,(V=<|>) =0.13, a, (V=3) =-0 . 02 
a^V^i) =0.05, a!(V'=2) =-0.52, a!<V'=3) =0.28 ( 4 1 2< 
a2(V'=l) =-1.99, a,(V=2) =0.20, a 2 (V'=3) =0 .19 
m(v=3) =1.80 Gev, m(v'=l) =1.21 GeV, 
m(V'=2) =2.45 GeV, m(V=3) =2.95 GeV. 

Perturbative Quantum Chromodvnamics 
Calculations, at present, using pQCD [89][90] 

alone, have had only limited success at predicting form 
factors in the intermediate Q 2 range since only leading order 
calculations have been made. The problem is complicated by the 
fact that the results are sensitive to the form chosen for the 
distribution amplitude (DA) for the quark momenta in the 
nucleons. These calculations do, however, predict the form 
factor asymptotic behavior at large Q 2 where difficult-to-
calculate second order terms can be neglected. These 
predictions serve as useful constraints on other types of 
models which have been formulated. The calculations predict 
that G„ for both nucleons should behave as: 

LIM G M(^ 2) = Const- a , 1 ° - Z ) (lnlQ'/A'))-'"3, 
J (4.13) 

° s~ pln(OVA^)' " - " - T " " " " ' 
where am{Q2) is the strong running coupling constant, A - 200 
MeV is the QCD scale parameter, and ntl.v„ is the number of 
contributing quark flavors. The kinematics of this experiment 
are below heavy quark production thresholds so n - 3. Assuming 
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isospin symmetry the calculations also predict that the ratio 
G»„(Q2)/GKp(Q2) - -2/3, and that the helicity-nonconserving 
term, Fs, should be suppressed by a factor of Q* compared to 
the helicity-conserving term, F,. Thus, the ratio Q2F,/F,-
constant at large Q*. 

Hybrid VMD-pOCD model 
The VHD models are generally used to fit the form factor 

data in the low Q* region. The hybrid form factor model of 
Gari and Krumpelmann [91] (GK) attempts to describe the 
intermediate Q' region by choosing a functional fv.ira for the 
form factors which gives the expected Q 2 behavior at both high 
and low Q2. The chosen form for the model is given by: 

F1-S(Q2) = 

F;:'"'(02) = 

K 2F 2
I S(0 2) 

K.,F2
IV(Q2) 

m„ g„ 

nv ' + Q 2 fc 
* 1 

(•• 
m* k u g u 

Ff C D(Q 2) , 

F^fQ 2), 

K9, 

n»p k pg p 

ir 2-Q 2 fP •[--*?) 

F f ^ t Q 2 ) , 

F, 0 C D(0 2). 

(4.14) 

where the QCD form facto, are parameterized by: 

F.°°(Q2) = A
2 A 2 

A(-5 2 A^*0 2 
F^fO'l^tO 2) A| 

A ; + Q 2 

(4.15) 

and the logarithmic dependence of the strong coupling constant 
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A? + Q 2 ] 
D 2 l o g 

AQCD 

A5 
l og 

AQCD 

(4.16) 

A, is the approximate scale of the nucleon wavefunction, A 2 is 
the scale where the meson dynamics dominate, and A ^ is the 
scale where the quark dynamics dominate. The seven parameters 
used for the fit in this model are given by 

Mfi-=0.377, -5^ = 0.411, k p = 6.62, k,„ = 0.163. (4.17) 
A ^ O . 7 9 5 GeV, A 2=2.27 GeV, A 0 C D = 0 . 29 GeV. 

Dimensional scaling and OCD Sum rules 
Dimensional scaling is a simple, yet seemingly effective, 

method for predicting the asymptotic Q s behavior for two-body 
scattering processes, by merely counting the number of bound 
constituent point-like particles in the hadrons [92]. The 
basic dimensional scaling prediction is that for an exclusive 
scattering process 

Uo 2i nf (- (4.18) 

where s is the square of the center of mass energy, and n is 
the total number of leptons, photons, or quarks carrying part 
of the momentum in the initial and final states, and f is a 
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function of the ratio Q2/s. F o r elastic and quasielastic 
electron-nucleon scattering, the initial and final states 
consist of an electron and a nucleon composed of three valence 
quarks. Thus, for this scattering process, n = 8, and for a 
fixed value of Q2/s 

-^2.) -s" 6-(Q 2)' 6-Q- 1 2. (4.19) 

It can also be shown, using the Rosenbluth formula, that for 
large Q 2 where Ft dominates 

(-<*£_) - F ? ' ° 2 ) . (4.20) 

Thus, dimensional scaling predicts that F,(Q2) -> Q"' which is 
very similar to the pQCD prediction aside from the logarithmic 
term due to the running of the strong coupling constant. 

QCD sum rule techniques as developed by Shifman, 
vainshtein, and Zakharov [93] have proven to be effective 
tools for studying nonperturbative properties of hadrons such 
as masses, coupling constants, resonance widths, etc. This 
method is employed by Radyushkin [94] (RAD) as another 
approach to calculating the nucleon form factors. This model 
uses QCD sum rules in order to fix the parameters of the 
nucleon soft wavefunctions, and only considers the simplest 
nonperturbative Feynman diagram contribution to the form 
factor (i.e. no hard gluon exchange diagrams). A justification 
for the assumption that this diagram is dominant at moderate 
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values of Q' is discussed in this reference. 

The neutron form factor formulas are: 

2 e ^¥K) 2 ^( -4) ) 16 
(4.21) 

where the corresponding proton form factors can be obtained by 
interchanging e u and e„. The functions a, z, and A.„ are: 

o = s 1 + s 2+0 2, 
z = ̂ o 2-4s 1s 2 , 

X2 S 

(4.22) 

12(2ir)4 

and e u = 2/3, and e d = -1/3. The quantity s„ was fixed at 
2,3 (GeV/c)*. 

Constituent Quark and Diquark Models 
Constituent quarks differ from the point-like small mass 

quarks in pQCD in that they have mass which is - H,,/3, and 
they have an extended spatial structure due to the presence of 
a pionic cloud. This spatial structure translates into the 
need for quark form factors in the constituent quark models at 
high Qa. The relativistic constituent-quark model of Chung and 
Coester [95] is expected to be valid for Q* up to 3 to 6 
(GeV/c)* in calculating nucleon form factors. The main 
parameters used were the confinement scale, 1/cr, and the 
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constituent quark mass, ra,, and a Gaussian wave function 
shape. This preliminary, simplified model, achieved reasonably 
good results in the Q 2 range of interest provided that the 
constituent quark mass was chosen around 0.24 GeV which is 
smaller than the conventionally used value of Hp/3. The curves 
used to compare with this experiment's data were obtained 
directly from the creators of this model. They correspond to 
using an m, of 0.24 GeV and a value for a of 0.635 GeV. The 
wave function used in this calculation was a spatially 
symmetric function given by 

where N(m,/o) is a dimensionless factor resulting from the 
normalization condition and 

Mo = ElK ? + q2i- (4-24) 

The sum extends over the three constituent quarks and m and q 
represent the constituent quark masses and three-momenta 
respectively. 

A fairly recent model due to Kroll et al [50]. 
investigates the electromagnetic nucleon form factors within 
the framework of the diquark model. This model attempts to 
describe the form factors at moderate values of Q', assuming 
that the diquarks can be treated as quasi-eleraentary nucleon 
constituents. In the limit of large Q 2 this model approaches 
that of a pure quark hard scattering model such as the schemes 
suggested by Brodsky and Lepage [90] or chernyak and 
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Zhitnitsky [96]. This model incorporates the distribution 
amplitudes (DA) of baryons in terms of quarks and diquarks, 
with the diquark form factors chosen to ensure the proper 
asymptotic limit, and a perturbative approach to treating the 
gluon and photon coupling to the quarks. The formulae in the 
original publication were later corrected [97]. These 
corrected neutron form factor formulae are given by 

0' 

jdxjdy^sfvj) ; d ^ £ 2 F n » ( S 2 ) + e u d i ^ | 2 F - ( Q ^ • s^) 

• C F 4 5 . H / d x 1 d y 1 ( | > v ( y 1 ) < - ( e ( l + 2 e t l > o s ( 6 s ) n v P ^ > ( S 2 ) + ( 2 e d d * e u d ) 

a JO2) „,<> ,„,>f„a , , t „ . , , , „ , ^ 1 F , 4 ' ( Q ^ k v d + X i ) ( i + y 1 ) + - | x 2 y 2 ( ( l * K v ) 2 - 4 ) J ) ( ) ) v ( x 1 ) 

F2„<Q2> = 

C ^ f v - ^ - f d X i d y ^ v J y j ) <4<e d + 2e u ) - ^ i — (1 + « V ) F ^ ' (D 2) 

• <2e d d + e u d ) C ° ' ° ' F j " (Q 2) - ^ < K v < i - x i y i ) -x 2 y 2 > )4> v 0O • 

( 4 . 2 5 ) 

where the corresponding proton form factors are obtained by 
interchanging the quark charges, e u and e 4 and by replacing K„ 
by K P. The diquark total charge (for an up-down pair) is 
denoted by e u d, and m v and K., are the mass and anomalous 
magnetic moment of the vector (spin 1) diquark. The momentum 
carried by the quark is denoted by x, and y,, while the 
momentum fraction carried by the diquark is denoted by 
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x, = 1 - x, and y= = 1 - ) , \ . C F = 4/3 is the color factor and 

Q 2=x 2y 2Q 2; Q2 = XlYlQ-. (4.26) 
The isoscalar (S) and isovector (V) three and fcur-point 
diquark form factors are parameterized by the equations: 

Qs+Q 2 

Q$ 

I^Qv-Q2 

FJ 4 1 (02) =a sa s(Q 2) , U s , F^ 1 (Q2) =a v8 v(Q 2) 
0| + 0 2 

/ 2 X 3 

Qv 
lDv+D 2j 

(4.27) 

where 

8 3 ( V )(Q 2) = 
as(Q 2> n 2 > r ) 2 

Q 2 Us(v) «»(Qs<T)) 

Using the distribution amplitude given by 

(4.28) 

(^(x^ =<|)v(x1) ̂ Ax^exp 
i 

/•sw (x)dx = l, 
(4.29) 

with constituent quark and diquark masses m q = 0.330 GeV, and 
mo = 0.580 GeV yields the following "best-fit" parameters: 

Q 2 = 3.22GeV 2, Qy = 1.58 GeV 2, 
f s = 66.1MeV, f v=120.2MeV, 
K.. = 1.16, a B = a„=0.286. 

(4.30) 

This particular fit corresponds to the solid curves given in 
the original paper [50]. Another fit using a different 
distribution amplitude was also studied. 
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For» Factor Extraction 
Peak Method 

A "peak" method of form factor extraction is so-named 
because only a small region in the vicinity of the 
quasielastic peak is included in the analysis. This method has 
the advantage of being much less sensitive to the quasielastic 
model shape. It has the disadvantage of being s .tis^cs 
limited since much of the measured cross section is excluded. 

To use this method we first subtracted off the inelastic 
contribution as calculated by the inelastic cross section 
model from the measured deuterium cross sections. This left 
the quasielastic cross section which was converted to the 
reduced form, a„(data) (Eq. 3.30). The model reduced 
quasielastic cross section, a.(model), was calculated using 
model form factors. G^Q 2) was obtained using the form factor 
model of Gari and Krumpelmann [98] which was discussed 
earlier in this chapter. GtI>(Q2) and G«„(Q2) were modeled using 
the dipole formula, and GItl(Q2) was set to zero. It will be 
shown that these model form factors represent those that were 
measured in this experiment fairly well. Starting with model 
form factors close to the final results reduces possible 
second-order corrections to the fitting procedure. Both 
o,(data) and o.(model) were functions of Q 2 and W2. The ratio 
of o.(data) to a,(model) was averaged using error weighted 
averaging to give R„„K using data within a defined range in W 2 

about the quasielastic peak region. Rp.« was then corrected 
for the model form factor dependence (see Eq. 3.30) to yield 
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the measured form f a c t o r s : 

( 4 . 3 1 ) 

:C-4(Q2) -G^,(Q 2) + -^(GfpfQ2) • 6 | » (Q i ) ) = R

P 1 T 

The next step was to do a linear fi*- in £ to the remaining 
data and then to subtract the measured proton form factors 
[15] in order to extract G„(Q2) and Gt„(Q2). This extraction 
method was done for several different choices of W 2 ranges 
about the quasielastic peak to check for consistency. Results 
will be presented for the largest range investigated which had 
the smallest statistical error. This range was 0.70 < W 2 <; 1.8 
(GeV)2. Results for the these fits versus € are shown in 
Figure 4.2 for all four Q 2 points. The data shown is 
normalized to the dipole form factor squared, G D

2. The %* per 
degree of freedom for the fits at Q* = 1.75, 2.50, and 3.25 
(GeV/c)2 was 0.99, 0.32 and 2.8 respectively. The fourth Q 2 

point only had two data points in the linear fit so no %" per 
degree of freedom was calculated. 

Area Method I 
An "area" method of extraction is so-named because all of 

the quasielastic cross section data is used to extract the 
form factors as opposed to just a region of the measured data. 
This particular area method is a least-squares simultaneous 
fit to all spectra at a given Q2. There were four parameters 
in this fit. Two of the parameters were the desired form 
factors summed in quadrature, (G»p

2 + GK„2) and (G„,2 + G E„ 2), and 
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Figure 4.2: The linear fits to these data yielded (aep
2(Qs) 

+ G.„a«n)/T' (slope) and (G„p*(Qa) + G „ W ) ) (intercept). 
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the other two parameters corresponded to the fitting 
parameters described earlier for the deuterium inelastic cross 
section. The reduced cross section, o,( had contributions from 
the neutron and proton qussielastic and the proton and neutron 
smeared inelastic cross sections. A least squares fit was done 
for all data points at a given Q 3 using the expression: 

X2= 0 ^ - I C T F ( E ' , Q 2 ) + C 4 F ( E ' , C 2 ) *CnI(o?r
 + ea^)+C to^ (4-32) 

where F(E',Q2) is the remainders of Eq. 3.31 after the form 
factors have been divided out so that they can be determined 
by the fit coefficients. The term F was also multiplied by the 
square of the dipole farm factor, G D

2(Q 2) = 1.0/(1.0 + Q2/0.71)' 
so that the form factors obt&.ined Irom the fit coefficients 
were normalized to the dipole form factor: 

F(E'.O') -GJ<0») bMY-tiMJSgC L ( 4 - 3 3 ) 

[ 2 C ( E L J&^u! \ 
The terms <jT"r, cj", a T

r are the compo..--ntp of the model 
inelastic cross sections given in Eq. i.48 and in the 
accompanying discussion. The coefficients found from the fit 
to the data then yielded the sum of the square of the form 
factors: 

c , (G4(Q2)+G,*,tQ2)) c (G|,(P')+G£,<Q')) ( 4 3 4 ) 

GD
2<Q2) ' L G|(02) 

The coefficients for the inelastic contribution were discussed 
earlier. The proton form factors were subtracted off using the 
measured proton form factors from this experiment [15]. Sample 
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• plots of reduced cross sections were shown in the last chapter 
in Figures 3.3£ and 3.36 showing the results of these fits for 
some of the kinematic spectra. Smearing model 3 was used for 
the inelastic modeling. The % per degree of freedom for these 
fits were not good. For the four Q 2 points, 1.75, 2.50, 3.25, 
and 4.00 (GeV/c)2 the calculated x P e r degree of freedom for 
the fits was 4.2, 2.6, 2.0, 2.1 . The poor quality of the fits 
is due to not having the models produce the correct cross 
section shape. Most of the problem is believed to be due to 
not including effects in the modeling due to meson exchange 
currents which can be significant away from the guasielastic 
peak region. 

Area Method II 
This first step in this method was to extract the 

longitudinal and transverse components of the reduced cross 
section spectra as defined by Eq. 3.30, R L and R T / for each sat 
of Q 2 data. Then, separate fits were done to each spectrum in 
order to obtain the form factors. The separation of RL and R, 
was done on a bin-by-bin basis in W 2. For a given W 2 bin and 
a given Q 2 there were from two to four data points with 
differing incident energy and scattering angle (see summary 
table of kinematic points given in Table 1.1). 

Since AQ2/Q2 - AW2/E, the values for Q 2 varied over the Vi2 

range with the variation being the largest at the large angle 
kinematic points where the incident energy, E, is small for a 
given Q 2. Note that the nominal value of Q 2 was only true at 
W 2 = HJ. In order to separate the longitudinal and transverse 
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cross sections it was necessary to correct each contributing 
d-vta point in the W2 bin to the same Q 2 value. To do this it 
was decided to correct each data point such that the Q2 

variation over W 2 for a given spectra corresponded to that of 
the arbitrarily chosen kinematic point of 20.0". Note that if 
0.0° had been chosen then Q 2 would not vary at all over W2. 

To clarify this correction the steps involved will be 
discussed briefly. First, a suming elastic scattering from a 
nucleon, an incident energy, E B O«(Q 2

o.,e 2 O
= 20.0°), was 

calculated. Second, the scattering energy, E'(W2,Eno.,e20) was 
calculated. Third, a new Q 2 value was calculated, 
Qn.u(E„o.,E',02<)). It was this factor, Q2.„, to which the data 
points at a given W 2 bin were corrected. The correction to the 
data was achieved by multiplying the data point by the ratio 
of two model cross sections. The numerator was the deuterium 
mudel reduced cross section defined by the kinematics W 2, QJ.U, 
and 8„„. The denominator was the model cross section defined 
by the kinematics W 2, E, and 8^,, where E was the true 
incident beam energy, and 6ro, was tne true scattering angle. 
The correction factors were always 1.0 at the quasielastic 
peak and ranged from 0.0 to 1.1 at the highest and lowest W 2 

bins for the large angle data where these corrections were the 
largest. 

After all the data points in a W 2 bin were corrected, a 
linear, error weighted, fit was done versus e/r' (see Eg. 
3.30). The intercept of the fit gave Rr(W2,Q2) while the slope 
gave R L(W 2,Q 2). The results of these separations are given in 
Tables 4.1-4.4 and in Figures 4.3-4.4. 
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Once RL(WS,Q3) and RT(W2,Q2) were ext-acted, the form 

factors were found by performing two least square fits to the 
data in a similar manner as was done in the last extraction 
method discussed. The quantities minimized were: 

X? = [RT-(CTF(E',0') + C T
i n e ] Co? 1^))] 2, 

X^[R L-(C LF(E',0 i)^ L
i M lan] 2-

These quantities were minimized for all the data points within 
a given Q2. The fit coefficients, C T and C t, for the 
quasielastic components yielded the form factors as shown in 
Eq. 4.34 for the previous method. Similarly, the proton form 
factors were then subtracted to yield the neutron results. 

Table 4 .1: Extracted transverse and longitudinal 
deuterium reduced cross section components for Q 2 = = 1.75 
(GeV/c) ! at the quasielastic peak and e = 20.0 . ERR1 and 
ERR2 are the statistical and the statistical plus 
systematic errors respectively. W 2 is in GeV2 and R,, R L 

and the errors are in units 1/GeV . Overall %* P e r degree 
of freedom = 1.5S. 
W 2 RT ERR1T ERR2T RL ERR1L ERR2L 

0.715 6.19 0.24 0.28 0.12 0.33 0.35 
0.745 8.17 0.19 0.27 0.38 0.28 0.33 
0.775 10.44 0.16 0.29 0.42 0.25 0.34 
0.805 12.75 0.15 0.33 1.50 0.26 0.38 
0.835 15.27 0.14 0.38 1.81 0.26 0.43 
0.865 17.11 0.23 0.45 2.20 0.41 0.55 
0.895 17.29 0.30 0.48 2.39 0.49 0.59 
0.925 16.31 0.14 0.40 2.28 0.27 0.45 
0.955 14.61 0.13 0.37 1.87 0.24 0.40 
0.985 11.90 0.17 0.34 1.82 0.26 0.38 
1.015 9.89 0.23 0.33 1.51 0.32 0.38 
1.045 8.55 0.12 0.24 0.94 0.21 0.28 
1.075 7.48 0.13 0.22 0.63 0.21 0.26 
1.105 6.39 0.13 0.20 0.85 0.21 0.25 
1.135 6.18 0.12 0.18 0.27 0.19 0.23 
1.165 5.72 0.14 0.19 0.62 0.22 0.25 
1.195 6.16 0.15 0.21 0.01 0.24 0.27 
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Table 4.2: Same as Table 4.1 except that Q

2 = 2.50 
(Gev/c)2 at the quasielastic peak and 6 = 20.0'. overall 
X
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Table 4.2: Same as Table 4.1 except that Q

2 = 2.50 
(Gev/c)2 at the quasielastic peak and 6 = 20.0'. overall 
X

s per degree of freedom = 0.96. 
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Table 4 .4: Same as Table 4.1 except that Q 2 = 4.00 
(GeV/c)2 at the quasielastic peak and 8= 20.0 . 
W 2 RT ERR1 T ERR2 T R t ERR1,. ERR 2,. 
0.475 5.32 0.55 0.57 -1.89 0.82 0.83 
0.525 6.39 0.50 0.53 -0.81 0.73 0.74 
0.575 7.76 0.44 0.48 -0.47 0.65 0.68 
0.625 10.06 0.41 0.49 -0.66 0.62 0.67 
0.675 11.35 0.44 0.53 1.27 0.66 0.73 
0.725 14.73 0.45 0.59 1.17 0.70 0.80 
0.775 18.25 0.44 0.64 0.27 0.70 0.85 
0.825 20.75 0.45 0.70 0.31 0.73 0.91 
0.875 22.17 0.59 0.82 0.86 1.07 1.22 
0.925 22.52 0.49 0.76 1.70 0.80 1.00 
0.975 21.23 0.46 0.71 2.03 0.72 0.92 
1.025 19.69 0.48 0.69 1.80 0.72 0.89 
1.075 17.98 0.47 0.65 1.90 0.69 0.84 
1.125 16.12 0.49 0.64 2.78 0.72 0.84 
1.175 16.49 0.49 0.64 1.90 0.72 0.85 
1.225 17.02 0.62 0.75 1.07 0.89 0.99 
1.275 16.88 0.64 0.78 2.97 0.96 1.07 
1.325 20.14 0.68 0.85 -0.18 1.07 1.19 
1.375 22.35 0.70 0.90 -0.52 1.15 1.29 
1.425 23.54 0.80 1.00 1.08 1.29 1.43 
1.475 24.04 0.92 1.11 3.89 1.45 1.60 

As can been seen in Figures 4.3 and 4.4, the fits to R" are 
quite good while the fits to RL are not nearly as good because 
of the scatter in the data points. It is believed that the 
problems se^n in the RL plots (Negative data points and non-
smooth behavior) is due to uncertainty in the 1.6 GeV optics 
(and thus acceptance function and reconstruction 
coefficients). A great deal of time and effort went into 
solving these problems with only limited success. The large 
errors in the peak region are due to errors on the hydrogen 
contamination subtraction. The inelastic contribution to the 
RL plot for Q 2 of 1.75 (GeV/c)2 is so small that it is not 
visible on the plot. 
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Figure 4.3: Extracted R, deuterium cross section at all four Q 1 points. Fits found during 
the form factor extraction process are also shown. Errors are statistical only. 
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Figure 4.4: Extracted R L deuterium cross section at all four Q* points. Fits found during 
the form factor extraction process are also shown. Errors are statistical only. 
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Proton Results 

The use of the proton form factors for extracting the 
neutron form factors from the deuterium cross sections has 
been mentioned several times. The proton form factors which 
have been measured in this experiment [14][15] and were used 
in the deuterium cross section analysis are shown in Figures 
4.5 and 4.6. Also shown on these plots are many curves as 
calculated from various form factor models which were 
discussed in the previous section. It is clear that for 
G«p(Q=), the best curve which describes the data is that of 

PROTON : GMPCQ2) 

2 4 6 
Q 2 [(GeV/c)2] 

Figure 4.5: Proton magnetic form factors. Old and new data 
points are shown as well as results from many model/fits. 
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PROTON : GEPCO 2) 
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Figure 4.6: Proton electric form factors. Old and new data 
points are shown as well as results from many model/fits. 
The form factors are normalized to the dipole form factor. 

Gari and Kriimpelmann [98] while for G^CO2) the VMD model by 
Hohler, et al., [88] works well, and the results are not far 
off from the dipole form factor representation. However, since 
many of the models are really fits to the low Q 2 data, it is 
quite possible that many of the other models could be made to 
agree with the new results by just refitting the model 
parameters. 
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Form Factor Results 

Final values for G^tQ^/GoCQ 2)/^ and (GEn(Q2)/GD(Q2) )* are 
shown in Figures 4.7 and 4.8. The quantities which were 
actually measured were the form factor squared. Since G t n

2 is 
small, it is possible to get negative results which are 
consistent with zero within the errors. This is the reason for 
not taking the square root of the quantity (GE„(Q2)/GD(Q2) ) 2 . 
The inner error bars in Figures 4.7 and 4.8 indicate the total 

NEUTRON : G M ^ Q 2 ) 

Q 2 [(GeV/c)2] 
Figure 4.7: Results for the neutron magnetic form factor 
measurements for one choice of the inelastic model. Also 
shown are old measurements and model predictions from the 
various models discussed in the text. 
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Figure 4.8: Results for the neutron charge form factor 
measurements for one choice of the inelastic model. Also 
shown are old measurements and model predictions from the 
various models discussed in the text. 

statistical uncertainty and the outer error bars are the 
statistical plus systematic errors. No modeling errors were 
included in these error bars. A discussion of the experimental 
errors will be given in the next section. The data in Figures 
4.7 and 4.8 were extracted using the Paris potential, smearing 
model 3 and the off-mass-shell correction given by Eg. 3.47. 
The area method I was used to extract the form factors. Also 
shown in these figures are many model form factor curves. The 
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corresponding curves for the proton form factors were given 
earlier. 

Basically, the results for G„„(Q2)/GD(Q2)/M„ are consistent 
with 1.0 which means that the empirical dipole formula is a 
good representation of the neutron magnetic form factor out to 
a Q 2 of 4.0 (GeV/c)2. Previous measurements which are also 
shown in Figure 4.7 are consistent with the new measurements 
as well. There are, however, no model form factor curves which 
can describe these new measurements which indicates that more 
work is needed on form factor (and nuclear structure) 
modeling. It is possible that some of the existing models 
could be made to fit the data by adjusting some of the fit 
parameters. This remains to be seen. Note the improvement on 
the errors for the new form factor measurements as compared to 
the old measurements. 

The new results for (GEn(Q2)/GD(Q2) ) 2 are consistent with 
zero within the errors on the measurement as are the previous 
measurements at lower Q2. There are several model curves which 
are consistent with these new measurements, such as the IJL 
curve [86], BZ [87], Hohler [88], and Rad [94]. Refer back to 
the first section in this chapter for more information on 
these models. Note, however, that there are several curves 
which predict a large G„ at large Q2. This is equivalent to 
saying that Fln goes to zero at large Q 2 instead of G r a (See Eq. 
4.2). The new measurements clearly rule out this possibility 
for the Q* range of the measurements. Note again the 
improvement on the errors for the new form factor measurements 
as compared to the old measurements. 
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Figure 4.9 shows a plot of the ratio GHn/G„p using the 

measured form factors from this experiment. The error bars are 
statistical plus systematic. As mentioned earlier in the 
discussion on perturbative QCD, pQCD predicts that this ratio 
should go as -2/3 at large Q3. The new data is in agreement 
with this prediction which is shown as a straight line over 
all Q2. Note, however, that additional points are included 
which were calculated using cm = n„-GD and G M p from the 
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o 
C 
S 

o 

-0.5 
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Figure 4.9: Ratio plots of measured G^/G^. The pQCD 
prediction is shown as a straight line, and the results at 
higher Q* are shown assuming that G„ continues to agree with 
the dipole. 
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measurements in this experiment. It is clear that if the 
neutron magnetic form factor continues to agree with the 
dipole form factor at larger Q 2 then the pQCD prediction 
doesn't work. Otherwise, if the pQCD prediction is correct 
then Gm must begin to decrease with increasing Q 2 at roughly 
the same rate as the proton magnetic form factor fall-off. 

Results for Gm(Q2)/GD(Q2)/£<„ using the Paris potential, 
smearing model 3 and the off-mass-shell correction given by 
Eg. 3.47 for all three extraction methods are given in Table 
4.5, The corresponding results for (Gt„(Q2)/Gn(Q2) ) 2 are given 
in Table 4.6. Note that the quasielastic model used was the 
same for all these results and was discussed in Chapter 3. 
Tables 4.7-4.10 shows the extracted form factors with 
different model assumptions and for all three extraction 
methods. Each table is for a different Q 2 point. The variation 
in these numbers is indicative of the error in the form 
factors due to the inelastic modeling. A similar study has 
been done [66] on the effect on the form factors due to the 
quasielastic modeling. 



Table 4.5: Results for G - G.„(Qs)/GD(Oi)/|(inl with statistical error, SI, 
and total error S2 given. Results are shown for each of the three 
extraction methods. Q a is in (GeV/c)*. 

Peak method Area method I Area method II 
C* G SI S2 G SI S2 G SI S2 
1.75 
2.50 
3.25 
4.00 

1.064 
1.024 
0.959 
0.934 

0,013 
0.010 
0,019 
0.031 

0.026 
0.028 
0.037 
0.050 

1.056 
1.002 
0.960 
0.930 

0.027 
0.017 
0.031 
0.047 

0.041 
0.037 
0.050 
0.062 

1.044 
1.007 
0.968 
0.942 

0.025 
0.012 
0.025 
0.032 

0.053 
0.051 
0.059 
0.063 

Table 4.6: Results for G = (G,„(Q 3)/G 1 )(Q') ) ' with statistical error, si, and 
total error S2 given. Results are shown for each of the three extraction 
methods. Q1 is in (GeV/c)a. 

Peak method Area method I Area method 11 
Q' G SI S2 G SI S2 G SI S2 
1.75 
2.50 
3.25 
4.00 

-0.167 
-0.189 
0.084 
0.110 

0.077 
0.082 
0.177 
0.322 

0.157 
0.222 
0.352 
0.515 

-0.167 
-0.076 
0.148 
0.198 

0.074 
0.074 
0.153 
0.268 

0.117 
0.141 
0.251 
0.356 

-0.076 
-0.167 
0.298 
0.341 

0.065 
0.047 
0.123 
0.308 

0.070 
0.104 
0.185 
0.325 



Table 4.7: Results for the neutron charge and magnetic form factor for 
Q* =1.75 (GeV/c)* using various smearing models, off-mass-shell 
corrections in the smearing models, deuteron wave function 
parameterisations, and extraction methods. I„ = 1,5 indicates the 
smearing model used, I o r f = 3.44, 3.45, 3.47 refers to the equation number where the off-mass-shell corrections were defined. I w f = P, B, or 1 R refers to the Paris, Bonn, and Reid deuteron wave functions. \ 

Peak Method Area Method I Area Method 11 | 
I.. I..* I.. G-./G./C. (G„/G„)' G„/G„/|l„ (G^G„) = G„/G,y<J„ <G„/G„)' 
1 
2 
3 
4 
5 
3 
3 
3 

3.47 
3.47 
3.47 
3.47 
3.47 
3.44 
3.45 
3.47 
3.47 

P 
P 
P 
P 
P 
P 
P 
B 
R 

1.068 
1.068 
1.064 
1.069 
1.067 
1.061 
1.066 
1.056 
1.067 

-0.171 
-0.168 
-0.167 
-0.168 
-0.168 
-0.169 
-0.166 
-0.176 
-0.163 

1.063 
1.061 
1.056 
1.063 
1.059 

1.055 
1.057 
1.048 
1.058 

-0.167 
-0.165 
-0.167 
-0.162 
-0.167 
-0.176 
-0.160 
-0.181 
-0.152 

1.048 
1.049 
1.044 
1.050 
1.047 
1.042 
1.046 
1.037 
1.046 

-0.076 
-0.076 
-0.076 
-0.076 
-0.076 

-0.078 
-0.074 
-0.083 
-0.073 

Range of 
deviation 

0.013 0.013 0.015 0.029 0.013 0.010 

| Statistical 
+ Systematic 
j error 

0.026 0.157 0.041 0.117 0.053 0.070 

o 



Table 4.8: Results for the neutron charge and magnetic form fa-jtor. 1 
This table is the same as Table 4.7 except Q' =2.50 (GeV/c) a. 1 

PeaX Method Area Method I Area Method II | 
I.. I.rr I„ G»y<Vtt, (G„/G„)> G„/G„/«„ (G„/G„) s G m/G 0/A, |G«„/G„)= 1 
1 
2 

4 
5 

3 
3 

3 
3 

3.47 
3.47 
3.47 
3.47 
3.47 

3.44 
3.45 

3.47 
3.47 

P 
P 
P 
P 
P 

P 
P 

B 
V. 

1.033 
1.032 
1.024 
1.034 
1.029 
1.021 
1.026 
1.017 
1.027 

-0.195 
-0.1B7 
-0.189 
-0.187 
-n.137 

-0.202 
-0.183 
-0.196 
-0.186 

1.012 
1.010 
1.002 
1.012 
1.007 
1.000 
1.002 
0.995 
1.004 

-0.057 
-0.060 
-0.076 
-0.052 
-0.067 
-0.104 
-0.062 
-0.088 
-0.063 

1.016 
1.016 
1.007 
1.017 
1.013 

1.005 
1.009 
1.001 
1 .010 

-0.195 
-0.170 
-0.167 
-0.171 
-0.169 

-0.195 
-0.152 
-0.178 
-0.159 

1 Range of 
| deviation 

0.017 0.019 0.017 0.052 0.016 O.Oti 

Statistical 
1 + Systematic 
1 error 

0.028 0.222 0.037 0.141 0.051 0.104 



Table 4.9: Results for the neutron charge and magnetic forra factor. This 
table is the same as Table 4.7 except Q* =3.25 (GeV/c)2. 

Peak Method Area Method I Area Method II 
i „ I... I»* Gm/G„/a„ (G^/G,,)* Gra/G„/(i„ (G„/G„)» G»,/G0/M„ <G,„/G,,r 

i 
2 
3 
4 
5 
3 
3 
3 
3 

3.47 
3.47 
3.47 
3.47 
3.47 
3.44 
3.45 
3.47 
3.47 

P 
P 
P 
P 
P 

P 
P 
B 
R 

0.976 
0.972 
0.959 
0.976 
0.968 
0.955 
0.961 
0.956 
0.961 

0.061 
0.082 
0.084 
0.082 
0.083 
0.059 
0.096 
0.074 
0.089 

0.981 
0.976 
0.960 
0.979 
0.970 

0.959 
0.961 
0.958 
0.960 

0.153 
0.162 
0.148 
0.173 
0.154 
0.096 
0.171 
0.135 
0.158 

0,986 
0.983 
0.968 
0.986 
0.978 

0.965 
0.970 
0.966 
0.969 

0.256 
0.293 
0.298 
0.293 
0.295 
0.251 
0.324 
0.280 
0.310 

Range of 
deviation 

0.021 0.037 0.023 0.077 0.021 0.073 

I Statistical 
| + Systematic 
j error 

0.037 0.352 0.050 0.251 0.059 0.185 



T a b l e 4 . 1 0 : R e s u l t s f o r t h e n e u t r o n c h a r g e and m a g n e t i c farm f a c t o r . 
T h i s t a b l e i s t h e s a n e a s T a b l e 4 . 7 e x c e p t Q1 = 4 . 0 0 ( G e V / c ) a . |j 

Peak Method Area Method I Area Method I I \ 

I . . Io*f I . r G„/G,,/a„ ( G „ / G 0 ) a C J B A (G../G,,) 1 G^/G^/d, (G„/G„) ! 

1 
2 
3 
4 
5 

3 
3 

3 
3 

1.47 
3 .47 
3 .47 
2 . 4 7 
3 .47 

3 .44 
3 .45 

3 . 4 7 
3 . 4 7 J 

P 
P 
P 
P 
P 

P 
P 

B 
R 

0 .959 
0 .953 
0 .934 
0 .959 
0 .946 

0 .929 
0 .936 

0 .936 
0 .933 

0 . 0 7 2 
0 . 1 0 7 
0 . 1 1 0 
0 .106 
0 .108 

0 .066 
0 . 1 2 8 

0 . 0 9 8 
0 .117 

0 .960 
0 .953 
0 .930 
0 .960 
0 .944 

0 .929 
0 . 9 3 1 

0 .935 
0 .926 

0 .186 
0 .209 
0 . 1 9 8 
0 .221 
0 .202 

0 . 1 2 1 
0 .231 

0 .179 
0 .212 

0 .970 
0 .964 
0 .942 
0 .970 
0 .956 

0 . 9 3 8 
0 .944 

0 .946 
0 .939 

0 .265 
0 .338 
0 .341 
0 .335 
0.339 

0.252 
0.386 

0 .315 
0.364 

Range of 
d e v i a t i o n 

0 .030 0 . 0 5 1 0 .034 0 .110 0 .032 0 .134 

+ s s 

! 
a t i s t i c a l 
s t e m a t i c 
r r o r 

0 .050 0 . 5 1 5 0 .062 0 .356 0 .063 0 .325 

10 
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Errors 

The types of errors which contributed to the final 
experimental results can be broken up into two categories, 
statistical and systematic uncertainties. This experiment was 
designed to have as small as possible statistical errors given 
a reasonable amount of experimental running time. The 
systematic errors can also be broken up into two sub
categories, namely point-to-point errors and absolute errors. 
Point-to-point errors are those which can vary from run-to-run 
or at different kinematics (such as beam energy fluctuations). 
Absolute errors are those which are the saute for all data. K 

Table 4.1: Summary of systematic uncertainties ?.nd their 
approximate effect on the cross section error (a) and the 
neutron form factor errors at Q 2 =4.0 (GeV/c)2. The 
labels 8 and 1.6 refer to either the" 8 GeV spectrometer 
or the 1.6 GeV spectrometer. 

Quantity Error A(J/o AGm/GD/^„ 4(GE„/GD) = 
Incident Energy 

e. 
Incident charge 
Target density 

Efficiency 
Rad. corrections 
1.6 Acceptance(E') 
1.6 Acceptance(6) 
8 acceptance (E'> 
8 Acceptance (8) 
Al. subtraction 8 

0.05% 
0.05° 
0.005° 
0.15% 
0.15% 
0.25% 
0.5% 
0.5% 
0.5% 
0.2% 
0.2% 
0.1% 

0.35% 
0.2% 
0.15% 
0.15% 
0.15% 
0.25% 
0.5% 
0.5% 
0.5% 
0.2% 
0.2% 
0.1% 

0.010 
0.005 
0.001 
0.004 
0.004 
0.007 
0.014 
0.011 
0.011 
0.001 
0.001 
0.001 

0.054 
0.015 
0.011 
0.023 
0.023 
0.038 
0.076 
0.038 
0.038 
0.015 
0.003 
0.008 

Total Point-to-point 8 
Total point-to-point 1.6 

0.77% 
1.02% 

0.026 0.122 

Incident charge 
Target density 
Target length 

Rad. Corrections 
Overall Acceptance 
1.6 Normalization 

0.5% 
0.85% 
0.2% 
1.0% 
1.0% 
1.0% 

0.5% 
0.85% 
0.2% 
1.0% 
1.0% 
1.0% 

0.008 
0.014 
0.003 
0.017 
0.017 
"0.022 

0.001 
0.002 
0.000 
0.003 
0.003 
0.075 

Total Absolute errors 2.0% 0.036 0.075 
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summary of the major sources of errors is given in Table 4.1 
and in the following discussion. In addition to these errors, 
the errors in the proton subtraction were also propagated 
through. 

Error summary: 
1. Incident beam energy: The point-to-point error on the 
incident beam energy was obtained from the observed scatter in 
energy needed to align the elastic peak positions at W 2 = M,,2 

as determined by the elastic peak analysis [15]. The effect on 
the cross section was calculated for each data point using a 
model cross section evaluated with different beam energies but 
constant W2. 

2. Scattering angle: The uncertainty was based on the accuracy 
of the measured beam incident angle as given by the wire 
arrays and cavity monitors, and on the uncertainty in the 
survey of the spectrometers and the wire chambers. The effect 
on the cross section was calculated for each data point using 
a model cross section evaluated with different scattering 
angles but constant W 2. 

3. Incident charge: The absolute error on the toroid charge 
measurement was obtained from a calibration against 
measurements made with a Faraday cup [39]. The point-to-point 
systematic error was obtained from the observed run-by-run 
fluctuation in the two toroid measurements relative to each 
other (see appendix A). 
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4. Target density: The absolute error on the target density 
was calculated based on several contributing factors. The 
error on the bulb pressure measurements was -0.3%, and the 
resistance measurements were good to -0.2% [99]. The 
conversion from pressure to temperature had an error of 0.5% 
due to uncertainty in the cryogenic data [26] [27]. The error 
in the conversion from resistance to temperature was unknown, 
but believed to be small, so an estimated error of 0.5% was 
used. The conversion from temperature to density had an error 
of 0.6%. summing these error in quadrature for each 
measurement and averaging since the bulb pressure and 
resistance density measurements were averaged gives an 
absolute error on the density measurement of 0.85%. The 
point-to-point error was obtained from the observed run-to-run 
fluctuations in the different measurement methods. 

5. Target length: The target length uncertainty due to 
uncertainty in the amount of shrinkage due to temperature 
effects was estimated to be 0.2%. 

6. Efficiency: The electron detection efficiency was estimated 
by calculating the various detector efficiencies with slightly 
different assumptions. The main concerns were efficiency 
dependence on tracking and the possible variation of 
efficiency with changing counting rates. Also the efficiency 
can change with 7r/e -\itios. 

file://-/itios
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7. Radiative corrections: The dominant uncertainty in the 
absolute radiative corrections was due to neglecting the two-
photon exchange contribution which is suppressed by a factor 
a = 1/137. There were additional uncertainties due to higher 
order processes and using the peaking approximation. An 
absolute error of 1.0 was assigned, and a point-to-point error 
of 0.5%. 

8. Acceptance: Absolute and point-to-point acceptance errors 
for the 8 GeV spectrometer were obtained from the wire float 
measurement of the optics [30] and from studies of the 
effective target length dependence of the acceptance. Point-
to-point errors for the 1.6 GeV spectrometer acceptance was 
estimated from quadrupole saturation studies. 

9. 1.6 Gev normalization: The error on the normalization was 
calculated along with the normalization factor using 
statistical error weighted averaging over all W2 bins where 
1.6 data existed along with at least two 8 GeV data points. 
This procedure was discussed in greater detail earlier. 

The point-to-point systematic errors on the form factors 
were calculated by summing the statistical and point-to-point 
sytematic errors in quadrature and then refitting the data. 
The resultant error calculated by the fitting routine was 
called the statistical plus point-to-point error. The absolute 
errors were then combined in quadrature to give the total 
error (excluding modeling errors). Since the 1.6 GeV data was 
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combined with the 8 GeV data, the 1.6 normalization was 
treated as a point-to-point error in the error analysis. 

Conclusions 
Results have been presented for new measurements of the 

4(1232) transition form factor, measurements for the extracted 
transverse and longitudinal deuterium cross section 
components, RT(WS,Q2) and RJW Z,Q 2), and measurements of the 
neutron elastic electromagnetic form factors which were 
extracted from the data under a variety of model assumptions. 

The 4(1232) transition form factor measurements verified 
previous measurements. The fall-off of the form factor with 
increasing Q* was observed to fall faster than that expected 
from pQCD, although the fall-off of the proton elastic form 
factor, G,p, and of the higher resonance, S u l do have the 
predicted pQCD fall-off with Q2. 

The measurements of the deuterium transverse and 
longitudinal components were presented for the range 1.75 < Q2 

> 4,o (GeV/c)2. These results are independent of deuterium 
cross section modeling. As better models are developed for the 
quasielastic cross section and/or the inelastic cross section 
model the neutron form factors can be re-extracted from the R, 

and R L results. 
The form factors were extracted from the deuterium cross 

section data using three different extraction methods. Three 
methods were used as a check that the form factors were being 
calculated properly. The different extraction methods agree 
very well as expected. 
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In comparing the form factor results for both the proton 

and the neutron, one thing is very clear. Namely, there is not 
a single model shown which can adequately describe all four 
nucleon form factors. However, since most of these models 
involve free parameters which were fit to lower Q 2 data, it is 
quite likely that the parameters could be adjusted to give 
better fits. It remains to be seen whether one of these models 
can be adjusted to describe the measurements for all the form 
factors. 

The results for G«„ are consistent with the dipole form 
factor representation, and in fact, there is no model shown in 
Figure 4.7 which passes through these data. The results for G c n 

are consistent with zero. This is an important result because 
some models predict an increasing G,„ with increasing Q 2. At 
least at the Q 2 of these measurements this does not seem to be 
the case, and this result should be used to constrain all 
existing and future models. If GE„ continues to be consistent 
with zero at high Q 2 then existing deuterium cross section 
measurements out to Q 2 = 10.0 (GeV/c)2 [8] can be used to 
extract information on G„„ at these Uigher Qz. 

A study has been made of the extracted form factor 
results under several different assumptions pertaining to the 
inelastic model. Assuming that these results are indicative 
of the systematic error due to the inelastic model, one could 
conclude that the systematic error due to the smearing models 
is small compared to the "total" systematic error. The term 
"total" means statistical plus systematic errors (no modeling 
errors). The systematic error due to different, off-shell 
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corrections is small for G„, but for GE„ at. large Q s is - half 
of the "total" systematic error. The systematic error due to 
different deuterium wave functions is larger than that due to 
smearing models but smaller than that due to off_shell 
corrections. 

In conclusion, these difficult measurements have produced 
very interesting results and will serve a very useful purpose 
in the development of nuclear structure theory and in the 
understanding of the strong interaction. Since no theoretical 
mode] was able to reproduce all the nucleon form factors, 
additional theoretical worK is needed to explain these new 
results. This experiment has nearly pushed to the experimental 
high Q 2 limit the extraction of the nucleon form factors using 
a Rosenbluth separation. Now, experimentalists must turn to 
different techniques if more information is to be learned 
about the nucleon elastic charge and magnetic form factor. 
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APPENDIX A: T0R0IDS 

The toroidal charge monitors, or toroids, in the End 
Station A were composed of iron rings which encircled the beam 
pipe. They were located a few meters upstream from the target 
area. When t.*e beam current passed through a toroid a magnetic 
field was induced inside the iron. This field induced a 
current in a wire which was looped several times around the 
toroid. The toroid winding was placed in parallel with a 
capacitor to produce a resonant signal when the charged 
electron pulse passed through the core. This resonant signal 
passed through a nearby pre-amplifier and was then carried to 
the counting house where it was branched to the "old" and the 
"new" readout systems. Both of these readout systems were used 
for this experiment as a consistency check. However, the old 
system performance began to deteriorate and proved unreliable 
towards the end of the experiment. The actual data from the 
old readout system were only used for a few early runs when 
the Microvax was not running, and thus the new readout system 
was not working. 

The old readout system began with a three stage 
amplifier. Each stage could amplify by one, three or ten. The 
signal next entered a circuit which sampled the pulse just 
beyond the second peak of the resonance and produced a square 
wave pulse with the same amplitude as the sampled point. This 
square wave was converted to an ADC signal which was 
proportional to the charge in the beam pulse. These signals 
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were continuously accumulated and were read by the Vax and the 
Microvax computers periodically. 

The new readout system began with a solid state amplifier 
equipped with a divide by three attenuator to produce gains of 
1, 1/3, 10, 10/3, 100, 100/3, 1000, and 1000/3. The amplified 
signal was integrated over one half-period of the signal and 
then converted to an ADC signal which was proportional to the 
charge in the beam pulse. The ADC signals were accumulated by 
the Microvax computer. Figure A.l shows the toroid readout and 
calibration systems. 

calibration 
Each toroid had its own independent calibration system. 

The main component of this system was a capacitor of known 
capacitance. For one of the toroids, the capacitance, CI, was 
given by 21.SO nF, and for the other toroid C2 was given by 
21.99 nF. Both capacitances were measured to 0.1%. The 
capacitor was charged to a known voltage, V, set by a digital-
to-analog converter, or DAC. The DAC voltage had been 
calibrated to be correct to 0.1%. The capacitor was then 
discharged through a single turn winding around the toroid, 
thus acting like a beam pulse of known charge, Q = CV. An 
attenuator circuit located near the toroids was set by the 
Microvax computer to attenuate by 1, 10, or 100. This allowed 
for simulating large and small beam charge pulses. The 
resultant resonant signal produced in the toroid circuitry was 
handled in the normal manner for both the old and the new 
systems. Periodically, a maxi-calibration was done which 
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Figure A.l: Toroid data acquisition and calibration system. 
Each toroid has its own independent and identical system. 

consisted of calibrating at several different gains, 
attenuator values, and DAC voltages. This was done to monitor 
any changes in the system which might have occurred such as 
temperature effects, gain drifts, and timing changes. Also, a 
mini-calibration was done before every run at a single gain. 
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attenuator, and DAC voltage setting corresponding to what was 
needed for the beam currents at that tine. These calibration 
data were used to correct the measured beam charge on a run by 
run basis. 

Corrections 
Several corrections were needed to the measured toroid 

real data and calibration data. Corrections for the new toroid 
readout system were made for attenuation, the nonlinear 
response of the toroids, and timing. Corrections for t..-2 old 
toroid readout system were made for beam repetition rate 
dependence, and ADC drifts. 

The attenuation correction was done for calibrations 
which used the divide by ten attenuator because the 
attenuation was= not exactly egual to 10 (the divide by 100 
attenuator was never used for normal running conditions). The 
correction, using the maxi-calibration data, was found by 
averaging the ratio of calibration data: 

- (CAL (Attenuator = 1, DAC voltage = l) ,, .. 
K* (CAL (Attenuator =10, DAC voltage = 10) 

The DAC voltage was changed with the attenuator to produce 
what should be the same calibration pulse. The corrections for 
the two toroids were small but on the same order as the error 
on the toroid measurement, 0.9985 and 0.9994. 

The nonlii rarity correction accounted for the small 
nonlinear response of the toroids with changing DAC voltage. 
Figure A.2 shows a typical plot including the fit for this 
nonlinearity calculated from the maxi-calibration data. 
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Figure A. 2: Sample plot showing the toroid nonlinearity 
correction as a function of DAC voltage. 

The calibration data in this plot were normalized to the mini-
calibration data taken at a gain of 3. To calculate the 
linearity correction, an average equivalent DAC voltage must 
first be calculated for the measured beam charge data. This 
equivalent voltage was the DAC voltage needed to reproduce the 
average beam pulse charge. The linearity correction was 
calculated from the fit to the data shown in figure A.2. It 
multiplied the mini-calibratio- data. These corrections never 
exceed 0.2% for this experiment. 

The timing correction was the biggest correction applied 

-/ r. 

i 
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to tho toroid data. The new toroid readout system involved 
integrating over a portion of the toroid resonant signal. The 
start and stop to the integration were triggered by the beam 
gate. If the beam pulse position changed in time relative to 
the beam gate then a different result would be obtained for 
the signal integration. The timing correction takes this into 
account. Figure A.3 shows a typical timing correction plot 
calculated from the ratio of the calibration data at different 

Timing correction for gain = 1 
1.01 

« 
I i 
§ 

1 
•g 0.99 
•a 

a 
1 0.98 
Z 

0.97 
- 5 - 4 - 3 - 2 - 1 0 1 2 3 4 

Time offset from nominal (fisec) 

Figure A.3: Typical timing correction plot. Calibration 
coefficients versus the time shift from the nominal time 
between the beam gate and the beam pulse is normalized tc 
the calibration coefficient at the nominal tiiae. 

• • • • ' • • • • ' • • • • i . . . . i • • • • I . • • • i . . . . i . . . . i . . . • 
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time delays to the calibration data at the nominal timing. The 
timing was calculated from the event scaler histogram which 
was accumulated during data taking. The event scaler measured 
the time between the beam gate and the event trigger using a 
scaler to count pulse generator clock counts between the 
timing start and stop. A histogram of many events outlined the 
shape of the beam pulse since the event trigger could occur 
anywhere in time along the pulse. The timing correction for 
this experiment was as low as 0.985 for a few runs. 
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Figure A. 4: Ratio of corrected new toroid reading 
measurements for the two independent toroids versus run 
number over the entire experiment. 
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Overall, the performance from the new toroid readout was 

very good. Figure A.4 shows a plot of ratios of the two toroid 
measurements with the new toroid readout systems. The measured 
charge value used was the average between these independent 
charge measurements, and it had an error ~ ±0.2%. 

It was discovered in the middle of this experiment that 
the old toroid readout was exhibiting a dependence on the beam 

Gain = 3 

2 
a o 

I 
1 
© 
Z 
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0.96 
60 80 100 
Beam pulses/sec 

Figure A.5: Calibration data normalized to the 60 pulses-
per-second rate calibration data. The different sloped lines 
correspond to different DAC voltages. The lines become less 
sloped as the DAC voltage is increased. 



209 
repetition rate. Seme investigation indicated that the problem 
was occurring in the module which samples the toroid resonant 
signal. An increase in repetition rate somehow produced a 
negative DC offset in the sampling module which lowered the 
measurement of the toroid charge. The repetition rate 
correction for the old toroids which was needed to take this 
effect into account had an ADC readout dependence as well as 
the repetition rate dependence. Special maxi-calibration data 
was taken at repetition rates of 30, 60, and 120 pulses-per-
second and at several DAC voltages and gain settings. Figure 
A. 5 shows a plot for a gain = 3 of these measurements 
normalized to the 60 pulses-per-second point. Data at the same 
DAC voltage are connected by lines. Linear fits to the data at 
the same DAC voltage were found, and the DAC voltages were 
converted to their equivalent ADC readings. Fits to the slopes 
versus ADC were found as shown in Figure A.6. To apply the 
correction for a given run, the average measured ADC reading 
was calculated and a slope was calculated from the fit. Using 
this line which passes through 1.0 at 60 pulses-per-second, 
the correction was calculated by interpolating to the actual 
repetition rate for the run. This correction ranged from 2.0% 
to 2.5% for the few runs where the old toroid readout was 
necessary. 

The last correction to discuss is the ADC linearity 
correction for the old readout system. This correction was 
similar to the nonlinearity correction found for the new 
toroid readout. Figure A.7 shows a plot of the nonlinear 
response of the calibration with ADC value. The average ADC 
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Figure A.6: Plot and fit to slopes found from data in Figure 
A. 5 versus ADC. 

value for each run was calculated and the calibration 
coefficients were corrected using the fit shown in figure A.7. 
This correction was fairly constant for the few runs of 
interest, and had a value of - 0.7%. 

As mentioned earlier, the old toroid readout behavior was 
only good in the first part of the experiment. Note that the 
first run of the experiment was run number 125. The old 
readout system for Toroid 1 completely died after - run 200, 
and the performance of the old readout system for Toroid 2 
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Figure A.7: Sample plot of toroid calibration coefficients 
normalized to the mini-calibration data versus ADC and the 
fit used for calculating the correction. 

slowly deteriorated over time. Figure A.8 shows two plots 
which give strong indication that is satisfactory to use the 
old toroid readings for a few runs. The top plot is a ratio of 
measurements from the new and the old readout systems for the 
same toroid, toroid 1. The agreement is reasonably good. The 
bottom plot shows the ratio of measurements from the old 
toroid readout for toroids 1 and 2. The open circles are the 
runs where the new readouts were not available. Again, the 
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Figure A.8: Top: plot of new toroid over old toroid reading 
for the same toroid. Bottom: Ratio of old toroid readouts. 
The open circles are the data for the old toroid when the 
new toroid data was unavailable. 

agreement is good, and the toroid readings look reliable for 
this range of runs. The absolute error on the toroidal charge 
measurement was found to 0.5% from a cross calibration 
measurement made using a Faraday cup [39]. 
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APPENDIX B: 8 GEV SHOWER COUNTER CALIBRATION 

The calibration of the shower counter blocks was a very 
important component of the shower energy calculation process. 
The desire was to find coefficients for each block which would 
convert the pedestal-subtracted ADC pulse height to the energy 
deposited by the particle in that block. Two different shower 
energies were needed. SHSUM was the sum over all computed 
energies in all blocks. It was used for calculating the 
tracking efficiency for electrons since a pion leaves 
considerably less energy than an electron. SHTRK was the sum 
over all block energies through which a track passed or passed 
near. It was used for identifying electrons and pions. It 
should be noted that in the following discussion the term 
"track" will be loosely used to describe the avalanche of 
shower particles created in the lead glass array for a single 
particle passing through. 

Before the calibration coefficients could be calculated 
it was necessary to correct the measured energy versus Y, the 
vertical direction. There was a decrease in the measured 
energy for hits far from the phototube as compared to hits 
near the phototube. This is indicated in Figure B.l for a PR 
block and a TA block. The PR blocks bad phototubes only at the 
top, or at +Y, while the TA blocks had phototubes at both ends 
whose outputs were summed. For the Y dependence calculation a 
constant, but approximately correct, block coefficient was 
used to calculate the energy. The energy data in Figure B.l 
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Figure B.l: Sample plots showing the vertical dependence of 
the measured energy in a block from each of the first two 
layers in the shower counter. 

have been normalized to the highest measured energy. A 
polynomial fit to the vertical Y position, FIT = A + BY + CYS, 
was done to these normalized data. The fits were then used in 
the subsequent data analysis to correct the measured energy to 
the nominal value depending on the Y position of the particle 
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track as determined by the tracking code. This was done by 
multiplying the measured energy by 1.0/FIT(Y). Note that Y 
corrections were not done for the TC blocks because low 
statistics did not allow for obtaining good fits. 

Now, in order to calculate the block coefficients, blocks 
were grouped together in six sets corresponding to the six PR 
blocks. The TA, TB, (and TC for momenta above 4.0 GeV). Blocks 
included in each group were the ones which could contain some 

Figure B.2: Shaded blocks indicate those which could contain 
some shower energy contribution due to a track hitting block 
PR3 at a point near the center of the block. 
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of the shower energy for any track which passed near the 
center of the corresponding PR block. One such group is shown 
in Figure B.2 for PR block #3. Testing was done by looking at 
many individual events to verify that the track energy for 
tracks hitting within the central limits of the hit PR block 
was contained within that block's corresponding group. The 
central limits were defined to be the central 70% of the block 
or li.i cm out of a total width of 15.8 cm. Each group 
contained one PR block, two TA blocks, two TB blocks, (and twc 
TC blocks when thesB blocks were needed). 

The energy deposited in block i contained in group j for 
a single particle track was given by: 

,,_ (ADC(i,j)-PED(i,j))-Ccal(i,j) E t I kU,3) , B.l 

wher«» caml was the calibration coefficient for the block, and 
P**k was the particle momentum as determined from the wire 
chamber tracking data. The initial values for C c > 1 were 
arbitrarily chosen at reasonable values and the final values 
were determined by iterating the calibration procedure. Since 
a given group completely contained the tracks which hit in the 
designated area, the coefficients were found by minimizing, 
for many =vents, the chi_square quantity: 

X 2 (j) = (1.0 - £ c <i, j) -E t I k (i, j)) 2, B.2 
i 

where j is an index of the hit PR blocks, the sum over i loops 
over all blocks contained in a group, and the fit 
coefficients, c, were the multiplicative corrections to the 
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block coefficients. It should be noted for the TA layer there 
were two coefficients for each block because there were two 
phototubes. The two coefficients found were not the same, and 
there was evidence that the response of some of the tubes was 
changing over the course of the experiment. The quantity E t r l t 

for a TA block was shared between the two phototube 
contributions. As mentioned above, the least square fit was an 
iterative procedure, and when good block coefficients were 
being used the fit coefficients, c, were found to be 
consistent with 1.0 within errors. 

It should be noted that some blocks, because of the way 
the block groups were defined, could belong i-.o two different 
groups. These blocks thus had two different block coefficients 
found which may or may not have been the same. It is possible 
for a piece of lead glass to have different responses in 
different regions due to radiation damage. A block shared by 
two groups probably only has tracks passing through a certain 
region of the block for a given group. 

The block coefficients as determined for each group were 
used to define the shower quantity SHTRK depending on which PR 
block was hit as defined by tracking. If a track passed 
outside the central region defined earlier, then the PR block 
energy for the adjacent block was also added in to SHTRK. The 
contributions from the adjacent blocks in the second, third, 
and fourth layers for these cases was small, and were not 
included because it was desirable to discriminate between 
multiple particle events by including as few blocks as 
possible in the SHTRK calculation. The quantity SHTRK was 
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calculated for each track found by the tracking programs. 

Average block coefficients were found by averaging the 
coefficients for the blocks which belonged to two groups. 
These coefficients were needed to calculate the shower 
quantity SHSUM which was independent of tracking, and thus the 
group coefficients were not applicable. 

In order to obtain good calibration over the entire 
experiment, sets of different Y corrections and block 
coefficients were found at many momenta. Tests were done to 
eliminate as many of these sets as possible by using the 
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Figure B.3: Measured resolution of the 8 GeV spectrometer 
shower counter *»s a function of spectrometer momentum. 
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calibration from one data set on another data set and checking 
the degradation of shower resolution. It was found that four 
sets of coefficients was sufficient to minimize the overall 
resolution. The momentum ranges which the final sets covered 
were: 0.578 < E' < 1.095, 1.095 < E' < 2.395, 2.395 < E' < 
3.995, and 3.995 < E' < 7.7, here E' was the spectrometer 
momentum in GeV. 

The measured SHTRK resolution for this detector was 
consistent with results achieved in previous experiments. 
Figure B.3 shows a plot of these resolutions calculated from 
a Gaussian fit to the SHTRK peak. The resolution as scaled by 
E' gets worse at high momentum as expected. The average FWHM 
resolution for the entire experiment was 17.5%/VE'. 
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APPENDIX C: RADIATIVE CORRECTIONS 

The cross section formulas used for this experiment's 
data, such as the Rosenbluth cross section, assume that th? 
only contributing process to the cross section is that of 
single photon exchange, or the Born approximation. This is the 
lowest order contributing process in a, the fine structure 
constant. There are, however, higher order electromagnetic 
processes in a which also contribute to the measured cross 
sections. The purpose of the radiative corrections was to 
correct the measured cross sections for most of these higher 
order processes. Radiative corrections were necessary for the 
aluminum cross sections used for the target endcap 
subtraction, for the proton inelastic cross sections used for 
formulating the proton inelastic model, and for the deuterium 
cross sections from which the neutron form factors were 
extracted. The radiative corrections for the proton inelastic 
data also included the subtraction of the proton elastic 
radiative tail. 

In order to calculate radiative corrections and the 
pro'con radiative tail a good target model was necessary as 
well as cross section models for deuterium, elastic and 
inelastic hydrogen, and aluminum. The deuterium and the 
hydrogen inelastic aodels are discussed in great detail in the 
main text since they *re also used for the form factor 
extraction. The remaining models will be discussed here as 
well as an in-depth summary of the formulas used for the 
radiative corrections. 
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Target Model 

The purpose of the target model was to calculate the 
amount of material traversed by the electrons before and after 
scattering at any interaction point along the target length. 
A computer program which modeled the target was given the 
interaction point in the target for an electron scattering 
event and the desired scattering angle, and for the liquid 
targets, returned the radiation lengths traversed for the 
aluminum and the target materials separately. A summary of the 
target materials is given in Table 2.1 and Figure 2.2 shows 
the target assembly. The incap, or entrance region, for each 
liquid target was stamped out of a flat sheet of aluminum. The 
radius of curvature of the incap was 5.019 cm, and the depth 
of the curve was 0.528 cm for a central beam particle as 
indicated in Figure C.l. This figure shows a top view of a 
long liquid target. The incap dimensions for each of the four 
liquid targets was assumed to be the same. The endcap shape 

Figure C.l: Bird's eye view of a short target indicating 
important dimensions. 
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was measured and fit by an elliptical curve. The curve used 
for the inner target surface had semi-axes of 1.270 and 3.219 
cm. The endcap in the region where the endcap meets the wall 
varied in thickness. To account for this thickness variation 
the outer target endcap surface was modeled using thickness 
measurements with three different elliptical fits depending on 
the point of exit of the scattered electron. A 

Table C.l: Elliptical fits used for 
modelling outer endcap region. 
Intersection pt. 
along major axis 
(cm) 

Semi-minor 
axis (cm) 

Semi-major 
axis (cm) 

r < |2.20| 1.2780 3.2290 
|2.20|< r < |2.95| 1.2766 3.2344 

r > |2.95| 1.2710 3.2443 

summary of these ellipse fits is given in Table C.l. The 
endcap dimensions for each of the four liquid targets was 
assumed to be the same. The quantities determined by the 
target model were TBu, and TB 4 1 (B for before scattering) and 
TA 1 U l and TA41 (A for after scattering) in units of radiation 
length. The total radiation length for before and after 
scattering is given by TB = TB l l q + TB a l, TA = TA^, + TA^, and 
T„ t = TB + TA. 

Proton Elastic Cross: Section Model 
The proton elastic cross section model used for the 

calculation of the elastic radiative tail was a simple 
Rosenbluth formula which used input form factors. The form 
factors used were consistent with the values measured in this 
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experiment. G£p(Q2) followed the dipole form and GKp(Q2) 
followed the fit of Gari and Krumpelmann [84]. 

AluxinuB Cross Section Model 
Aluminum cross section calculations due to Liuti [99] 

were used for creating the model aluminum cross section. These 
model cross sections were in good agreement with the measured 
data in this experiment [66]. The calculations [100] included 
a guasielastic contribution calculated using a plane wave 
impulse approximation with light cone dynamics, and an 
inelastic contribution calculated by convoluting the spectral 
funct on for aluminum with the nucleon structure functions. 
These calculations also include two-nucleon correlations. The 
cross section model used merely interpolated between the 
calculated cross sections points. 

Radiative Corrections 
The higher order radiative processes in a can be broken up 
into two main categories. These categories are listed below 
along with their contributing processes. 
1. Internal effects are those which occur during the 

scattering process. 
A. Internal bremsstrahlung refers to the emission of 

photons in the field of the nucleus auring the 
scattering process. Only electron bremsstrahlung effects 
were taken into account for these calculations. 

B. Vacuum polarization refers to the production and 
annihilation of a particle-antiparticle pair from 
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the photon propagator. Loops considered include 
electron, muon, tau, and quark pairs where five types of 
quarks were included (The top quark was neglected), 

c. Vertex processes refer to the emission and absorption of 
a secondary photon about the vertex at which the 
exchanged photon is emitted or absorbed. 

D. Multiple photon exchange refers to processes involving 
the exchange of more than one photon. 

E. Soft multiple photon emission refers to the emission of 
many very low energy photons during the scattering 
process. 

. External processes are those which occur either before or 
after the scattering process takes place and involve 

Vacuum polarization Electron vertex Nucleus vertex X 
Internal 

bremsstrahlung 
Two-photon 

exchange 

C.2: Feynman diagrams for the lowest order radiative 
processes contributing to the measured cross sections. 
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interactions with other nuclei. 
A. External bremsstrahl'ing refers to the emission of 

photons from the incident or scattered electron in the 
target material. 

B. Ionization energy losses refer to the electron energy 
lost due to ion producing interactions in the medium 
traversed. 

Figure C.2 gives a schematic of the most important of the 
internal processes. The formalism used for the calculation of 
radiative corrections was that of Mo and Tsai [101] 
[102] with several improvements and corrections as noted 
by Walker [103]. Walker's corrections were for elastic 
radiative corrections, but much of this was carried over to 
the quasielastic and inelastic radiative corrections presented 
here. The process of calculating the radiative corrections is 
an iterative procedure. After each iteration, the data were 
fit and the input models were adjusted accordingly. The 
iterations continued until the radiative corrections 
converaed. All radiative corrections were lumped together in 
a single correction, RC, defined: 

RC= g (f' E'» (C.l) 
0R(E,E') 

where c(E,E') is the calculated unradiated differential cross 
section (model cross section) and a„(E,E') is the calculated 
radiated cross section. RC multiplied the data which were 
basically the measured radiated cross sections in order to 
obtain the measured unradiated crocs section. RC was 
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calculated for each kinematic point as a function of W* (which 
is equivalent to E') and for several values of 9 within each 
spectrometer's acceptance. 

The internal bremsstrahlung effect was modeled using the 
method of equivalent radiators. One radiator was effectively 
placed before the scattering vertex and one after, and each of 
the equivalent radiators was assigned a thickness 

M^MSH (•-.2) 

which is in units of radiation lengths and where 

31 9U + T]/V J' ln(184.15Z- l / a) 

Z is the atomic number of the target material and H. is the 
electron mass. The amounts of radiator material before and 
after scattering are now defined to be TBn = TB + T M and 
TA M = TA + T M. 

The complete formula used to calculated the radiated 

cross section in the peaking approximation is given by 

J > V ^ ) ( b T B ^ ( s > ^)"M')FlOM m)d. ( c. 4 ) 

r ( u b T B ' ^ b T A » ) f b T A E ° ( t > , ( v > * L_)o(E,e')F(0 2,T t o t)de' 
J \ VE' 2{VE')2J 

e-B4 

E', 
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where 

r _ (E-e) „_ (E-e) u _ (e ' -E ' ) v _ (e ' -E') 
E'R ' E ' " E ' E' ' 

( M ^ 2 E s i n 2 ( - | ) ) 7

 ( C ' 5 ) 

R = ? ; H i ' S = 154 4 T t o c X 0 (GeV). 
(Mp-2E'sin2(|)) A 

and H p is the proton mass, A is the atomic mass, X„ is the unit 
radiation length of the target material, and £ is the Landau 
straggling parameter for the ionization energy loss 
contributions. A is an integration parameter needed because 
the integrals are improper, if A is chosen according to the 
directions given by Tsai then the calculation should be 
independent of A. The terms containing the function <p in the 
<i»(E,E') calculation represent the effects due to 
bremsstrahlung. The shape of the brewsstrahlung distribution 
is given by [104] 

<p(y)=4«r0
2[(|--|y+y2)[Z2(Lri><i-f (aZ))+ZL'rad] + 

(C.6) 
-i(l-y) <Z2->-Z>] , 

where f is the Coulomb correction, 

f (aZ) =1.202(«2)2-1.0369(aZ)'t X.008(aZ)f ̂  ( C - 7 ) 

1+ (oZ)2 

and r„ was defined such that <p(°) was normalized to 1.0. For 
Z = 1, the parameter L„ d was 5.310 and L'„ a was 6.144, while 
for Z = 13, L„ a was 4.361 and L'„a was 5.375. The guantities 
E.ln and £'„,, in the integration limits are the kineraatically 
allowed extremes for the interaction to take place due to 
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ene rgy c o n s e r v a t i o n : 

&nin = 
MnE' 

M - 2 E ' s i n 2 ( - | ) Mp-2Es in 2 ( - | ) 
( C . 8 ) 

Finally, the function F(Q2,Ttot) is expressed as 

2 . « F (Q 2 . T c o c ) = 1 . 0 - 0 . 577 2 b T t o t - 0 . 6 6 ( b T t o t ) - — ln<-^> 

-£--*(cos2(-f)) 

where the Spence function, »(x), is defined as 

(C9) 

»(x)=/- l nl y
1- yldy. (CIO) 

The contribution from vacuum polarization for producing 
a particle and anti-particle of mass M is given by 

6 v ac<M>=4? 5 t MfJA_2MfW73yJjdlJl + ^ T 
9 Q 2 U 3 Q 2 J N Q 2 V4M2V A| Q 2 J J 

Vacuuit polarization contributions were calculated for 

electron, muon, and tau loops, 

The vacuum polarization contributions due to quarks was 
obtained using the parameterization given by the TASSO 
collaboration [105] which is valid for 1.0 < Q a < 64.0 
(GeV/c)2: 

8va'"" = 2(0. 001512 + 0.0028221n(l + 1.21802)) (C.13) 
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The non-divergent contribution from the electron vertex 

diagram is given by 

A -2SL 
° VERTEX" ^ -Hf! (C.14) 

The divergent, infrared terms (terms which are evaluated in 
the limit as the photon 4-momentum approaches 0 and exhibit a 
logarithmic divergence) from this process and others can be 
shown to cancel [102]. The observable contribution from the 
nucleus vertex diagram was assumed to be negligible. It should 
be noted that contributions due to two-photon exchange were 
not included in the radiative corrections. This is probably 
the biggest source of error in the corrections. 

The 6-dependence of the radiative corrections for each 
spectrometer is shown in figure C.3. These sample plots show 
the radiative corrections plotted against the 6 acceptance of 
each of the spectrometers and are normalized to the central 
scattering angle. The 6 dependence was quite significant for 
the 1.6 GeV spectrometer because of the large 6 acceptance. 
The sudden change in the correction at large 6 for the 1.6 GeV 
spectrometer is due to the presence of the tungsten shields 
and the strong correlation between detected particle's 
scattering angle and the position of its interaction point 
within the target. 

Proton Radiative Tail 
The proton elastic radiative tail extends from the 

elastic peak region into the inelastic, or pion production 
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Radiative correction 6 dependence 
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Figure C.3: The 6 dependence of the radiative corrections 
for each spectrometer plotted against each spectrometer's 6 
acceptance. 

region. This contribution must be calculated and subtracted in 
order to study the inelastic data. A study was also made of 
the radiative tail from the elastic deuterium peak. This tail 
tends to rise again after its initial descent from the elastic 
peak and can become significant in the deep inelastic region. 
However, this tail was found to be completely negligible for 
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the kinematic region corresponding to the data measured in 

this experiment. 

The proton elastic radiative tail was calculated using 

the formula, which is exact to lowest order in a, due to Tsai 

[102]. The quantities s, p and k refer to the four-momenta of 

the incident and scattered electron and the photon 

respectively. The quantities t and p r are the four momenta of 

the initial and final target particle states. This formula was 

calculated in the coordinate system where u= s+t-p = k+p, is 

along the z-axis and s and p are in the x-z plane. This choice 

was made to simplify the azimuthal angle integration. 6* is 

the angle between u and k. The cross section formula for the 

tail is: 

d 2o 
dQdE' 

«3 E / }• 2MpU d(cos8 k) 
, » » 271 EJ l 0Mu Q-|u|cose k) l U ' W 

(W 2(Q 2) •Tl(COS»k) + Wl{Q2) -T2(cosek)), 

Tl (cos8 k) =- 2E(E'+u) + - ^ 2E'(E-») *^L -2 + 

2vl— - — )[m|(s-p-<02) + ts-p)(2EE'- (S'P) +(0(E-E'))] + 

(-i-A|2EE'+A--(8-p)-m| E<J + E'2 E' + E 2 

T2(cos6 k) =f-§ ?--iiL 2(2m 6
2+Q 2) +4 + 

I—-—)(4v(s-p) <s-p-2m|) + 2s-p + 2mJ-Q 2). 
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where amotl i s t h e f i i s t t e n r a p p e a r i n g i n Eq. C . 4 , and t h e 

r e m a i n i n g k i n e m a t i c v a r i a b l e s a r o d e f i n e d by : 

o> = 4 i 

t - p = p £ + k , u 0 = E*M p -E ' , | u | = ^ u 0

2 - u a , 

U 2-M n

2 

21 u„- lulcosSv 
, u 2 = 2m|*Mp-2(s-p) + 2M p (E-E') , 

Q 2 = 2 m | - 2 ( s - p ) -2(0 (E-E') +20)11310039^, 

a = o) (E ' - | p | c o s 6 p c o s e f c ) , a'=u> (E - | s | c o s 8 B c o s 6 k ) , 

cose = |a|c<>afl-j£i, cO Se s= l§l - |p |^e 
p |u | |u | 

• T ? - i ' ^ ^ ^ y = ^ 

c o s 9 k = —^-^ - i l 7 s i n 6 B - - i | T s i n e , 
| s | p IP! 

The quantities W,(Q2) and W2(QS) are the structure functions 

t\J 
c-J 
> 
O _ „ • • O 30 - • • • • • 

"**"*̂ . ^ • *-• 
CO 

• 
*"" •»•*„ • • • 
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& • • 
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Figure C.4: Sample inelastic hydrogen plot showing the effect 
of the radiative tail subtraction. These data were taken at E 
= 5.507 GeV and Q 2 = X.75 (geV/c)*. 
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for the proton in the elastic limit (equivalent to form 
factors). The radiative tail from the deuteron elastic peak is 
calculated with the same formula using W1(Qa) and W2(Qa) for 
the deuteron. Figure C.4 shows a sample inelastic hydrograr, 
cross spectrum before and after the subtraction of the elastic 
radiative tail. It is clear that the cross sections which have 
had the tail subtracted clearly fall to zero, as expected, at 
the pion threshold of W 2 = 1.15 GeV!. 



APPENDIX D: DEUTERIUM CROSS SECTIONS 

All of the following tables contain results for the 
meas red deuterium cross sections as a function of W*. Cross 
section and errors are in nb/sr/GeVs. ERRl is the statistical 
error, ERR2 is the total error, and Rc is the applied 
radiative correction. 

Table D.l: 8 GeV spectrometer data 
Q* = 1.750 (GeV/c)2, E = 1.511 GeV , TH = 90. 067°. 

W 2 dcr/dndWa ERRl ERR2 Rc 
0.775 1.65E-01 0.80E-02 0.86E-02 1.280 
0.805 2.06E-01 0.54E-02 0.66E-02 1.270 
0.835 2.58E-01 0.56E-02 0.74E-02 1.251 
C.865 2.99E-01 0.64E-02 0.86E-02 1.219 
0.895 2.99E-01 0.67E-02 0.87E-02 1.176 
0.925 2.94E-01 0.57E-02 0.80E-02 1.122 
0.955 2.82E-01 0.60E-02 0.80E-02 1.056 
0.985 2.02E-01 0.10E-01 0.11E-01 0.988 
1.015 1.96E-01 0.12E-01 0.12E-01 0.922 
1.045 1.59E-01 0.77E-02 0.82E-02 0.861 
1.075 1.55E-01 0.70E-02 0.76E-02 0.810 
1.105 1.34E-01 0.63E-02 0.67E-02 0.773 
1.135 1.25E-01 0.62E-02 0.66E-02 0.753 
1.165 1.29E-01 0.68E-02 0.72E-02 0.752 
1.195 1.19E-01 0.12E-01 0.12E-01 0.768 
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Table D.3: 8 GeV spectrometer data 
Q 2 = 1.750 (GeV/c)', E = 2.407 GeV, TH = 41.111'. 

w2 du/dfldW* ERR1 ERR 2 R< 
0.475 9.03E-02 0.13E-01 0.13E-01 1 .370 
0.505 1.17E-01 0.10E-01 0.10E-01 1 .373 
0.535 1.30E-01 0.93E-02 0.96E-02 1 377 
0.565 1.79E-01 0.10E-01 0.11E-01 1 .380 
0.595 2.22E-01 0.11E-01 0.12E-01 1 382 
0.625 3.09E-01 0.13E-01 0.14E-01 1 .384 
0.655 3.80E-01 0.14E-01 0.16E-01 1 386 
0.685 5.07E-01 0.16E-01 0.18E-01 1 387 
0.715 6.73E-01 0.13E-01 0.18E-01 1 388 
0.745 9.10E-01 0.12E-01 0.21E-01 1 386 
0.775 1.17E+00 0.13E-01 0.25E-01 1 381 
0.805 1.50E+00 0.14E-01 0.32E-01 1 370 
0.835 1.78E+00 0.16E-01 0.37E-01 1 350 
0.865 2.05E+00 0.25E-01 0.46E-01 1 315 
0.895 2.10E+00 0.31E-01 0.51E-01 1 269 
0.925 1.99E+00 0.17E-01 0.41E-01 1 213 
0.955 1.79E+00 0.16E-01 0.37E-01 1 146 
0.985 1.51E+00 0.15E-01 0.32E-01 1 078 
1.015 1.26E+00 0.15E-01 0.28E-01 1 013 
1.045 1.05E+00 0.24E-01 0.31E-01 0 955 
1.075 9.41E-01 0.43E-01 0.47E-01 0 908 
1.105 8.57E-01 0.22E-01 0.27E-01 0 875 
1.135 7.69E-01 0.17E-01 0.23E-01 0 859 
1.165 7.31E-01 0.16E-01 0.21E-01 0 863 
1.195 7.17E-01 0.16E-01 0.21E-01 0 883 
1.225 7.68E-01 0.16E-01 0.22E-01 0 918 
1.255 8.89E-01 0.18E-01 0.25E-01 0. 959 
1.285 9.92E-01 0.20E-01 0.27E-01 1 002 
1.315 1.12E+00 0.22E-01 0.31E-01 1. 041 
1.345 1.30E+00 0.26E-01 0.36E-01 1. 074 
1.375 1.55E+00 0.40E-01 0.49E-01 1. 098 
1.405 1.66E+00 0.12E+00 0.13E+00 1. 114 
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Table D.4: 8 GeV spectrometer data 
Q' = X.7S0 (GeV/c)3, E = 5.507 GeV, TH = 15.146". 

w2 do/dndW2 ERR1 ERR2 R< 
0.355 4.62E-0X 0.X0E+00 O.XXE+00 X .520 
0.385 4.74E-0X 0.78E-01 0.79E-0X X ,525 
0.4X5 5.65E-01 0.64E-0X 0.65E-0X X .53X 
0.445 8.65E-0X 0.68E-0X 0.70E-0X X .536 
0.475 9.39E-0X 0.65E-0X 0.68E-01 X .541 
0.505 X.20E+00 0.64E-0X 0.68E-01 X .546 
0.535 1.59E+00 0.7XE-0X O.77E-0X X .550 
0.565 2.12E+00 0.78E-0X O.88E-0X 1 .553 
0.595 2.6XE+00 0.88E-0X 0.10E+00 X .556 
0.625 3.32E+00 0.97E-0X 0.12E+00 1 .559 
0.655 4.42E+00 O.XXE+00 0.X4E+00 X .561 
0.685 5.62E+00 0.X2E+00 0.X6E+00 X .562 
0.715 7.62E+00 0.X4E+00 0.20E+00 X .562 
0.745 1.02E+01 0.X6E+00 0.25E+00 X .560 
0.775 X.27E+0X O.X8E+00 0.30E+00 X .554 
0.805 X.68E+01 0.21E+00 0.38E+00 X .541 
0.835 2.06E+01 0.23E+0O 0.46E+00 X .5X6 
0.865 2.32E+0X 0.35E+00 0.5SE+00 X 473 
0.895 2.36E+01 0.36E+00 0.58E+00 X .422 
0.925 2.25E+01 0.25E+00 0.50E+00 X 358 
0.955 X.99E+01 0.21E+00 0.43E+00 X 283 
0.985 X.64E+0X 0.X8E+00 0.36E+00 X 207 
X.0X5 X.35E+01 0.16E+00 0.30E+00 1 13S 
X.045 X.13E+01 0.X4E+00 0.26E+00 X 072 
X.075 9.70E+00 0.X3E+00 0.22E+00 X 02X 
X.105 8.61E+00 0.X3E+00 0.21E+00 0 987 
X.X35 7.67E+00 0.X3E+00 0.20E+00 0 972 
X.X65 7.54E+00 0.X4E+00 0.20E+00 0 977 
X.X95 7.48E+00 0.16E+00 0.21E+00 X 001 
X.225 7.57E+00 0.X9E+00 0.23E+00 X 039 
X.255 8.6XE+00 0.20E+00 0.26E+00 X 084 
X.285 9.45E+00 0.2XE+00 0.28E+00 X 130 
X.315 X.06E+01 0.23E+00 0.3XE+00 X X73 
X.345 X.17E+01 0.25E+00 0.33E+00 X 208 
X.375 X.26E+01 0.26E+00 0.36E+00 X 235 
X.405 X.45E+0X 0.29E+00 0.40E+00 X 253 
X.435 X.54E+0X 0.30E+00 0.42E+00 X 262 
X.465 X.69E+0X 0.32E+00 0.46E+00 X 263 
X.495 X.77E+01 0.33E+00 0.47E+00 X 257 
X.525 X.79E+01 0.34E+00 0.43E+00 X 246 
X.555 X.82E+01 0.36E+00 0.50E+00 X 232 
X.585 X.89E+0X 0.38E+00 0.53E+00 1. 215 
X.615 X.8XE+0X 0.42E+00 0.55E+00 X. 197 
X.645 X.87E+01 0.52E+00 0.63E+00 X 179 
X.675 X.84E+01 0.68E+00 0.76E+00 X. 163 
X.705 1.65E+01 0.XXE+0X 0.X1E+0X X. 148 
X.735 X.49E+01 0.47E+0X 0.47E+0X X. 135 
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Table D.5: 8 Gev spectrometer data 
Q* = 2.500 (GeV/c)a, E = 1.968 GeV , TH = 89 949°. 

W J do/dndW2 ERR1 ERH2 R= 
0.720 3.00E-02 0.51E-02 0.51E-02 1.268 
0.760 3.72E-02 0.26E-02 0.27E-02 1.262 
0.800 4.29F.-02 0.25E-02 0.27E-02 1.249 
0.840 4.65E-02 0.25E-02 0.27E-02 1.220 
0.880 5.67E-02 0.30E-02 0.32E-02 1.180 
0.920 5.64E-02 0.28E-02 0.30E-02 1.129 
0.960 5.89E-02 0.31E-02 0.33E-02 1.071 
1.000 3.45E-02 0.43E-02 0.43E-02 0.997 

Table D.6: 8 GeV spectrometer data 
Q 2 = 2.500 (GeV/c)*, E = 2.407 GeV, TH = 58. 883° . 

W J do/dndW* ERR1 ERR2 Re 
0.680 4.25E-02 0.60E-02 0.60E-02 1 320 
0.720 7.17E-02 0.22E-02 0.26E-02 1.318 
0.760 1.00E-01 0.19E-02 0.27E-02 1.312 
0.800 1.25E-01 0.20E-02 0.31E-02 1.298 
0.840 1.49E-01 0.21E-02 0.35E-02 1.269 
0.880 1.59E-01 0.38E-02 0.49E-02 1.229 
0.920 1.64E-01 0.22E-02 0.38E-02 1.180 
0.960 1.51E-01 0.21E-02 0.35E-02 1.125 
1.000 1.35E-01 0.22E-02 0.33E-02 1.056 
1.040 1.15E-01 0.34E-02 0.41E-02 0.995 
1.080 1.09E-01 0.65E-02 0.68E-02 0.946 
1.120 9.20E-02 0.34E-02 0.38E-02 0.916 
1.160 8.59E-02 0.30E-02 0.34E-02 0.906 
1.200 9.33E-02 O.30E-O2 0.35E-02 0.916 
1.240 9.41E-02 0.30E-02 0.35E-02 0.942 
1.280 1.05E-01 0.33E-02 0.39E-02 0.974 
1.320 1.25E-01 0.39E-02 0.45E-02 1.007 
1.360 1.46E-01 0.51E-02 0.58E-02 1.034 
1.400 1.85E-01 0.15E-01 0.16E-01 1.053 
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Table D.7: 8 GeV spectrometer data . 1 Q 2 = 2.500 (GeV/c) 2, E = 2.837 GeV, TH = 44 994°. 
1 w 2 do/dndW 2 ERR1 ERH2 K 

0.440 2.19E-02 0.76E-02 0.76E-02 1.347 
0.480 2.34E-02 0.31E-02 0.31E-02 1.350 
0.520 3.61E-02 0.29E-02 0.30E-02 1.353 
0.560 4.94E-02 0.32E-02 0.33E-02 1.356 
0.600 6.28E-02 0.35E-02 0.37E-02 1.359 
0.640 8.10E-02 0.39E-02 0.42E-02 1.361 
0.680 1.16E-01 0.34E-02 0.41E-02 1.361 
0.720 1.52E-01 0.31E-02 0.42E-02 1.359 
0.760 2.04E-01 0.33E-02 0.50E-02 1.353 
0.800 2.54E-01 0.36E-02 0.60E-02 1.339 
0.840 3.02E-01 0.39E-02 0.69E-02 1.308 
0.880 3.32E-01 0.72E-02 0.95E-02 1.267 
0.920 3.32S-01 D.45E-02 0.77E-02 1.217 
0.960 3.05E-01 0.42E-02 0.71E-02 1.161 
1.000 2.62E-01 0.42E-02 0.65E-02 1.091 
1.040 2.32E-01 0.44E-02 0.62E-02 1.031 
1.080 2.01E-01 0.75E-02 0.84E-02 0.983 
1.120 1.98E-01 0.12E-01 0.12E-01 0.953 
1.160 1.76E-01 0.70E-02 0.78E-02 0.945 
1.200 1.82E-01 0.64E-02 0.73E-02 0.957 
1.240 1.88E-01 0.64E-02 0.73E-02 0.984 
1.280 2.08E-01 0.67E-02 0.78E-02 1.017 
1.320 2.415-01 0.74E-02 0.8 7E-02 1.050 
1.360 2.65E-01 0.80E-02 0.95E-02 1.078 
1.400 3.27E-01 0.94E-02 0.11E-01 1.097 
1.440 3.57E-01 0.11E-01 0.13E-01 1.106 
1.480 4.09E-01 0.21E-01 0.22E-01 1.107 
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ft -Table D.8: 8 GeV spectrometer data 
Q2 = 2.500 (GeV/c)2, E = 5.507 GeV, TH = 18 981" . 

W 2 da/dndW* ERR1 ERR 2 Re 
0.080 1.68E-02 0.67E-02 0.67E-02 1.451 
0.120 2.57E-02 0.62E-02 0.62E-02 1.456 
o.ieo 5.47E-02 0.74E-02 0.75E-02 1.462 
0.200 6.71E-02 0.75E-02 0.76E-02 1.468 
0.240 5.30E-02 0.67E-02 0.68E-02 1.474 
0.280 7.36E-02 0.78E-02 0.80E-02 1.480 
0.320 1.12E-01 0.91E-02 0.93E-02 1.486 
0.360 1.30E-01 0.97E-02 0.10E-01 1.491 
0.400 1.55E-01 0.10E-01 0.11E-01 1.496 
0.440 1.92E-01 0.11E-01 0.11E-01 1.500 
0.480 2.53E-01 0.10E-01 0.11E-01 1.504 
0.520 3.49E-01 0.11E-01 0.12E-01 1.507 
0.560 4.50E-01 0.11E-01 0.14E-01 1.510 
0.600 5.88E-01 0.11E-01 0.16E-01 1.513 
0.640 8.01E-01 0.12E-01 0.20E-01 1.515 
0.680 1.04E+00 0.14E-01 0.24E-01 1.516 
0.720 1.35E+00 0.16E-01 0.30E-01 1.513 
0.760 1.81E+00 0.18E-01 0.39E-01 1.505 
0.800 2.24E+00 0.21E-01 0.48E-01 1.489 
0.840 2.69E+00 0.24E-01 0.57E-01 1.452 
0.880 2.91E+00 0.52E-01 0.76E-01 1.406 
0.920 2.84E+00 0.27E-01 0.61E-01 1.349 
0.960 2.63E+00 0.22E-01 0.55E-01 1.284 
1.000 2.29E+00 0.19E-01 0.48E-01 1.211 
1.040 1.94E+00 0.17E-01 0.41E-01 1.145 
1.080 1.68E+00 0.15E-01 0.35E-01 1.095 
1.120 1.50E+00 0.15E-01 0.32E-01 1.065 
1.160 1.39E+00 0.14E-01 0.30E-01 1.058 
1.200 1.43E+00 0,16E-01 0.31E-01 1.073 
1.240 1.50E+00 0.19E-01 0.34E-01 1.102 
1.280 1.64E+00 0.22E-01 0.38E-01 1.139 
1.320 2.SOE+OO 0.29E-01 0.44E-01 1.175 
1.360 2.07E+00 0.31E-01 0.50E-01 1.205 
1.400 2.23E+00 0.34E-01 0.54E-01 1.225 
1.440 2.41E+00 0.36E-01 0.58E-01 1.236 
1.480 2.65E+00 0.38E-01 0.63E-01 1.237 
1.520 2.88E+00 0.41E-01 0.69E-01 1.232 
1.560 2.99E+00 0.45E-01 O.72E-01 1.221 
1.800 3.10E+00 0.52E-01 0.79E-01 1.207 
1.640 3.18E+00 0.66E-01 0.89E-01 1.192 
1.680 3.21E+00 0.97E-01 0.11E+00 1.179 

|_ 1.720 2.85E+00 0.22E+00 0.22E+00 1.167 
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T a b l e D .9 : 8 GeV spectrometer data 
Q 2 = 3 . 2 5 0 ( G e V / c ) \ E = 2 . 8 3 7 GeV , TH = 61 2 0 6 ° . 

W2 do/dndW 2 E?J?1 ERR2 Re 

0 . 4 7 5 4 . 3 5 E - 0 3 0 . 7 6 E - 0 3 0 . 7 7 E - 0 3 1 . 2 9 3 
0 . 5 2 5 6 . 6 6 E - 0 3 0 . 7 1 E - 0 3 0 . 7 2 E - 0 3 1 . 2 9 7 
0 . 5 7 5 8 . 4 1 E - 0 3 0 . 7 3 E - 0 3 0 . 7 5 E - 0 3 1 . 3 0 0 
0 . 6 2 5 1 . 1 6 E - 0 2 0 . 8 3 E - 0 3 0 . 8 6 E - 0 3 1 . 3 0 1 
0 . 6 7 5 1 . 7 9 E - 0 2 0 . 7 8 E - 0 3 0 . 8 5 E - 0 3 1 . 3 0 1 
0 . 7 2 5 2 . 3 2 E - 0 2 0 . 6 6 E - 0 3 0 . 7 9 E - 0 3 1 . 2 9 6 
0 . 7 7 5 2 . 9 8 E - 0 2 0 . 6 9 E - 0 3 0 . 8 9 E - 0 3 1 . 2 8 5 
0 . 8 2 5 3 . 6 5 E - 0 2 0 . 7 6 E - 0 3 0 . 1 0 E - 0 2 1 . 2 5 4 
0 . 8 7 5 4 . 0 5 E - 0 2 0 . 1 1 E - 0 2 0 . 1 3 E - 0 2 1 . 2 1 5 
0 . 9 2 5 3 . 9 9 E - 0 2 0 . 8 8 E - 0 3 0 . 1 2 E - 0 2 1 . 1 6 8 
0 . 9 7 5 3 . 9 5 E - 0 2 0 . 8 7 E - 0 3 0 . 1 1 E - 0 2 1 . 1 1 7 
1 . 0 2 5 3 . 5 0 E - 0 2 0 . 9 0 E - 0 3 0 . 1 1 E - 0 2 1 . 0 5 2 
1 . 0 7 5 3 . 2 6 E - 0 2 0 . 1 6 E - 0 2 0 . 1 7 E - 0 2 1 . 0 0 0 
1 . 1 2 5 2 . 9 9 E - 0 2 0 . 2 1 E - 0 2 0 . 2 2 E - 0 2 0 . 9 6 7 
1 . 1 7 5 2 . 6 7 E - 0 2 0 . 1 2 E - 0 2 0 . 1 3 E - 0 2 0 . 9 5 6 
1 . 2 2 5 3 . 0 3 E - 0 2 0 . 1 2 E - 0 2 0 . 1 3 E - 0 2 0 . 9 6 6 
1 . 2 7 5 3 . 2 0 E - 0 2 0 . 1 3 E - 0 2 0 . 1 4 E - 0 2 0 . 9 8 7 
1 . 3 2 5 3 . 6 8 E - 0 2 0 . 1 3 E - 0 2 0 . 1 5 E - 0 2 1 . 0 1 3 
1 . 3 7 5 4 . 3 0 E - 0 2 0 . 1 5 E - 0 2 0 . 1 7 E - 0 2 1 . 0 3 4 
1 . 4 2 5 5 . 0 0 E - 0 2 0 . 1 8 E - 0 2 0 . 2 0 E - 0 2 1 . 0 4 8 
1 . 4 7 5 5 . 8 8 E - 0 2 0 . 3 3 E - 0 2 0 . 3 4 E - 0 2 1 . 0 5 2 
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Table D.10 : 8 GeV spectrometer data 
Q 2 = 3.250 (GeV/c)2, E = S.507 GeV, TH = 22. 805'. 

W= do/dtldw2 ERRl ERR2 R= 
0.425 6.56E-02 0.11E-01 0.11E-01 1.461 
0.475 7.46E-02 0.55E-02 0.56E-O2 1.465 
0.525 9.51E-02 0.43E-02 0.47E-02 1.468 
0.575 1.32E-01 0.41E-02 0.48E-02 1.471 
0.625 1.77E-01 0.42E-02 0.54E-02 1.472 
0.675 2.41E-01 0.46E-02 0.65E-O2 1.471 
0.725 3.20E-01 0.52E-02 0.80E-02 1.466 
0.775 4.01E-01 0.57E-02 0.95E-02 1.452 
0.825 4.81E-01 0.62E-02 0.11E-01 1.416 
0.875 5.51E-01 0.11E-01 0.15E-01 1.371 
0.925 5.47E-01 0.64E-02 0.12E-01 1.319 
0.975 5.03E-01 0.55E-02 0.11E-01 1.264 
1.025 4.60E-01 0.50E-02 0.10E-01 1.195 
1.075 3.98E-01 0.45E-02 0.88E-02 1.143 
1.125 3.69E-01 0.44E-02 0.82E-02 1.111 
1.175 3.57E-01 0.45E-02 0.81E-02 1.104 
1.225 3.57E-01 0.51E-02 0.84E-02 1.118 
1.275 3.83E-01 0.61E-02 0.95E-02 1.144 
1.325 4.14E-01 0.75E-02 0.11E-01 1.172 
1.375 4.77E-01 0.87E-02 0.13E-01 1.196 
1.425 5.27E-01 0.94E-02 0.14E-01 1.211 
1.475 5.95E-01 0.10E-01 0.15E-01 1.216 
1.525 6.48E-01 0.11E-01 0.17E-01 l.i-4 
1.575 6.73E-01 0.13E-01 0.18E-01 1.207 
1.625 7.22E-01 0.16E-01 0.21E-01 1.197 
1.675 7.18E-01 0.23E-01 0.27E-01 1.187 1 
1.725 7.55E-01 0.55E-01 0.56E-01 1.179 J 



Table D.ll : 8 Gev spectrometer data 
Q 2 = 4.000 (GeV/c)2, E = 5.507 GeV, TH = 26. 823°. 

w2 da/dildw2 ERR1 ERR2 Re 
0.425 1.87E-02 0.32E-02 0.32E-02 1.426 
0.475 1.98E-02 0.16E-02 0.16E-02 1.429 
0.525 3.01E-02 0.13E-02 0.14E-02 1.432 
0.575 3.91E-02 0.12E-02 0.14E-02 1.433 
0.625 5.06E-02 0.12E-02 0.15E-02 1.434 
0.675 6.60E-02 0.13E-02 0.18E-02 1.431 
0.725 8.41E-02 0.14E-02 0.21E-02 1.423 
0.775 9.97E-02 0.15E-02 0.24E-02 1.412 
0.825 1.14E-01 0.16E-02 0.27E-C2 1.372 
0.875 1.25E-01 0.27E-02 0.36E-02 1.335 
0.925 1.32E-01 0.18E-02 0.31E-02 1.296 
0.975 1.27E-01 0.15E-02 0.29E-02 1.257 
1.025 1.18E-01 0.14E-02 0.26E-02 1.207 
1.075 1.10E-01 0.13E-02 0.25E-02 1.165 
1.125 1.04E-01 0.13E-02 0.24E-02 1.139 
1.175 1.03E-01 0.14E-02 0.24E-02 1.128 
1.225 1.03E-01 0.15E-02 0.25E-02 1.134 
1.275 1.11E-01 0.19E-02 0.28E-02 1.148 
1.325 1.17E-01 0.23E-02 0.32E-02 1.166 
1.375 1.29E-01 0.27E-02 0.36E-02 1.182 
1.425 1.45E-01 0.29E-02 0.40E-02 1.194 
1.475 1.62E-01 0.32E-02 0.44E-02 1.200 
1.525 1.70E-01 0.34E-02 0.47E-02 1.200 
1.575 1.89E-01 0.40E-02 0.54E-02 1.197 
1.625 1.95E-01 0.49E-02 0.62E-02 1.193 
1.675 2.14E-01 0.74E-02 0.84E-02 1.187 
1.725 2.11E-01 0.16E-01 0.16E-01 1.183 



2 4 4 

1 Table D.12 : 1 . 6 GeV s p e c t r o m e t e r data 
1 Q' = 1.750 ( G e V / c ) 2 , E = 1 . 5 1 1 GeV , TH = 9 0 . • 0 0 ° . 

| W d c / d f l d w 2 ERR1 ERR2 Re 

0 . 7 1 5 1 . 0 1 E - 0 1 0 . 4 0 E - 0 2 0 . 4 5 E - 0 2 1 . 2 5 4 
0 . 7 4 5 1 . 2 9 E - 0 1 0 . 2 3 E - 0 2 0 . 3 4 E - 0 2 1 . 2 5 3 
0 . 7 7 5 1 . 6 5 E - 0 1 0 . 1 9 E - 0 2 0 . 3 8 E - 0 2 1 . 2 4 9 
0 . 8 0 5 2 . 1 1 E - 0 1 0 . 1 7 E - 0 2 0 . 4 5 E - 0 2 1 . 2 4 0 
0 . 8 3 5 2 . 5 9 E - 0 1 0 . 1 6 E - 0 2 0 . 5 4 E - 0 2 1 . 2 2 3 
0 . 8 6 5 2 . 9 8 E - 0 1 0 . 2 9 E - 0 2 0 . 6 6 E - 0 2 1 . 1 9 3 
0 . 8 9 5 3 . 1 5 E - 0 1 0 . 4 2 E - 0 2 0 . 7 6 E - 0 2 1 . 1 5 2 
0 . 9 2 5 3 . 0 1 E - 0 1 0 . 1 7 E - 0 2 0 . 6 2 E - 0 2 1 . 1 0 2 
0 . 9 5 5 2 . 7 4 E - 0 1 0 . 1 6 E - 0 2 0 . 5 7 E - 0 2 1 . 0 3 9 
0 . 9 8 5 2 . 3 0 E - 0 1 0 . 2 3 E - 0 2 0 . 5 1 E - 0 2 0 . 9 7 4 
1 . 0 1 5 1 . 9 1 E - 0 1 0 . 3 6 E - 0 2 0 . 5 2 E - 0 2 0 . 9 1 0 
1 . 0 4 5 J U 6 7 E - 0 1 0 . 1 8 E - 0 2 0 . 3 8 E - 0 2 0 . 8 5 1 1 
1 . 0 7 5 1 . 4 8 E - 0 1 0 . 2 0 E - 0 2 0 . 3 6 E - 0 2 0 . 8 0 2 
1 . 1 0 5 1 . 2 9 E - 0 1 0 . 2 1 E - 0 2 0 . 3 3 E - 0 2 0 . 7 6 5 
1 . 1 3 5 1 . 2 4 E - 0 1 0 . 1 8 E - 0 2 0 . 3 0 E - 0 2 0 . 7 4 5 
1 . 1 6 5 1 . 1 7 E - 0 1 0 . 2 2 E - 0 2 0 . 3 2 E - 0 2 0 . 7 4 3 
1 . 1 9 5 1 . 2 8 E - 0 1 0 . 2 3 E - 0 2 0 . 3 4 E - 0 2 0 . 7 5 8 

T a b l e D . 1 3 : 1 . 6 GeV spectrometer data 
Q 2 = 2 . 5 0 0 ( G e V / c ) 2 , E = 1 . 9 6 8 GeV , TH = 9 0 0 0 . 

W2 dc/dndW2 ERR1 ERS2 R= 

0 . 5 2 0 6 . 1 1 E - 0 3 0 . 5 5 E - 0 3 0 . 5 6 E - 0 3 1 . 2 2 8 
0 . 5 6 0 7 . 5 9 E - 0 3 0 . 4 0 E - 0 3 0 . 4 2 E - 0 3 1 . 2 3 1 
0 . 6 0 0 9 . 8 7 E - 0 3 0 . 3 5 E - 0 3 0 . 4 0 E - 0 3 1 . 2 3 4 
0 . 6 4 0 1 . 3 5 E - 0 2 0 . 3 4 E - 0 3 0 . 4 3 E - 0 3 1 . 2 3 6 
0 . 6 8 0 1 . 8 8 E - 0 2 0 . 3 3 E - 0 3 0 . 5 0 E - 0 3 1 . 2 3 7 
0 . 7 2 0 2 . 5 2 E - 0 2 0 . 3 8 E - 0 3 0 . 6 3 E - 0 3 1 . 2 3 6 
0 . 7 6 0 3 . 3 9 E - 0 2 0 . 3 8 E - 0 3 0 . 7 8 E - 0 3 1 . 2 3 1 
0.800 4.3ZE-02 0.39E-03 0.95E-03 1.219 
0 . 8 4 0 5 . 1 1 E - 0 2 0 . 4 5 E - 0 3 0 . 1 1 E - 0 2 1 . 1 9 2 
0 . 8 8 0 5 . 6 6 E - 0 2 0 . 9 7 E - 0 3 0 . 1 5 E - 0 2 1 . 1 5 5 
0 . 9 2 0 5 . 8 5 E - 0 2 0 . 5 9 E - 0 3 0 . 1 3 E - 0 2 1 . 1 0 6 
0 . 9 6 0 5 . 3 3 E - 0 2 0 . 5 7 E - 0 3 0 . 1 2 E - 0 2 1 . 0 5 1 
1 . 0 0 0 4 . 6 5 E - 0 2 0 . 6 2 E - 0 3 0 . 1 1 E - 0 2 0 . 9 8 1 
1 . 0 4 0 4 . 1 2 E - 0 2 0 . 6 0 E - 0 3 0 . 1 0 E - 0 2 0 . 9 1 7 
1 . 0 8 0 3 . 6 0 E - 0 2 0 . 6 1 E - 0 3 0 . 9 4 E - 0 3 0 . 8 6 5 
1 . 1 2 0 3 . 3 4 E - 0 2 0 . 7 2 E - 0 3 0 . 9 8 E - 0 3 0 . 8 3 0 
1 . 1 6 0 3 . 2 0 E - 0 2 0 . 6 1 E - 0 3 0 . 8 8 E - 0 3 0 . 8 1 5 
1 . 2 0 0 3 . 2 6 E - 0 2 0 . 6 4 E - 0 3 0 . 9 1 E - 0 3 0 . 8 2 1 
1 . 2 4 0 3 . 6 6 E - 0 2 0 . 7 6 E - 0 3 0 . 1 1 E - 0 2 0 . 8 4 3 
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