
— 1

A PERSPECTIVE ON TRANSITION TEMPERATURE
AND Kjc DATA CHARACTERIZATION*

D. E. McCabe, J. G. Merkle.t and R. K. Nanstad
°°NF-920672~ 3

Metals and Ceramics Division DE93 003OSR
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831-6151

ABSTRACT

Proper identification of the transition temperature and the shape of the

lower-bound (KJ fracture toughness curve in the transition range has been a long-term

objective of work at Oak Ridge National Laboratory. A past practice has been to test a

large number of specimens of varying sizes, from 1/2T to 8T compacts, in expectation

that size effects and statistical variability of Kjc could be resolved empirically. Recently,

statistical and constraint-based models have been developed that purport to explain

much of what has been seen. Weakest-link theory has been successfully used to predict

specimen size effects for the lower part of the transition curve. Constraint-based models

of f!e - fit and J ^ (small-scale yield) also can model size effects, but these tend to conflict

among themselves with regard to the prediction of full constraint KJc. All lack potential

for defining the absolute lower bound of fracture toughness. Statistically based models

•Research sponsored by the Office of Nuclear Regulatory Research, U.S. Nuclear
Regulatory Commission, under Interagency Agreement DOE 1886-8011-9B with the U.S.
Department of Energy under contract DE-AC05-84OR21400 with Martin Marietta Energy
Systems, Inc.

tEngineering Technology Division.

IRQ tUbfTVttWl mMMU %tt tiM DCMD
tuthor«d by • contractor at the U.S.
Government under contracl No. DE-
AC05-840R21400. Accordr^y. ttw U.S.
Govamment retaint • nonexduarv*.
royattv-ffM Rc«n#» to pubish or rvproduca
the pubftthftd form of th» contribution, or
•low Other* to do §o. for U.S. Government

N or ;S U N ^



DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United StateE Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.



2

have the benefit of quantifying data scatter characteristics and provide a basis for making

lower-bound toughness estimates with assigned error estimates. The appropriate

characterization of transition temperature is of value in industrial problems and is of

particular importance to the nuclear industry where safety issues are involved. Here the

K^ data are obtained from small specimens, the size of which is dictated by volume

limitations of surveillance capsule size. A basis has been explored for establishing a

lower-envelope curve from such data.

INTRODUCTION

The procedures for measuring the plane strain fracture toughness, K,o, of metals

were originally developed for relatively high yield strength materials, that generally are not

strain rate sensitive. Values of fracture toughness measured with geometrically similar

specimens were consistently observed to decrease with increasing specimen thickness,

approaching an asymptotic minimum value. This behavior was attributed to the

devolopment of through-thickness tensile stresses, and the consequent elevation of the

hydrostatic stress in the crack tip plastic zone, caused by the restraint against transverse

contraction created by enforced compatibility with the surrounding elastic material. For

fracture in the linear elastic range of the load-displacement curve, this behavior was

controlled in order to obtain toughness values close to the lower asymptote by specifying

specimen dimensions sufficiently large with respect to the plastic zone size at fracture.

However, in the case of structural and pressure vessel steels, it is not always possible to
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test specimens large enough for fracture to occur under dominant linear-elastic

conditions. Therefore, in these cases, the effects of large-scale yielding prior to fracture

cannot be avoided, and since there presently is no analytical explanation, they are being

treated empirically.

The empirical treatments of size effects on fracture toughness are of two types,

statistical and phenomenological. The statistical treatments are based on the assumed

existence of small-scale inhomogeneities that control the initiation of cleavage fracture.

The resulting parameters are not entirely independent of temperature, and, for accuracy,

the procedures may require more than the available number of specimens.

Phenomenological approaches are based on the knowledge that yielding precedes the

occurrence of cleavage microcracks and that the tensile ductility increases with

decreasing hydrostatic stress. In addition, it is assumed that the hydrostatic stress

decreases as the crack tip plastic zone size increases with respect to the distance to a

free surface.

Early observations of size effects were made with center-cracked and

edge-cracked plates, center-notched spin disks, notched beams, and circumferentially

notched round bars. Using circumferentially notched round bar data to estimate K,,.,

Irwin [1] developed the following empirical equation based on the parameter &. to

estimate size effects in planar specimen data:
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fic-fik + 1-4Ac3. 0)

where (i = (1/B)(K/cryi)
2.

B = specimen thickness, and

Oy, = material 0.2% yield strength.

The notched round specimen was not adopted for general use because of

problems concerning precracking, eccentricity, machine load capacity, and analysis.

Instead, planar specimens loaded primarily in bending were found most practical, and

size effects were avoided, at least for high yield strength low toughness materials, by

applying conservative specimen size requirements.

The early approach taken in the testing of structural steels was to use only valid

K,,. values and to define the rising part of the transition curve so as to characterize the

lower envelope of the fracture toughness data scatter. Specimen size requirements were

difficult to satisfy, and data scatter among replicate tests was found to be about two to

three times greater than that for ultrahigh strength materials. As a consequence,

numerous tests were required, and, in the critical temperature range of rising toughness

values where transition temperature is defined, prohibitively large specimens were

required. Data scatter is also more accentuated. The ASME K^ design curve [2] shown

in Fig. 1 serves as the primary example for such an approach. It can be noted that the

critical rising toughness part of the transition range is defined with very few test results.
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Most of the data shown are considerably above the lower-envelope K,,. curve. Despite

its tentative basis, the lower-bound curve shape, once hand-drawn and now

mathematically approximated, is used in design and operation of nuclear reactors. In

application, this curve is assumed lo be of fixed shape for all pressure vessel steels and

their weldments, and is translated up in temperature for irradiation damage effects using

a reference temperature shift measurement, ARTNDT, based on ASTM Standard Practice

for Conducting Surveillance Tests for Light Water Cooled Nuclear Power Reactor Vessels

(E 185-82).

A more recent approach to dealing with materials that display transition behavior

is focused on the application of statistical modeling of data, such that specimen size

effects and data scatter characteristics can be quantified. On the other hand, the practice

of data censoring in the spirit of the valid K,c tradition is continuing, but K,,. is being set

aside in favor of more relaxed specimen size requirements. These new approaches are

explored here.

CONSTRAINT ADJUSTMENTS

Constraint models suggest that the phenomenon of high data scatter and

specimen size effects observed in the transition comes from an entirely different

mechanism than the previously mentioned statistical models. The working hypothesis is

that departure from the classical behavior of low data scatter and clear definition of
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lower-bound toughness observed with ultrahigh strength materials stems from loss of

constraint. These models, therefore, collapse data scatter and predict a lowered

toughness from large specimens.

Three closed-form equations have been proposed for adjusting small specimen

fracture toughness data to estimate the lower values that would have been measured if

the specimens had been under full constraint. Irwin's /?lc adjustment [1],

Kc = Klc]/l + 1.4pit (2)

and a similar equation proposed by Hagiwara [3],

Kc

2.3/p; (3)

are empirically based adjustments for thickness effects. Hagiwara's model was based

on data from a structural steel, whereas Irwin's was based on data from ultrahigh strength
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materials. An equation for the toughness vs constraint relationship developed by

Wallin [4], based on finite-element analyses of Anderson and Dodds [5] for a steel of

Ramberg-Osgood work hardening exponent n = 10, is given as follows:

= 1 + 176(J/Bays)
137. (4)

Unlike the models of Eqs. (2) and (3), Eq. (4) is an elastic-plastic type of

adjustment for loss of in-plane constraint, based on two-dimensional plane-strain

finite-element calculations. Figure 2, adapted from a plot by Wallin [6], shows a

comparison of the three-constraint adjustments mentioned above. The

Dodds-Anderson-based curve of Eq. (4) was calculated for ays = 517 MPa. A fourth

curve is added by changing the coefficient in Eq. (2) from 1.4 to 0.224. This corresponds

to changing the linear elastic fracture mechanics validity criterion from /Jte = 0.4 to

/?te = 1.0 [7]. For a range offie up to 64 [K0/(oysV
rB) <, 8], the two original thickness-based

adjustments of Irwin and Hagiwara reduce the toughness considerably more than the

Dodds-Anderson in-plane adjustment. The modified Irwin adjustment curve lies close to

the Dodds-Anderson curve until the latter curve passes through a maximum, with

probably no physical significance, just beyond a recommended limit of J /J^ = 4.

Figure 2 implies that as material toughness increases, constraint loss due to

through-thickness contraction adds significantly to that due to in-plane effects. Figure 3
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compares the predicted fracture toughness vs specimen size trend for the three models.

All were applied to a baseline K^ toughness of 124.8 MPavVn in a 1/2T compact

specimen. The lack of agreement is very evident.

TWO-DIMENSIONAL AND THREE-DIMENSIONAL ANALYSES

The development of practical procedures for quantifying constraint effects in the

transition range is hampered by the lack of a proven general criterion for cleavage

microcrack instability under multiaxial stress in the plastic zone just ahead of a crack tip.

The problem is compounded by the difficulty of performing accurate three-dimensional

elastic-plastic stress analyses near crack tips, especially considering the need to include

finite strains and crack tip blunting in order to avoid calculating unrealistically high

stresses. The mechanism by which constraint near a crack tip develops or relaxes has

never been precisely described, but it is closely related to the fact that the sum of the

principal plastic strains at a point must be zero and that not much plastic strain occurs

in the direction of the intermediate principal stress unless it is equal to the minor principal

stress. Near the surface of a through-cracked specimen the through-thickness stress is

the minor principal stress and dimples in the surface within the plastic zone just ahead

of the crack tip provide sure evidence of the negative plastic strains required to

accommodate crack opening. However, in the mid-plane of the specimen, if the

through-thickness stress is the intermediate principal stress, most of the negative plastic

stra'n required to accommodate crack opening occurs in the forward direction, but this
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time accompanied by an elevation of the hydrostatic stress, especially if a neutral axis

instead of a free surface is being approached. Eventually, as load increases, the

through-thickness stress across the mid-plane becomes the minor principal stress,

through-thickness contraction occurs more easily, and constraint is iost.

For conditions under which the through-thickness principal stress across the

mid-plane near the crack tip is the intermediate principal stress, a two-dimensional

elastic-plastic analysis may adequately describe the variation of constraint with load. On

this basis, Anderson and Dodds [5] performed plane-strain finite-element analyses of

notched beams with a/W ratios of 0.05, 0.15, and 0.50 and using a Ramberg-Osgood

stress-strain relation. Small-scale yielding analyses of a circular domain containing an

edge crack, loaded on its outer boundary by the displacements corresponding to linear

elastic fracture mechanics mode I loading were also performed. In-plane relief of

constraint in the beams was described by curves, for given values of a/W and n, relating

J to J ^ , where J is the value of the J-integral for the beam that produces the same area

within a selected principal stress contour near the crack tip as does the smaller value of

J ^ in the small-scale yielding analysis. For aay/J > 200, where ai is material flow stress,

it was observed that J /J^ is close to unity, varying from about 1.05 for n = 5 to 1.25 for

n = 50.

A three-dimensional analysis of a notched beam performed by Narasimhan and

Rosakis [8] was used by Anderson and Dodds to confirm the recommendation of
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B, b, a 3: 200(J6/ay) (5)

as a criterion for specimen dimensions sufficient to ensure relative size independence of

cleavage fracture toughness.

The beam analyzed by Narasimhan and Rosakis had a thickness of 1 cm, a crack

depth of 3 cm, a ligament length of 4.6 cm and a span of 30.5 cm. The material was a

high-strength 4340 steel with a yield stress of 1030 MPa and a strain hardening exponent

of 22. Because the ligament was thin relative to its length (B/b = 0.217),

through-thickness constraint probably began to decrease at a relatively low fraction of the

limit load. Nevertheless, Anderson and Dodds [5] made use of the calculated in-plane

stress distributions on the assumption that deformation at the mid-plane remained in

plane strain. Narasimhan and Rosakis calculated the three principal stresses vs position

from the specimen mid-plane at distances from the crack tip ranging from 0.005 to 0.565

times the specimen thickness, for loads equal to 0.45, 0.7, and 1.0 times the calculated

limit load. Anderson and Dodds selected one curve of opening mode stress vs lateral

distance for each load, choosing distances of 1.56, 2.81, and 4.01 times the mid-plane

crack tip opening displacement for the three loads, respectively, and normalizing the

stresses by the mid-plane values. For each load, Anderson and Dodds calculated the

parameter BaJJ, where av is the flow stress, based on the Narasimhan and Rosakis

plane-strain calculated values of bays/J, whore b is ligament length and ay$ is yield stress.
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The successive values of BaJJ were 235, 103, and 26.3. Because the normalized

opening mode stress for the two lower loads were judged to be sufficiently fixed through

at least 40% of the thickness of the specimen, the proposed size criterion of 200 J/cry was

judged to be confirmed. Later, recalculation of the BOy/J values based on the

Narasimhan and Rosakis three-dimensional calculations of J produced lower values, with

the highest being lower than 200, thus rendering the proposed criterion more

conservative.

The assumption of plane strain at the mid-plane of the Narasimhan and Rosakis

beams was apparently based on a close comparison between the angular variation of the

near-tip in-plane stresses at all loads with that calculated from the plane-strain

HRR solution, plus agreement between three-dimensional and plane-strain calculated

values of opening mode stress at the mid-plane ahead of the crack tip. However, upon

further examination of the Narasimhan and Rosakis analysis, it turns out that the

through-thickness principal stress at the chosen reference distance is the intermediate

principal stress at only the lowest of the three loads considered, and becomes the minor

principal stress for the two higher loads. The through-thickness strains can also be

estimated by using the equations of the deformation theory of plasticity. The plastic

through-thickness strains are always negative, while the elastic strains start out positive.

The former generally increase with load, but the latter decrease and eventually become

negative as limit load is approached. Thus, the in-plane stresses at the mid-plane may

be close to plane strain values, but the through-thickness stress and the hydrostatic
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stress are not necessarily so. Thus, if ductility and toughness are sensitive to hydrostatic

stress, then constraint in small specimens loaded by necessity to fracture in the

elastic-plastic range is likely to be significantly affected by three-dimensional effects.

The possibility that the through-thickness principal stress near the crack tip may

change from being the intermediate to the minor principal stress as load increases is not

completely proven by the above observations. This is because the reference distance

chosen by Anderson and Dodds were increasing multiples of the crack tip opening

displacement as load increased, and the analyses being examined W3re small strain

analyses. At fixed distances from the crack tip, the order of the principal stresses did not

change. The through-thickness stress, aa, is always a2 at r/B = 0.005 and is always a,

at r/B = 0.125. Thus, the through-thickness principal stress is the intermediate principal

stress only close to the crack tip, and how the order of the principal stresses changes

with load in this region needs to be more completely examined with incremental large

strain calculations.

STATISTICAL METHODS

In the early 1970s, Landes and Shaffer [9] introduced a statistically based

discipline for the evaluation of transition range Jc data that utilizes all the test information

and is not limited by having to satisfy validity requirements for pure plane-strain

constraint. Instead, J-integral at the onset of cleavage crack instability, Jc, is determined
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and used to define statistical distributions for replicated data sets of fracture toughness.

The Weibull cumulative frequency distribution function is used to fit these Jc distributions.

In addition, the experimentally observed tendency for large specimens to have lower

mean toughness than smaller ones was noted and a weak-link statistical theory was

incorporated to explain the trend. Initially, a two-parameter Weibull function of the

following form was used:

P, = 1 - exp - (J/0)b, (6)

where P, = probability that a sample specimen selected from a population

will have Jc toughness less than or equal to J,

b = Weibull slope, and

6 = toughness scale factor (J at P, = 0.632).

The weak-link size effect was incorporated in the form of the operator on the scale

factor, 0, as follows:

J9 = 9/(BJB0)
b, (7)
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where Jfl replaces 0 in Eq. (6),

Bx = thickness of Jc prediction, and

Bo = thickness of test specimens used to determine the Weibull

constants.

It was later recognized that the two-parameter Weibull model had no lower bound

for toughness prediction as thickness Bx approached infinity. In a follow-up paper by

Landes and McCabe [10], three-parameter Weibull was introduced. Here, the value of

J in Eq. (6) is replaced with (J - Jmin), and 6 with (6 - Jmin), so that Je is redefined as:

(8)

In this case, J will approach Jmin as Pf approaches zero. All three parameters can be

established from experimental data by ranking data according to increased values of

toughness and then assigning probability values derived from statistical ranking formulae

(see the following section). These values are then converted into Weibull variables via the

following transformations:

Y = ln[-ln(1 - P)] . (9a)

X = ln(Jc - Jmin) . (9b)



15

The best linear fit to these data is made through the use of Jmln as an independent

variable. Example cases were worked [10] with partial success. However, these example

determinations usually had only a few replicate test data and the sensitivity needed to

develop accurate results was not available at that time.

Followup work by Wallin [11,12] incorporated many more data sets and far more

data replications. Because of this, the author was able to identify some interesting

properties of such data populations. The toughness parameter of choice was Kjc, which,

for elastic-plastic conditions, is a stress intensity factor derived from Jc via V^E. In

Eqs. (6) through (8) above, K replaces J and the Weibull constants differ accordingly.

It appeared that the Weibull slope tended to be a constant value near 4, and an

apparently constant K ,̂, value of near 20 MPavYn was obtained through a sensitivity

study. These constants were found to work suitably over a range of specimen sizes and

test temperatures.

There are two major advantages to having two predetermined constant Weibull

parameters. One is that the scale factor is the only unknown to be determined from test

data, and in this case, relatively few specimens are required to make an accurate

determination. The second advantage is that single toughness determinations can be

transposed from one specimen size to another because weakest-link theory reduces to

the following simple relationship:
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K jcx = 20 + (KJC0 - 20) {BJBJW , (10)

where K jcx = predic ted K j c for spec imen of th ickness, Bx, and

KJe0 = toughness of spec imen of th ickness, Bo.

PROBABILITY FUNCTIONS

In order to graphical ly or numerical ly make a direct estimate of the parameter, P,,

for a chosen cumulat ive probabi l i ty funct ion that best descr ibes the variability of a g iven

set of data, it is first necessary to assign an est imated cumulative probabi l i ty to each data

value. In principle, this step could be avoided by using nonlinear curve-fitting procedures

to fit a probability density function to the histogram of data. However, it is usually much

more convenient to graphically or analytically linearize the relationship between cumulative

probability and the variable, in which case estimated cumulative probabilities are required.

There are two mathematical bases for estimating cumulative probability for ordered data.

The first is an approach based on expected values [13], which leads to the formula:

P, = i/(N + 1), (11)

where N is the number of values in the data set and i is the order number counting from

the smallest to the largest. The second approach is based on the recognition that any

one sample of N numbers is only one of an infinite number of such samples [14]. In
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order to have equal probabilities of over- or underestimating cumulative probabilities, an

equation for determining median probabilities has been derived [14,15]. The equation

is somewhat complicated, but can be closely approximated by the following formula

[15.16]:

P, = (i - 0.3)/(N + 0.4) . (12)

Other approximate formulae of »he same form exist [17]. Equation (12) has been

selected for use in a draft transition range standard submitted to ASTM

Task Group E24.08.08.

WEIBULL MODEL FITTING

The ideal example of fitting data with the two fixed parameters of slope = 4 and

!<„,,„ = 20 MPav'm is shown in Fig. 4 for 2T compact specimens of A 533 grade B steel

tested in the mid-transition and on the lower shelf. Another example that covers

specimen size effects is shown in Fig. 5. These examples essentially confirm Wallin's

observation that fracture toughness data distributions are of fixed shape (i.e., fixed Weibull

slope). It should be understood, however, that occasionally some data sets may not

show the best fit using these two constants, but such departures seldom develop in a

pattern or have consistency of occurrence such that an alternate or more suitable model

can be suggested.
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Recently, experiments with large numbers of replicate tests have been run in order

to verify the results of earlier sensitivity studies. Previously, Monte Carlo techniques had

been used to artificially generate the data needed to establish the two fixed Weibull

parameters. Instead of obtaining clear experimental confirmation, a puzzling pattern was

observed. Data at the low toughness end of a distribution tended to drop down from the

fixed slope of 4 as illustrated in Fig. 6. These data came from a Materials Properties

Council round-robin activity [18] involving 13 laboratories that tested 1T compact

specimens of an A 508 steel at three temperatures (-100, -75, and -50°C). Seven

laboratories, each of which tested five replicates, contributed to Fig. 6. The dropoff was

observed at all three test temperatures to varying degrees. To prove that the pattern was

not due to bias from a single laboratory, the one participant that produced the lowest

ranked toughness K^ value was singled out and evaluated alone (see Fig. 7). The

dropoff was not evident in this data set. The median Kjc for this laboratory's data was

157.7 MPa/m and the grand median over all laboratories was 159.7 MPavnri. The next

evaluation tried was to view original data as a histogram. Data at -50°C were selected

to compare with the density function curve from the Weibull fit (see Fig. 8). The

histogram suggests that the data tend to cluster somewhat in the low-toughness region,

displaying less of a "tail" than in the high-toughness region. The conclusion drawn from

this was that there is an influence of real material lower-bound toughness that appears

only in large data sets. Current evidence suggests that the physical lower bound is

greater than the mathematical constant !<„„„ of 20 MPavm that works well in Weibull fitting.

Therefore, it appears that the three-parameter Weibull distribution function can be fitted
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to the dominant portion of K^ data, but the clustering observed in the lower tail of a

statistically well-defined data distribution cannot be characterized mathematically.

CRACK GROWTH CORRECTION

Slow-stable crack growth prior to the onset of cleavage cracking is, for various

hypothetical reasons, reputed to cause a disruption of the local crack tip stress field.

Ostensibly, the propensity for onset of cleavage fracture is changed from that of a

specimen with a nongrowing crack. One argument has an empirical basis, suggesting

that the propensity for cleavage cracking is reduced by loss of crack tip constraint due

to cross slip deformation. The result is a sharp drop in Weibull slope as seen in Fig. 9.

Statistical models, on the other hand, consider the extra volume of material that is

introduced to cleavage activation level stresses by the advancing crack tip. Weakest-link

theory suggests that the key elements are crack advancement distance and the size of

the zone of high stress that is a linear function of plastic zone development. The first

model, developed by Bruckner and Munz [19], incorporated R-curve effects with some

complexity. Wallin [20] has produced a simplified correction factor defined as follows:

Corr. = [1 + (aAacr/Vfc/Kfc2)]1'4. (13)

Parameter y is a normalized length factor that is related to the distance from the crack
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tip to the point of maximum stress ahead of the tip. The correction factor is applied as

a multiplying factor to Eq. (10) in an identical manner as the weakest-link theory for

specimen thickness.

Kjcx = 20 + [KJco - 20] (EyBJ1'4 [1 + (2Aaav
2)/iyKjV'f). {U)

DATA ADJUSTMENT PRACTICE

Physical evidence had been presented in Fig. 9 that crack growth has altered the

cleavage fracture behavior of A 36 steel bend bars. Several data sets of other materials

that suffered intermediate onset of stable ductile crack growth have been similarly

evaluated, but these did not show a change of Weibull slope. This apparent contradiction

can be explained by combining the two known Kj,. data correction computations (see also

ref. 4). Each datum can be adjusted by applying Eq. (4) for in-plane constraint loss and

Eq. (14) for weakest link effect. To illustrate, data were taken from the Heavy-Section

Steel Irradiation (HSSI) Program Fifth Irradiation Series [21], which were ideal for this

evaluation because there were both variable specimen sizes (1T, 2T, 4T, 6T, and 8T) and

test temperatures (-75, -50, -30, -15, -5, 0, and 5°C). The tests made above -15°C

gave data points for an R-curve based on Kjc data and slow stable growth to instability

(see Table 1 and Fig. 10). Adjustments for constraint and for crack growth were applied

to each datum according to the above-stated order with the results being as shown in
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Fig. 11. The net result in this case is that the competing mechanisms of in-plane

constraint loss and increased sampling volume tend to analytically cancel each other out.

Therefore, if both adjustment models are accurate, it would seem that data with crack

growth can be accepted as sufficiently accurate without adjustment, for many cases. On

the other hand, there can be circumstances where one of the two competing mechanisms

is absent. For example, the constraint adjustment can be applied below the Jte toughness

level and there will be no cancellation due to crack growth. However, as illustrated in

Fig. 11, when the constraint adjustment is applied in the absence of stable crack growth,

the Weibull slope is increased to an artificially high level. Such a slope change is almost

never seen experimentally in tests with large specimens. Alternatively, very large

specimens can be tested at high temperatures, where there will be crack growth under

essentially small-scale deformation, in which case the crack growth adjustment is applied

in the absence of counteracting constraint loss. Hence, the value of adjustment practices

in their current state of development is not currently known.

LOWER-BOUND TOUGHNESS BY STATISTICAL METHODS

The ASME lower-envelope K,,. curve in Fig. 1 has been in use for many years in

setting safe operating limits for reactor vessels and for safety assessments in hypothetical

accident scenarios. This curve has been widely accepted, despite the fact that no

precise statistical significance has been established for the location of the lower bound.

A set of data similar to that of Fig. 1 has been developed under well-controlled conditions



22

in the HSSI Fifth Irradiation Series, such that a good illustrative demonstration of statistical

methods could be made. Specimens of A 533 grade B weld metal covering a wide

range of compact specimen sizes and a consistent pattern of test temperatures were

used. These data had been shown [21] to be either on or above the ASME

lower-envelope curve. Nevertheless, it was of interest to use the data again to see what

the currently available statistically based working theories indicate. The following theories

will be employed:

1. Data obtained from various specimen sizes can be transposed to a 1T compact

specimen size equivalence, using Eq. (10).

2. The three-parameter Weib> 'II distribution function with fixed slope of 4 and fixed

K ,̂, of 20 MPavYn is used to fit data populations for each test temperature.

3. A master curve developed by Wallin [22] will be used to model the trend of

median Kj,. values over all test temperatures. The master curve is defined by the

following equation:

= 30 + 70 exp[0.019{T - To)] , (15)

where To is the characteristic temperature defined at Kjc(med) = 100 MPavm.
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The above positioning of the Kjc median transition curve based on To is much the same

as the positioning of the lower-bound K,,. curve based on the RTNDT temperature.

4. The standard deviation of a data population is known to be a function of the

Weibull slope and the median toughness KJc. When the Weibull slope is 4, the standard

deviation is

a = 0.28 Kjc(median) [1 - 20/KJc(median)] . (16)

The standard normal deviation for one tail of a distribution at 95% confidence is 1.64.

The forgoing four relationships, applied to the HSSI Fifth Irradiation Series data,

produce the result shown in Fig. 12. The particular lower-bound curve shown in Fig. 12

seems to have the correct position and curve shape for a 95% confidence fit. Wallin [22]

and Stienstra [16] have shown equally good results with other data available in the

literature. The ASME lower-bound curve, shown for comparison, tends to be the same

up to the mid-transition, but tends to be less conservative as the upper shelf is

approached.

CONCLUSIONS

The purpose of this paper was to provide a perspective on the transition range

fracture toughness data evaluation concepts that have been developed in recent years.
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Data evaluation for lower-bound toughness determination is no longer restricted by

having to meet K,,. validity requirements. New elastic-plastic analysis tools are under

development, and statistical methods have been developed that will allow more

productive use of test data.

Constraint models postulate that Kj,. data taken from relatively small test specimens

lack the constraint control of large specimens. All project a trend of toughness vs size

mathematically so that size effects can be eliminated through data adjustment. Three

basic constraint-based models were examined and two observations were made: (1) the

available models for predicting full constraint toughness do not agree with each other,

and (2) it is uncertain that the low envelope type of toughness representation can ever

be defined by using deterministic-type methods on data of high intrinsic variability.

Dodds and Anderson have used two-dimensional finite-element analyses and the

assumption of plane-strain constraint to set specimen dimension requirements so as to

achieve size independence of cleavage fracture. It was concluded that these analyses,

although good on a qualitative basis, lacked citical refinement of crack tip stress analysis

to understand fully all of the constraint implications. Three-dimensional large-strain

analysis is needed to support the claim of small-scale yielding, under dominant plane

strain for B ^ 200 J/ay.
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A three-parameter Weibull model with a fixed slope of 4 and ^ ^ = 20 MPav'm

seems to fit most Kjc data distributions. However, data sets with extensive replications

tend to cluster at the low toughness end of the distribution. This phenomenon is

associated with the presence of a material minimum toughness or a true lower bound.

These minimums are almost always greater than the 20 MPav'm used in three-parameter

Weibull fitting. Currently, there is no modification to a Weibull distribution that will

satisfactorily model clustered data. Until one is developed that does not require an

unreasonably large number of specimens for data fitting, there will not be a practical way

to include this aspect of transition range fracture toughness behavior in standard

procedures.

The adjustment of Kjc data that involve slow-stable crack growth involves both a

correction for constraint loss and a modified weakest-link model to account for the extra

volume of material exposed to cleavage level stresses. These are opposing effects that

tend to cancel each other. The net result is that the Weibull slope should not change in

most cases for toughness values above the value of K corresponding to Jlc.
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Data from the HSSI Fifth Irradiation Series were used to demonstrate how

statistical methods can be used for the determination of lower-bound toughness. At high

toughness, the ASME lower-bound K,,. curve tends to be less conservative than a

statistically based curve. Considerable progress has been made in recent years toward

the understanding of transition range fracture toughness data, and more is expected to

be made in the near future.
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Table 1. Example calculations of combined constraint and crack growth corrections
applied to K .̂ data for unirradiated A 533 grade B weld metal

Compact
specimen

size

1T

2T

4T

(MPav̂ m)

-30°C

Before
correction

128.3
173.8

118.8
127.4

113.1
176.6

Aa
(mm)

0.09
0.17

0.08
0

0
0.18

After
correction

129.4
166.0

126.4
123.6

112.1
187.3

Before
correction

153.3
246.1

143.6
165.9

105.8
156.6

-15°C

Aa
(mm)

0.10
0.55

0.15
0.19

0
0.14

After I
correction j

148.1
216.3

154.3
174.7

105.1
167.8

Before
correction

147.1
214.8

174.9
221.4

-5°C

Aa
(mm)

0
0.33

0.15
0.45

After
correction

140.8
217.2

184.2
241.6
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