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ABSTRACT

It is proved that an slgebraic number field of type (g% ¢°,...,¢°) has relative
integral basis over any of its subfield under certain conditions. The conductor and dis-

criminant are also determined using the construction of genus fields of abelian number

fields.
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1. INTRODUCTION AND MAIN RESULTS

A simple construction for genus fields K of abelian number fields K was given in
(1]. We will give here & further description of K¢, and then determine the conductor f(K)
and discriminant D(K) of K. And finally we use these results to prove that an extension
L/K of type (¢%,9",...,¢") has a relative integral basis.

Let L be an algebraic number field, K a subfield of L. The ring Oy of integers
of K is a Dedekind domain, and Oy is a torsion-free Ogx-module. So the construction
theorem for modules over Dedekind domain of E. Steinitz (1912) and L Kaplansky (1952)
implies that Op ~ O} @ J, where n = [L : K], J is an ideal of K. J is unique
upto a principal ideal (i.e. the class of J is uniquely determined). Therefore, the ideal
class {J] represented by J totally determines the structure of Op. In particular, when
J is principal (for example, if the class number of K is 1, then J is principal; but in
general, J could be non-principal), then O is a free Ox-module, and L/K is said to
have & relative integral basis. In this case, there are integers wy, 3, ..., w, of L, such that
Op = Ogw @ ... 8 Ogw,. Suppose that D = D(L/K) is the discriminant of L/K, and
A = A(L/K) is the discriminant of any K -basis of I, then D/A is & square of some ideal
of K. E. Artin proved that the ideals (D/A)/2 and J are in the same ideal class of K.
Therefore, L/ K has a relative integral basis if and only if (D/A)Y/? is a principal ideal of
K.

Beginning from examples, many literatures study the existence of relative integral
basis for cyclic quartic fields and fields of type (2,2} (e.g. see [2-3]). We solved the problem
completely for cyclic quartic fields and fields of type (¢,¢,...,¢) (g is any prime, see [4-6]).
We will study here fields of type (¢*,¢°,...,9") (i.e., Galois group Gal(L/Q) ~ (Z/¢*Z)",
a direct product of n cyclic groups of order ¢*). The situation is more complex than that
for s = 1 (especially when ¢ = 2), and the proof is different. We will first discuss the
genus field K¢ of an abelian field K. (By definition, K¢ is the maximal abelian subfield
of the Hilbert class field of K; K¢ is also the maximal abelian field such that finite prime
divisors are all unramified in Kg/K). Then by that we determine the conductor f{K)
of K (f(K) is the minimal positive integer f such that K ¢ Q((;), where (; denote a
f-th primitive unity root.) Then we consider the character group K (as a subgroup of the
character group modulo f), and determine the discriminant D(K) of K. Finally, we find
D{L/K) and A(L/K) and discuss relative integral basis of L/K using Artin’s theorem.

Lemma 1 [1] Let K be & cyclic number field of degree ¢° over rationals @, g a prime
number, 8 a positive integer. Then the genus field of K is

Ke=NQp=K0 9, (1)
P P#q

where p runs over prime numbers ramified in K, the ramification index of p in K is denoted
e(p, K) = e(p) = g%, 1, is the unique cyclic subfield of degree e(p) in Q((,) when p # g,
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while (I, is a subfield of degree e(q) in Q({,¢) for a properly large positive integer ¢.

u}
Lemma 2 The minimal value of { in Lemma 1 can be taken as
0, if e,=0 (ie. ¢ is unramified in K);
= 2, if g=2e2=1 and Q2=Q(v-1) (2)
" Yes+d, otherwise (where §=1 or 2 according to
g isoddor ¢g=2).
Moreover, £, is cyclic when ¢ # 0.
]
Theorem 1 Let K be a cyclic number field of degree ¢°, ¢ any prime, s any positive
integer. Then the conductor f(K) of K is
f=q¢ pipz..-pr, (3)

where p; = 1 (mod ¢°») are distinct prime numbers (¢®*i = e(p;) is the ramification index
of p;in K) (1 <4 < r); tis as in Lemma 2, in particular ¢ € {0,2,3,...,5+¢}. Andif
t# 34 g, thereisa p; (1 €£i<r)such that ¢,, = s. Conversely, for any positive integer
f as abave, there is a cyclic field of degree ¢* having conductor f.

0

If K=K K,...K,,then f(K) = Lem{f(K1),...,f(K,)}. Hence we have

Corollary 1 Let K be a number field of type {(¢™,g"*,...,¢*) (i.e., Gal(K) ~
Z/q'lz.x ... x Z{q*~Z), ¢ any prime number, s,,...,9, positive integers. Then the
conductor of K is

fK)=q¢ mp2-..pr, (4)

where p; = 1 {mod g) are distinct prime numbers, t € {0,2,3,...,5+ ¢}, s = max s,.
]

Corollary 2 Let K be an abelian number field of degree n, n = ¢ q3? ... q%", ¢; are

distinct prime numbers, and s, are positive integers (1 < 1 £ n). Then the conductor of
Kis

f(K)=q0'¢- .. p1p2---Pr (5)
where p),...,p, are pairwisely distinct prime numbers, and for each p; (1 £i < r) there

isag; (1<j<n)suchthat p; =1 (mod ¢;); t: € {0,2,3,...,Ti + ¢}, and Ti(< ;)
is the gi—exponent of Gal(K) (i.e., ¢7* is the maximal order of elements in its g;-sylow
subgroup}).

O

Theorem 2 Let L be a number field of type {g* g%, ...,¢°) with degree ¢*" over
rationals @, where ¢ is any prime number, and s any positive integer. Then the (absolute)
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discriminant of L factorizes as
DL)=c T p* (6)

where ¢ = —1 or +1 according to L being imaginary quadratic field or nct;

v, = g™ — g™, it p#aq
£

-1
vy = (e + 1)g™ — "~ (”—‘qq-l)’ i p=g#2

v =(e+1)2" — 2=, if p=g =2, f(X) #4(mod 8)(¥X € L);
19y = (e + 12", it p=g¢g=2, f(X) = 4(mod 8)(3zx € L),

vz = and f(X) =0(mod 8)(3Xx € L);
vas = 27, i p=g =2 f(X) = 4(mod S)(3X € L),

and f(X) # 0(mod 8)(VX € L),
where ¢* = Jmax e(p, K} is the maximum of ramification indexes of pin K; (1 <{ < n),
L is the character group of X, f(X) is the conductor of X € {i.e., conductor of the fixing
subfield of {y € Gal(L)|gX = 1}). Moreover, we have p = 1(mod ¢°) if p # q.
W]
Example 1 When L is of type (2,2,...,2), we have s = 1,¢ = 2,e = 1. Then
va1 = 3 271 vgy = 27F! wyy = 2™ coinciding with results of (5] and [7]. In this case, we
may assume L = Q(,/my,/7y,...,/M,) as in [7]; then in cases vy = 0, vqy,vg2, or vgy,

we have respectively (mi,ma,...,m,) (mod 4) = (1,...,1),(2,1,...,1),(2,3,1,...,1), or
(3,1,...,1).

[m}

Example 2 When L is of type (g,q,...,9), i-e., s = 1 and ¢ is odd prime, then
Theorem 2 gives D(L) = f(L}¥" =", coinciding with result in (8]

o
Example 3 When L is a cyclic field of degree ¢°, we have n = 1 and
vp=9"-¢"" i p#g
vy ={e+1)g"—¢""* (1+-!:—:I1-), if p=qg#2
vy = { (e+1)2°—27¢,  if f(L)# 4 (mod 8);
24, if f(L)=4(mod8).
a0

Notice that if we denote v, in Theorem 2 as vp(s, e), then vp(s+1,€) = q vp(s,€)
in all cases. And the maximal value of e is 3, and v, assumes its maximal value at e = s.
From this, we can systematically determine the values of v,(s,¢) (and hence D(L)} in
various cases. For example, if L is a cyclic field of degree 2, 4, 8, or 16, then the possible
values of vy are respectively 0, 2, 3; 0, 4, 6, 11; 0, 8, 12, 22, 31; 0, 16, 24, 44, 62, 79.
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Theorem 3 Suppose that L and its subfield K are number fields of type (¢*,¢7%,...,¢%)
where g is an odd prime number. Then L/K has a relative iutegral basis.

Theorem 4 Suppose that L and its subfield K are number fields of type (2,2°,...,2%)
with degree 2*" and 2°™ respectively. f n —m > e and n — m > 1, then L/K has a rel-
ative integral basis, where 2¢ = max e(2, K;) is the maximum of the ramification indexes

)
e(2,K;)of 2in K; (1 <i<n),and L = K\ K;... K, with K cyclic fields of degree 2°.

0
2. PROOFS OF THEOREMS AND LEMMAS
Proof of Lemma 2 If ¢ =2 and e; > 2, then by Lemma 1 we have
K CKe CQ{)0Q(C, ). QG =L (7}

Let Eg(p) denote the ramification group of pin K. Then Ex(2) = Eg(2) is the image of
E{2) under the restrict homomorphism. Since K is cyclic, so Ex(2) is cyclic and Ep{2)
should have element of order 2*2. By E(2) =~ Gal(Q({,)), we thus know that the minimal
value of { can be assumed as e; + 2. It also follows from

Ex(2) ~ Exg(2) =~ Eq,(2) x ... x Eqg,(2) = Eq,(2) =~ Gal(2;) . (8)
The other part of the lemma can be proved similarly.

Proof of Theorem 1 By (7) we know f(K) < f. Since K C Q({f)} = L, there
is & surjective homemorphism Er(p) — Ex(p), so from the proof of Lemma 2 we have
F(K) > f. We have p; =1 (mod e(p;}} since Q((p, ) has cyclic subfield 2,, of degree e(p;)
(see Lemma 1). In addition we note that e; can be s (for example, consider the case K
being cyclic subfleld of degree ¢* of Q({,++1)), so by Lemma 2 we have ¢ € {0,2,...,544}.
Ift # s+ g (i.e., ¢ is not totally ramified in K), then there is a p; ramified totally in K
(note that if p is a prime ramified in the subfield of degree ¢ of K, then p ramifies totally
in K since no subfield of K can be the inertia field of p), thus we huve e, = s.

Conversely, for f as in (3), let g; be a generator of (Z/p;Z)* (here denote py = ¢'

if ¢ # 0}, then the order of

g' —dfele) L (p-—1)/e(p:)

g q

is ¢* since one of the numbers e(g),...,e(p:) is equal to ¢* as mentioned above. By the
duality of abelian group, (Z/fZ)™ has quotient group of order ¢°. Hence we know Q({f)
has a cyclic subfield K of degree ¢* and obviously f{K')= f.

Proof of Theorem 2 We may assume
L=KKy...K,, (9)
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where K; are cyclic fields of degree ¢* (1 < i < n). Let the conductors of K; and L be

N we pli _ .t
f(Ki) =g plfI(IK'_)p, FiL)=4¢ Pl}'{”p- (10)

Let the character group of K; be E;=<X;>and X; factorize as
Xi = pitg) 1;1 Pi(p) » (11)

where y(p) denote character modulo p, and ¢;(,) character modulo ¢%. Then the character
group of L is

L=cxy, o Xa>={x=x0 x5k, ko € Z/q"Z} .
By Hasse’s discriminant—conductor theorem, we have

d(L)= T f(X), (12)
x€L

where f(X) = ¢" I p is the conductor of X, i.e., the conductor of L, the fixed field of
[
{9 € Gal{L}|X(g) = 1}. Note that the ramification group of pin K; is E(p, Ki) >~ < Pitp) >
and the ramification index is e(p, K;) = # < ¢y >. Put
e(p) = ¢ = ¢ = max e(p, Ki), (13)

and assume e(p, K1) = e(p), then the order of ¢, = () is e(p) = ¢°* = ¢°. Thus the
p-part of X = X% xk is

k kn
Xy =01m) Mg (14)

(i) First, we assume p # ¢. Let ;) = p . Then

X(P) — L,O:‘kl+"’+b"k" — ‘P: . (15}
Note that there are ¢"~* distinct numbers d{mod ¢°} satisfying b = 0 (mod ¢°). For each
such b, the equation b, ky+. . .+b,k, = b(mod ¢°} has ¢**"~Y) solutions (ki, ..., k,) (mod ¢%).
Thus there are ¢*" — g*~¢ - g°("~1) = g™ _ g*7~¢ characters ¢ € [ with non-trivial p—part,
and p|| f(X) for each of these X. Hence

‘Up = qsn - qan—c = qun _ qaﬂ-i+l . (16)

(i) Let p = ¢ # 2. We also have {15). For any b, the equation b1 k) +... 4 bukn =
b (mod ¢*) has ¢*("~"} solutions. There are ¢*~* numbers b (mod ¢*) with ¢%|b (and then
Xy = 1ty = 0); ¢"~*! — ¢°~° numbers b (mod ¢*) with ¢*~}||b (and then the order of
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X(p is 1 = e(p,Ly) = ey, ty = e +1 = 2); and gttt — gt num't.)ers b (mod ¢")
with g*~l|b (and then the order of X(,) is e{p, Ly} = ¢ = £,t, = e+ 1 =i+ 1). Thus we
have
v = qa(n—l) (q:-r,-l—l _ qa—e) X2+ (qa—c+2 _ qa_e+l) x34...
+{g"—¢" ) {e+ )=
- (e + l)qsﬂ — qﬂﬂ—ﬂ _— q-.ﬂ-'c(qﬂ — 1)/(q — 1) .

(iii) Let p = 2. Assume ¥ is a primitive character modulo 4. First, let f(X;) #
4 (mod 8), ie, pyy # ¥ (1 €1 < n). Then it is similar to the case p = ¢ # 2, but
ty = ey + 2 by Lemma 2. Hence we have

vy = 2:(n-1) ((2.—:+1 _ 25—:) x34+... .+ (23 _ 25—1) X (e + 2))
. (e + 1)2"; — pan—e

(iv) Let p = 2 and a2 = ¥, Since < P’ ", .., > = < ' ", . ¥ >, 50

we may assume ¥|X; (1 <7< n—1). Then the 2-part of X = Xf‘ S XEn g
X(g) = pg Bt gl 2 G gk

here again we assume the order of @y = @y(g) is maxe(2, ;) and @2 = qu‘. For any
Bbiki+ ...+ bp_yka_y = b (mod ¢*) has 2°("~2} solutions (we assume here n > 2). There
are 2°7¢ numbers b (mod ¢*} with 2°|b, and then ¢! = 1,1, = tyra = 2 (if £y is 0dd)
or 0 (if k, is even), So there are 2°("=% . 29—¢ . 29=1 characters X € I with t, = 2.
There are 20~ _ 29—¢ pumbers b with 2¢~1||b, and 24" ~2) . 2% vectors (ky,. .., ky), and
then the order of 4 is 2, so ¢, = 3 (we assume b;...5,_;y # 0). Similarly, there are
gs—eti _ ga~eti~1 numbers b (mod ¢°) with 2¢~/||b and then t; = ¢ + 3. Hence

= 22020  2m L p p 20 s (20T _ 2 B
2% x (2ot _pemeHoly o (4 D)4
+22x (2 -2 x (e +2))
=(e+1)-2™.

In addition, if n = 1, then obviously v; = 2% and if b; ... np—; = 0, then obvicusly
vy = 2°" since there are 2°" — 2°"~% characters X € L containing ¢ as a factor and then
ty = 2 {note that ky,...,k,_; are arbitrary and k, is odd). This proves Theorem 2.

Proof of Theorem 3 Let L and K have degrees g™* and ¢™* respectively. By Theorem
2, the different of L/Q is

DL/Q)=DL) " =g " mprT "

A TR AT AT S R B PR, o

since
eD(L/Q)=D(eL/aQ) =D(L/Q)} forany o € Gal(L/D)
and
D(L}y = Nyjq D(L/Q) = D(L/QY"
then by
P(L)i=vgq ™ =e+1-g7* - ! _Aq: =e+1—(e+1)=0 (mod2),
and
(L) =wvpg™" =1—¢™* =0 (mod 2),
D(L/K)=D(L)/D(K) = ¢"'® 1 p»P),
where

. N , = ] g2
vg(D) = 9g(L) ~ 0(K) = (e — ') + q—j;—“' : ;q;_—l"
vp(P) = 0p(L) — Bp(K) = (gt = 1),

here ¢’ is defined for K similar to e for L.

L]

Then it is easy to see that D(L/K) = Ny;x D(L/K) = D(L/K)Y ™" is a square (ie., a
principal ideal generated by a square element). On the other hand, since [L : K] = g*»—™
is odd, so the discriminant A of any K-basis of L is a square. Theorem 3 follows from
these facts and Artin’s theorem mentioned at the beginning.

Proof of Theorem 4 Put D(L/K) = 2% 1 p%. Then, similarly to the proof of
P

Thecrem 3, we know that
vy =g" (gt ~1) =0 (mod2).

Asfor v}, note that vz; = (e+1)29"—25"7¢ ypg = (e4+1)2'" vgg = 2°", 80 (L) = v:27"" =
{e+1)-27*,(e+1), or 1 respectively. Denote v(D) = #(L)—5{ K}, v* = v(D)-2*~™. Let the
case i/j denote the case va{L)} = vy, v2{ ) = vy;. Then only the following cases appear:
cases 1/1, 2/2, 2/1, 2/3, 3/3 and 3/1. And in all these cases we have v* = 0 (mod 2).
{For example, in Case 1/1, we have p(D) = e~¢' —~27¢4+2"¢ v* = (e*=¢ —1)2n—m—e =
0 (mod 2) since r —m > e.) Thus D(L/K) is a square in all cases. Let us show A isalso a
square then. Assume K = KyKy.. K, L=K, ... KnKmt1---Kny ' = Kpg1-- - Ky,
where K; are cyclic fields of degree 2*. Then L = KK’ and a Qbasis of K’ is a K-basis of
L. Let {u,} be a Q-basis of K5, {v;} a Q-basis of Kpy1 ... Kn_1 (note that n —m = 2),
then {uv;} is a @)—basis of K'. Hence

A(L/K) = A(K") = det{ufv]} = AK)" " AlK s Knos)®
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is a square of a rational number. Therefore, by Artin's theorem, we have Theorem 4.
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