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Numerical Calculation of Correlated Wavefunctioiis for the Coulomb

Three-body Problem

Consider two electrons moving in the field of an infinitely heavy nucleus of charge C.

If the electrons have position vectors ft, f>, the Hamiltonian

where

and $ is the angle between f\ and is.

The exact nonrelativistic wavefunction for a state of total spin 5 and total orbital

angular momentum L can be expanded as follows,

,(t,L + » -1.) (3)

where 0 is a spin eigenfunction, and 3̂ ..w,.(̂ i (') are the usual coupled spherical harmonics.



Then it is straightforward to derive a set of coupled equations satisfied by the functions

whose avguments are the three "dynamical" variables iri, r-> and $,

(h(/, L + w- t) - EW, = £>};,' + v);,V.. (1)

The diagonal Hamiltonian has the obvious form

•? + ri) ain6d8 V " 96}] [ 2r\ + 2r] J
(2)

while the coupling terms are given by

r ;

for j = 1,2. General formulae for the coefficients 2 have been obtained from angular

momentum theory.

Each function is expanded in products of splinesv

}T (4)

and the collocation principle is applied in the usual way to obtain the equations satisfied

by the vector of j ̂ v ( r ! a , r 2 , j ,^) > on the collocation lattice.



The Basis-spline collocation method

We start with the time-dependent Schrodinger equation

Hy = i -~ . (1)

The wavefunction ^ is then expanded as

k

where the u* are a series of local functions known as basis splines and the i/>* are the time-

dependent expansion coefficients. The basis splines are piecewise continuous, differentiable

polynomials of arbitrary order.

We now discretize the problem by demanding that the Schrddinger equation be obeyed

exactly at a set of points {£„} known as collocation points. Examining first the wave-

function, it is possible to make the definition

We also make the definitions

Bak = uk{(a) (4)

B"k = [Bnk)-
1 (5)



Next, examining the Schrodinger equation itself, if the Hamiltonian is given by

then putting the previous expansion into the Schrodinger equation gives

We now demand that this equation be obeyed exactly at the collocation points and include

the transformation to the lowered indices, allowing us to write (2) as

= i^,, (3)

where

T ' N X > ^ : : ^ (i)

v«=v{t»)6;l (5)

and
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Fig. I. The He(2a2) wavefunction at t = 0 a.u.



Fig. 2. The time evolution of the He(2a2) wavefunction is depicted for times t = 0,

17.5 and 37.5 a.u. at three values of 012, the angle between ft and r̂ . The action

of the propagator is given by ^{t + At) = e~ tA"V(0-



The correlation function is defined as

P(t) ™< ¥(<) | *(* - 0) > (1)

(time dependent overlap of the time evolved wf with the initial wf). For an autoionizing

state we expect that

P(t) = e-'< (2)

The spectral function is the Fourier transform of the correlation function,

P{E) - / dte'"lP{t) (3)
J

It will display resonances corresponding to the eigenvalues of the Hamiltonian. Line fitting

techniques can refine the determination of the complex eigenvalue

E = € + ir /2 (4)

(see e.g. M Hermann and J Fleck, PRA 38, 6000 (1980)).
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Fig. 3. The square of the correlation function and its real and imaginary parts for the

time evolution of the He{2s2) state.
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Fig. 4. The magnitude of the Fourier transform of the correlation function and its real

and imaginary parts. Line-shape fitting to the large peak gives an accurate value

for the energy eigenvalue and decay width for the He(2a2) state.
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Fig. 5. The ground.state of helium, i?e(l32), is depicted for times t = 0 and 61 a.u. at

three values of 0,2, the angle between rt and r2. The stationary nature of the state

is manifested.
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Fig. 6. The square of the correlation function and its real and imaginary parts for the

time evolution of the He(\32) state, showing the lack of decay of this state.
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Fig. 7. The magnitude of the Fourier transform of the correlation function and its real

and imaginary parts for the He{ls2) state. Line-shape fitting to the large peak gives

an accurate value for the ground state energy eigenvalue for helium.



Time-dependent perturbation theory model

Consider a Hamiltonian which includes a complex absorbing potential (absorb wf at walls,

give eigenvalues a width),

Hr (1)

Assume complete set of states for IIC

= Ek<f>k (2)

For the full Hamiltonian

= id'H/dt (3)

expand

- * » ' (4)
k

Standard result of time-dependent perturbation theory

k

where

Vnk =< <t>n\V\<f>k> (6 )

ojnk = En - Ek (7)



1) strong coupling approximation, assume only V',,o is important

icn « <*,Vn,,e
IWnnt (1)

2) assume e»»(<) is more slowly varying than elu)nvl' and integrate

( l - e'-«n')/Wnll (2)

3) for * > 2/7fc

where

= < <̂ o I K I <f>0 > ( 5 )

+ 7fc2/4)"1 (6)

4) Correlation function

= < ^ , | *„ > e- r i /V< i r o + l i ) o +W (7)

<f>k I * „ > (8 )



Bound and Continuum 1 e states
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Fig. 8. Spectrum of bound and continuum one electron states obtained without a

complex absorbing potential, indicating the discrete nature of the 'continuum' in

this finite domain represented on the lattice.
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Fig. 9. Displayed is the form of the absorbing potential chosen, illustrating that it is

zero within the extent of the initial state and that it then increases for larger values

of radial distance. The open circles indicate the positions of the collocation points.
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Fig. 10. Spectrum of bound and continuum one electron states obtained with the

complex absorbing potential displayed in Fig. 9. Note that the width of the states

is such that the continuum is more densely represented.
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Fig. 11. The correlation function illustrating the decay of the ffe(2a2) state when the

complex absorbing potential is included so as to provide a good representation of the

continuum and prevent the unphysicai replenishment of the state from its discrete

representation. The dashed curve indicates the expected exponential decay based

on the accepted value of the decay constant.


