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ABSTRACT

It is proved that an algebraic number field of type (q',q',.,. ,q*) has relative

integral basis over any of its subfield under certain conditions. The conductor and dis-

criminant are also determined using the construction of genus fields of abelian number

fields.
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1. I N T R O D U C T I O N AND MAIN RESULTS

A simple construction for genus fields Ka of abelian number fields K was given in

[1]. We will give here a further description of Ka, and then determine the conductor f(K)

and discriminant D(K) of K. And finally we use these results to prove that an extension

LjK of type (§ ' , q',. . . , q') has a relative integral basis.

Let L be an algebraic number field, K a subfield of L. The ring OK of integers
of if is a Dedekind domain, and OL is a torsion-free OR—module. So the construction
theorem for modules over Dedekind domain of E. Steinitz (1912) and I. Kaplansky (1952)
implies that OL ~ O^'1 © J, where n = [L : K], J is an ideal of K. J is unique
upto a principal ideal (i.e. the class of J is uniquely determined). Therefore, the ideal
class [J] represented by J totally determines the structure of OL. In particular, when
J is principal (for example, if the class number of K is 1, then J is principal; but in
general, J could be non-principal), then OL is a free 0«—module, and LjK is said to
have a relative integral basis. In this case, there are integers w\, u>2, •. •, vin of L, such that
Oi — Oxwi © . . . © Oft-U)n. Suppose that D = D(L/K) is the discriminant of L/K, and
A = A(L/K) is the discriminant of any K-basis of L, then D/A is a square of some ideal
of K. E. Artin proved that the ideals (D/A)1 /2 and J are in the same ideal class of K.

Therefore, LjK has a relative integral basis if and only if (D/A) 1 ' 2 is a principal ideal of
K.

Beginning from examples, many literatures study the existence of relative integral
basis for cyclic quaxtic fields and fields of type (2,2) (e.g. see [2-3]). We solved the problem
completely for cyclic quaxtic fields and fields of type (q, q,..., q) (q is any prime, see [4-6]).
We will study here fields of type (q',q°,... ,q') (i.e., Galois group Gal(I/Q) ~ (Z/q'T,)",

a direct product of n cyclic groups of order q'). The situation is more complex than that
for s = 1 (especially when q ~ 2), and the proof is different. We will first discuss the
genus field Ka of an abelian field K. (By definition, Ka is the maximal abelian subfield
of the Hilbert class field of K; KG is also the maximal abelian field such that finite prime
divisors are all unramified in Kc/K). Then by that we determine the conductor f(K)

of K (f(K) is the minimal positive integer / such that K C Q(C/)> where (/ denote a
/ - t h primitive unity root.) Then we consider the character group K (as a subgroup of the
character group modulo / ) , and determine the discriminant D(K) of K. Finally, we find
D{L/K) and &(L/K) and discuss relative integral baais of LjK using Artin's theorem.

Lemma 1 [1] Let K he & cyclic number field of degree q' over rationals Q, q a prime
number, s a positive integer. Then the genus field of K is

KG = n np = K n np, (1)

where p runs over prime numbers ramified in K, the ramification index of p in K is denoted
e(p, K) = e(p) = qc', ClT is the unique cyclic subfield of degree e(p) in Q(Cp) when p ^ q,



while Qq is a subfield of degree e(q) in Q{C,qt) for a properly large positive integer t.

Lemma 2 The minimal value of t in Lemma 1 can be taken as

t =

• 0, if e.q = 0 (i.e. q is unramified in A');
2, if g = 2 ,e 2 = l and Qj - Q(v /=T );
e, + g, otherwise (where q = 1 or 2 according to

q is odd or q = 2) .

Moreover, flj is cyclic when / ^ 0.

(2)

D

Theorem 1 Let A" be & cyclic number field of degree q', q any prime, s any positive
integer. Then the conductor f(K) of K is

f = qt
(3)

where p< = 1 (mod q'r<) are distinct prime numbers (q''< = e(pv) is the ramification index
of p, in K) (1 < t < r); t is as in Lemma 2, in particular t£{Q,2,3,...,a+q). And if
t ^ 3 + g, there is a pi (1 < « < r) such that ePi = s. Conversely, for any positive integer
/ as above, there is a cyclic field of degree q* having conductor / .

•

If K = KiK2 ...Kn, then f{K) = Lcm{f(Ki),.. .,f(Kn)}. Hence we have

Corol lary 1 Let A" be a number field of type {q'l,q",... ,q'") (i.e., Gal(A') ~

2i/q'l2i x . . . x Z / q ' " Z ) , q any prime number, Si,...,sn positive integers. Then the

conductor of K is

f{K) = qlnp2...pr, (4)

where pi = 1 (mod q) are distinct prime numbers, t € {0,2 ,3 , . . , , s + q], s = max $,-.
t

•
Corol lary 2 Let K be an abelian number field of degree n,n = q^q^1 • • q^", <7; are

distinct prime numbers, and SJ are positive integers (1 < i < n) . Then the conductor of

A" is

tft'.pr, (5)

where pi,...,pr are pairwisely distinct prime numbers, and for each pj (1 < i < r) there
is a qj (1 < j < n) such that pt = 1 (mod ̂ j); t, € {0,2, 3 Tf 4 ?}, and Tj(< a;)
is the g,-exponent of GeA(K) (i.e., qj' is the maximal order of elements in its g^-sylow
subgroup).

D

Theorem 2 Let L be a number field of type (q',q'>... ,q°) with degree q'n over
rationals Q, where q is any prime number, and s any positive integer. Then the (absolute)

discriminant of L factorizes as
D(L) = c (6)

where c = - 1 or +1 according to L being imaginary quadratic field or net;

v2 =

( )

= (e + 1)2'",

"23 =

if p = q = 2,/(X) ^ 4(m«i 8)(VX £ £)_;
if p = 9 = 2,/(X) = 4(mod 8)(3zX £ I ) ,

and /(X) = O ( T W 8)(3X € X);
if p = 9 = 2,/(X) = 4(mod 8)(3X € £),

and /(X) ̂  O(mod 8)(VX € X),

where q' = max e(p, A',) is the maximum of ramification indexes of p in A; (1 < t < n),

L is the character group of A, /(X) is the conductor of X e L (i.e., conductor of the fixing
subfield of {g € Gal(L)\gX = 1}). Moreover, we have p = l(mod qc) if p / g.

D

Example 1 When L is of type (2,2, . . . ,2) , we have s = l,g = 2,e = l. Then
Vm = 3 x 2"~1,u22 = 2n + l ,u23 = 2", coinciding with results of [5] and [7]. In this case, we
may assume L = Q( v/^n7, y/rn^, •.., y/mZ) as in [7]; then in cases v2 =• 0, ̂ 21, u22, or v23,
we have respectively (mum2l,,, ,mn) (mod 4) = ( 1 , . . . , 1), ( 2 , 1 , . . . , 1), ( 2 , 3 , 1 , . . . , 1), or
(3,1 1).

n

E x a m p l e 2 When L is of type (q,q,...,q), i.e., 5 = 1 and q is odd prime, then

Theorem 2 gives D(L) = / ( i ) » " ~ » " " ' , coinciding with result in [8].

D

E x a m p l e 3 When L is a cyclic field of degree q', we have n = 1 and

vp = q' — q'~f, if p ^ g;

u, = (e + l)g" — q'~l f 1 + ~ J , if p = q ^ 2;

_ / ( e + l ) 2 a - 2 J - e , if / ( X ) £ 4 (mod 8);
if f(L)=4(mod8) .

Notice that if we denote vp in Theorem 2 as vp(s, e), then up(;! + 1, e) = q vp(s, e)
in all cases. And the maximal value of e is s, and vp assumes its maximal value at e = s.
From this, we can systematically determine the values of vp(s,e) (and hence D(L)) in
various cases. For example, if I, is a cyclic field of degree 2, 4, 8, or 16, then the possible
values of v2 are respectively 0, 2, 3; 0, 4, 6, 11; 0, 8, 12, 22, 31; 0, 16, 24, 44, 62, 79.



Theorem 3 Suppose that L and its subfield K are number fields of type (q', q',... ,q')
where q is an odd prime number. Then L/K has a relative integral basis.

Theorem 4 Suppose that L and its subfield K are number fields of type (2J, 2 ° , . . . , 2*)
with degree 2*" and 2*m respectively. If n — m > e and n — m > 1, then L/A' has a rel-

ative integral basis, where 2* = max e(2, Kj) is the maximum of the ramification indexes

e(2, A^) of 2 in A^ (1 < t < n), and L = A^ A2 . . . ATn with A'; cyclic fields of degree 2".

2. PROOFS OF THEOREMS AND LEMMAS

Proof of Lemma 2 If q = 2 and e^ > 2, then by Lemma 1 we have

K C JCC C Q(C9. )<Q(C.) • • • < Q « P , ) = L . (7)

Let Ex(p) denote the ramification group of p in K. Then EK(2) — Efca(2) is the image of
Ei(2) under the restrict homomorphism. Since A' is cyclic, so Ei<(2) is cyclic and Ei(2)
should have element of order V. By EL(2) ^ Gai(Q(<^qi)), we thus know that the minimal
value of t can be assumed as e^ + 2. It also follows from

EK(2) ~ x ... x Eo,(2) ^ ~ Gal(ii2) . (8)

The other part of the lemma can be proved similarly.

Proof of Theorem 1 By (7) we know f(K) < f. Since K C Q «/(*•)) = L, there
is a surjective homomorphism Ei,{p) —» Ex(p), so from the proof of Lemma 2 we have
f(K) > f. We have pt = 1 (mod e(pi)) since Q(Cp,) has cyclic subfieid £lpi of degree e(/>;)
(see Lemma 1). In addition we note that tq can be s (for example, consider the case K
being cyclic subfield of degree q' of dj((,.+i)), so by Lemma 2 we have t € {0, 2 , . . . , s + q}.
If t ^ a •+• q (i-e., q is not totally ramified in K), then there is a pt ramified totally in A'
(note that if p is a prime ramified in the subfield of degree q of K, then p ramifies totally
in K since no subfield of K can be the inertia field of p), thus we h;i,ve epi = s.

Conversely, for / as in (5), let g{ be a generator of (Z/p;Z) x (here denote p0 = gl

if ( ^ 0), then the order of

is q' since one of the numbers e,(q),..., e(pr) is equal to <jJ as mentioned above. By the
duality of abelian group, ( Z / / Z ) * has quotient group of order q'. Hence we know Q(C/)
has a cyclic subfield K of degree q' and obviously f(K) = f.

Proof of Theorem 2 We may assume

L = A j A2 . . . A n ,

5

(9)

where Ki are cyclic fields of degree q3 (1 < ii < n). Let the conductors of A'; and L be

W n P, /(£) = ,« n p.

Let the character group of Ki be Ki = < X, > and X, factorize as

^ = vi(,> n ¥>,w ,
p

where p ^ j denote character modulo p, and y>;(,j character modulo g'1'. Then the character
group of L is

l^<Xl,...,Xn> = {X = Xk
1

t ...Xk
n'\ku...,kn£Z/q'Z} .

By Basse's discriminant-conductor theorem, we have

d{L) = n /(x), (12)

where /(X) = q** U p is the conductor of X, i.e., the conductor of Lv , the fixed field of
r x

{g € Gal(£)|X(<j) = 1}. Note that the ramification group of pin A'; is E(p,Ki) ~ < î(j>) >i
and the ramification index is e(p, Ki) = # < tpi(p) >• P u '

= 9e ' = g ' = max e(p, K4) , (13)

and assume e(p,Ki) = e(p), then the order of <pp = y>nP) is e(p) = qe' = q'. Thus the
p-part of X = X*1 . . . X*" is

1 • . • ¥ > » ( » ) * " • ( 1 4 )

(i) First, we assume p ^ q. Let f ^ = ipp *'. Then

(15)

Note that there are q'~* distinct numbers b(mod q') satisfying b = 0 (mod ge). For each
such 6, the equation 6i&i + .. .+bnkn = b (mod q') has g'*""1' solutions (ki,..., kn) (modq').
Thus there are q'n - q'~' • g^"- 1 ' = q'n - g'"-' characters x £ L with non-trivial p-part,
and p||/(X) for each of these X. Hence

= <r - (16)

(ii) Let p = q ̂  2. We also have (15). For any 6, the equation biki +... + bnkn =
b (mod q') has g'(n~1> solutions. There are q'~e numbers 6 (mod q') with qc\b (and then
X{p) = l,tx = 0); g*~t+I - q'~' numbers b (mod }') with q'^p (and then the order of



-t

X(j), is 1 = e(p , I x ) = e^r* = ex + 1 = 2); and ? a - e + i - g ' - ^ ' " 1 numbers b (mod 9")
with «*~'j|6 (and then the order of X(p) is e(p,Lx) = ex ~ i,tx = e + 1 = i + 1). Thus we
have

= (e + 1 ) , " - <T- e - j * " - ( , ' -

(iii) Let p = 2. Assume ^ is a primitive character modulo 4. First, let /(Xj) ^
4 (mod 8), i.e., ^,(2) ^ t/> (1 < i < n). Then it is similar to the case p = g ^ 2, but
tx = ex + 2 by Lemma 2. Hence we have

v, = 2 l ( n - 1 ) ( ( 2 ' - e + 1 - 2 ' - ' ) x 3 + . . . + (2' - 2-1) x (e + 2))

(iv) Let p = 2 and = V*- Since < > = < >, so
we may assume «/>|Xj (1 < i < n - 1). Then the 2-part of X = X*' . .. X*" is

here again we assume the order of y>j = ipim is maxe(2,A';) and 9^2) = <fli' • For any
6, biki + .. . + 6n-ifcn-i = & (m«d g*) has 2 s ( n~2 ) solutions (we assume here n > 2). There
are 2'~* numbers b {mod q') with 2e|6, and then y\ = 1,1* = t^n = 2 (if kn is odd)
or 0 (jf fcn is even). So there are 2a( l>-2) • 2*- ' • 2""1 characters X € L with tx = 2.
There are 2'~c+1 - 2'~' numbers b with 26"11|6, and 2 a ("- 2 ) • 2s vectors ( ^ , . . . , Jtn), and
then the order of ip* is 2, so tx = 3 (we assume fei . . .6n_i / 0). Similarly, there are

2 . - t+ i _ 2«-«+>-i numbers 6 (mod gJ) with 2'- ' | |6 and then tx = i + 3. Hence

u2 = 2 ' ( n - 2 ) (2 J - e • 2 ' - 1 • 2 + 23 x (2 J - E + 1 - 2*"') x 3 + . . .

2' x (2'~t+i - 2'~c+-1) x (« + 2) + ...

In addition, if n = 1, then obviously V2 =2'; and if fcj... nn_i = 0, then obviously
vt = 2'n since there are 2 '" - 2'"~' characters X 6 L containing ^ as a factor and then
tx = 2 (note that fcj,..,, fcn_i are arbitrary and kn is odd). This proves Theorem 2.

Proof of Theorem 3 Let L and il' have degrees qn' and
2, the different of L/Q is

respectively. By Theorem

V(LIQ) = £»(£)*"'" = ,»• n
p

since

and

then by

for any a € Gal(I/<Q)

and

€ , ( ! ) := vqq-'n = e + 1 - q"* - l ^ = e + l - ( c + l ) = 0 (mod 2),

0p(L) := u p 9 - j n = 1 - q'c ~ 0 (mot! 2),

V{L/K) = V{L)IV{K) = q"*m n p"'m ,
p

where

v,(X>) = Vq(L) - vq(K) = (e - e') + ; ~y ,

vp(V) = 6p(£) - ip(A') = g""e(<?e~e' - 1) ,

here e' is defined for K similar to e for £.

Then it is easy to see that D(L/K) = NL/K T>(L/K) = P(£/A')»""" is a square (i.e., a
principal ideal generated by a square element). On the other hand, since [L : K] = q*(n—m)
is odd, so the discriminant A of any A'-basis of L is a square. Theorem 3 follows from
these facts and Artin's theorem mentioned at the beginning.

Proof of Theorem 4 Put D(L/K) = 2"'-' U p"'. Then, similarly to the proof of
p

Theorem 3, we know that

„ . = qn~m~t(qC-c' _ a j = 0 (mod 2) .

As for i>J, note that v21 = ( e+ l )2 a n -2" - < : , v22 = (e+l)2 j n , v23 = 2 '" , so v{L) = v2-2~'n =
(e + l ) - 2 - ' , ( e + l ) , or 1 respectively. Denote v(T>) = v{L)-v( A'), v' ^v(V)-2n~m. Let the
case i/j denote the case v2(L) = v2i,V2(K) — v2j. Then only the following cases appear:
cases 1/1, 2/2, 2/1, 2/3, 3/3 and 3/1. And in all these cases we have v* = 0 (mod 2).
(For example, in Case 1/1, we have v(V) = e - e' - 2" e + 2~'\ v' = (ee-e< - 1)2"-"—' =
0 (mod 2) since n — m > e.) Thus D(L/K) is a square in all cases. Let us show A is also a
square then. Assume K = AT]K2 ... Km, L = A"i... KmKm+\ • • • Kn, A'' = A'm+i... A*n,
where A\ are cyclic fields of degree 2'. Then L = A'A" and a Q-basis of K' is a A'-basis of
L. Let {u{\ be a Q-basis of A'n, {VJ} a dj-basis of A'm+i . . . A%,_i (note that n — m > 2),
then {uiVj} is a (Q-basis of K'. Hence

A{L/K) = A(K') =



is a square of a rational number. Therefore, by Artin's theorem, we have Theorem 4.

Acknowledgments

One of the authors (Z.X.) would like to thank Professor Abdus Salam, the Inter-
national Atomic Energy Agency and UNESCO for hospitality at the International Centre
for Theoretical Physics, Trieste.

REFERENCES

[1] Zhang Xianke, "A simple construction of genus fields of abelian number fields",

Proc. Amer. Math. Soc. 94 (1985), No.3, 393-395.

[2] R. Bird and C. Parry, "Integral bases for bicyclic biquadratic fields over quadratic
subfields", Pacific J. Math. 66 (1976), No.l, 29-36.

[3] L.C. Washington, "Relative integral bases", Proc. Amer. Math. Soc. 56 (1976)
93-94.

[4] Zhang Xianke, "Cyclic quartic fields and genus theory of their subfields", J. Num-
ber Theory 18 (1984), No.3, 350-355.

[5] Zhang Xianke, "Relative integral bases and units of fields of type (£,£,... ,£)",
Acta Math. Sinica 29 (1986), No.5, 622-627.

[6] Zhang Xianke, "Relative integral bases of cyclic quartic number fields", Acta
Math. Sinica 27 (1984), No.3, 425-432.

[7] Zhang Xianke, "On number fields of type (2 ,2 , . . . ,2)", J. China Univ. Scien.
Techn. 12 (1982), No.4, 29-41.

[8] Zhang Xianke, "On number fields of type ((,£,...,£)", Scientia Sinica A27
(1984), No.10, 1018-1026.

10




