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ABSTRACT

The statistical approach of maximal randomness of the velocity field is extended
for the case of decaying turbulence with spontaneous parity violation. The set of self-
consistent equations in one-loop approximation is obtained. It is without the infrared and
ultraviolet divergences and has a scaling solution which leads to Kolmogorov spectrum
in inertia! range of wave numbers k and gives the well-known time-dependence laws for
integral turbulence scale rc(*) ~ t2^ and turbulent energy per mass e(f) ~ t~a^. The set
of equations for scaling functions of energy and helicity spectral density, depending only
on dimensionless parameter krc, is presented.
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1 Introduction

In the present paper we continue our investigations of developed homogeneous isotrop-
ical turbulence of incompressible fluid based on the principle of maximal randomness
of the velocity field.^ a previous paper [1] we have considered the stationary case and
our principal conclusion was the following; the Kolmogorov spectrum of velocity pair
correlation function is valid in the inertial range and it is accompanied by spontaneous
parity violation with large gyrotropic coefficient. It would be interesting to know if
this effect, also shows itself in the energy - containing range of wave numbers (between
the inertial range and the range of energy source). That is why we wiil try to extend
our approach to decaying developed turbulence. It will allow us to introduce in a
natural way a turbulent integral scale and to determine its decay law as well as the
decay law of turbulence intensity.

2 Basic assumptions and self-consistent equations

We start again from the equation for velocity pair correlation function [lj:

3, < E,,(k) > /2 =< Eijik) > +«Uk) (1)

which follows from stochastic Navier-Stokes equation for the incompressible fluid. Here

(2)
T0(k) =

v is the kinematic viscosity coefficient, v(k) - Fourier component of transversal veloc-
ity field v(k) = Jrfxexp(-ikx)v(x), ( cU; = 0 - incompressibility), dl} - an external
energy source. Hereafter, the traces over the repeated vector indexes are implied. In
the isotropical case with spontaneous parity violation the equation (1) is equivalent to
two scalar equations for spectral densities of the conserved (in inviscid fluid) quanti-
ties - the energy E(k) = E31(k) and the helicity *(k) = isJttkjEst(k). All tensors in
the considered case contain two mutually Cummuting parts: the symmetric one which
is proportional to the transversal projector T\j(k) = b,s — k,kjk~2 and the antisym-
metrical one which is proportional to the transversal pseudoprojector Qt] = £,jak,/k
(*= |k |> .

In [l] we have considered the stationary turbulence dt < £,j(k) >= 0. The velocity
distribution function p(v(x)) has been obtained from the demand of maximum of in-
formation entropy a = - < Inp >= - j D\p(v)tnp(v), (J Dv denotes the functional
integration) with the equation of condition (1). Its form is

(3)

where Q is a normalization factor, A,j(k) are Lagrange multipliers which ensures the
realization of the equation of condition (1).

We consider now the situation when the external source d,j is turned off at some
time t0. Our essential supposition is the following; the decay of energy and helicity is
relatively small during some time so that the pulsation distribution function preserves
the same form (3) with slowly varying parameters A<j(k) at any time. The time-
dependence of this decay must be found from equation (1) (with di} = 0). The similar
treatment is possible for turbulent flow behind the grid with constant, mean velocity V
along any axis z. The system is stationary in this case and the distance z from the grid
plays the role of the time t. Such turbulence may be considered as local homogeneous
if the statistical quantities of the velocity field slowly vary along z in the range of the
integral turbulent scale rc (correlation length). Then the equation for the velocity pair
correlation function may be written in form (1) replacing d, for V0.. The assumed
supposition will be justified when ^-dependence of rc is found.

In the considered case the left-hand side of equation (1) plays the role of 'en-
ergy source' which gives quasistationary spectrum flux of energy. It is localized in
energy-containing wave number range where the small value of lime-derivative dt is
compensated by large value of < £(k) > . The equation of total energy balance has
the form:

d,e{t) = -W(t) (4)

where e(t) = (2x)~3 j dk < E{k) > and W{t) = (2JT)-3 f dk'2vk2 < E{k) > are
the full energy of pulsations and dissipation rate per mass, respectively. The quantity
W{t) defines the second (in addition to rc) typical scale of the system - the Kolmogorov
microscale fcj1 = (f3/Wr)1'4. If the turbulence is fully developed these scales a,re very
different k$rc ~S> 1 and the inertial interval of wave-numbers r^1 -C k <£ kj exists.

The relation (1) is an equation for A,-j(k,() if the mean values of /v,(k) and /iV,(k)
are calculated with distribution function (3). This complicated task has been solved
by means of a renormalization group approach and c-expansion [2], However, the
significance of that analysis is depreciated because the real value of i = 2 is too large.
In the present paper we have used another way without {-expansion and have obtained
a set of self-consistent equations for full propagator G"j(k,t) s< «t(k)i'j( — k) > = <
E,j{k) > and Lagrange multiplier A,j(k,t) with the aid of Dyson matrix equation in
one loop-approximation. For this purpose it is convenient to introduce auxiliary
transversal fields u, w and in this way one obtains the distribution function with a
local interaction [1]:

(5)

S = -

(6)

Now the mean values must be calculated by functional integration over all fields v, u, w
The action 5 is written in coordinate representation and the integration over x

is implied. We have separated the additional terms in Lagrange multiplier AJS

Xj.(k,t) = • Aj.(k,t). (7)



The first two terms in action (6) are necessary to cancel the ultraviolet (UV) diver-
gences of diagrams. It is important that the analogous terms do not appear in vertex
terms after substitution (7) to (3) what is the consequence of the energy and helicity
conservation laws.

Using Schwinger equation < ViSS/Suj >= 0 of the theory (6) we rewrite (1) (with
(i,j = 0)to the form

8, < Ei3(k} >=-< tt(k)m,(-k) > . (8)

The propagators G™ and G™ =< UjU>; > which we are interested in are expressed
with the aid of the self-energy matrix E;j of the theory (6) by relation [1]:

(2i/fc3A - £ " - " - A E " -

G.7 = [G>y(j/fc' - E " - AE")].,-,

and thr propagators G", G" are related to G";

% , (9)

(10)

G,7 = (AG-). j ,G;; = (AaG") l j. (11)

The terms which include viscosity v in (9), (10) may be neglected in the wave number
range k < kd. Then it yields from (8)-(10)

aG;; = [G"(E1" + AE")],j, (12)

(G")"1 = - ( £ " + AJ£*° + AS" + A£")SJ , (13)

whore we omitted for brevity the first and the second terms in (9) which play the role
of counter-terms for the UV divergences cancelation of E " [1] (see also Sec.4).

For self-energy elements of E of the theory (6) in one-loop approximation we have

[>] =

E " =

V vy V " " i V VIJ

L, — L, + Z*J
(14)

where graphic representations are introduced for the symmetrized vertex of interaction
and full propagators:

• = < vv > = G°

• = < • = <

3 Scaling solution and time-dependence laws

The relations (12), (13) represent the full set of equations for Ga
vJ(k,0 and A,j(k,f)-

We will not try to find its solutions corresponding to some given initial conditions at
a time to, but we will search for the scaling solution of the form

Uj(kTc{t)), (15)
/2f.j{krc{t)). (16)

This solution parametrically depends on t through the correlation length ro(i) and
amplitude R(t). The exponents in (15), (16) are chosen to eliminate R(t) and rc(t)
in equation (13). Indeed, by introducing a dimensionlesa variable y = krc and taking
into account (14) we have

Argument y in elements of E-matrix denotes that in diagram representations (14) it
is necessary to take an external moment k being | k j= 1 and for internal Sines it must
be substituted R —» 1, rc —t y. Thus, the time ( does not appear explicitly in (17). It
means that this equation is only for the dimensionless scaling functions (jsl and faj.

Using the dimensionless variable y also in equations (12), (13) we obtain

.Hi
(18)

The time-dependence of R(t) and rc(t) may be found analysing the asymptotic be-
haviour of this equation in large and small y ranges. In the first case we assume that
the scaling functions g3j(y) and f,,{y) are finite when y —> oo. After that the first,
term in the left-hand side is dominant and the variables i, y are separable:

where C\ is some separation constant. We conclude from (19) that for 7 < 5/2 it must
be

For constant values of f,j, g,j this equation coincides with the one of those considered
in [1]. As it has been shown in [1] that equation with traced indices turns into identity
if the exponent 7 has the Kolmogorov value 27 = 11/3. Further on we use this value
of 7. Thus, for time-dependent terms of (19) we have the equation

Let us consider now the range y <£ 1. For this case it can be easily seen from (14)
that both Ev"(y) and S*"(JI) vanish therefore we may neglect the right-hand side of
equation (18) in this limit;

(22)



The variables y and t are separable in this equation, too. In particular, for traced
vector indices we have

-2dttnR(t)

where Cj is a new separation constant. From (23) it follows

R2(t)r?>(t) =

(23)

(24)
(25)

where A, B are some integration constants. The last relation together with equation
(21) lead to

R(t) = (at +

rc{t) = C(at
(26)

(27)

with some constants a, b, C. For turbulence intensity e(t) = (2JT)~3 J dkG"(k, t) using
(15) we obtain

e(0 =

Then the relation (4) gives

W(t) = aC
2t\\ - 6C,)/(4 + 3C,)(<rf

2,r3 J ( 2 8)

. (29)

It can be seen from (26), (29) that the amplitude R{1) is proportional to the dissipation
rate per unit mass W(<).

The power law (24) determines asymptotic behaviour at small k of spectrum density
of energy < £,,(k) >= G,,(k). Indeed, from (24) and (15) we have

Thus, the same constant C% determines both the time dependence laws (26) - (29) and
the small k asymptotic behaviour of energy density. Two different assumptions have
been done earlier for exponent value in (30). It is natural to suppose that < ^ ( k ) >
has a finite non-zero limit at k = 0, In this case Cj must be Cj = 11/3 in (30). By
taking this value of C2 we obtain from (27)-(29) the well-known laws

(31)

rc{t) ~
e(t) - (at + by6'5 ,

W{t) ~ [at + i ) " n / s .

The earlier hypothesis of Loitsianskii [3] starts with the assumption that not only
< £jj(k) > but. also < £,j(k) > has a well determined limit at k = 0. Since <
Ej,j(k) > includes the transversal projector Vt] — 6,, — k.kjjk'1 we must compensate

^ _.. f

the additional multiplier Jt"2 and, thus, Cj will be Ct = 17/3. It gives the following
values for the exponents in (27)-(29) (2/7, -10/7, -17/7, respectively) which differ
from those in (31). There exists, however, strong objection against the Loitsianskii
hypothesis [3]. Therefore, further on the first value of Cj = 11/3 is used. Note also
that in principle the value of Ci can be found analysing the asymptotic behaviour of
the solution of equation (1) with some initial condition.

It has to be verified if the used assumption about finite limit of Gjj(k = 0) is in
accordance with relation (13). If the matrix (7™ is non-degenerate we conclude that
the inverse matrix (G^fk)}"1 has a finite limit at k = 0, too. However, all elements
of £ in (13) are proportional to k1 at small k. To eliminate the contradiction between
these facts we must admit that the function A(k) is proportional to l/k for small k.
Then the trace of (A2£)jj(k) in (13) is finite and the other terms vanish. Note that
such behaviour of A(k) is not in contradiction with vanishing right side of (12) for
k = 0 because £ " ~ k7 and AS" ~ Jt —» 0.

The obtained laws of correlation length and turbulence intensity behaviour allow
us to verify our assumptions formulated in Sec.2. Let us consider for clarity the case
of turbulence behind the grid. For this purpose we replace ( to z/V every where (V is
the mean velocity of the flow). Rewriting (31) into usual notation [A, 5. 6] we have

(32)

W(z) =

where vo is rms velocity and z0 defines the co-ordinate of 'effective source', Parameter
vo/V is usually small [4, 5, 6], The discussed assumption is correct if the variations
of any of the functions $(z) considered in (32) are relatively small at the distances
of order rc, i.e. rcdzlnQ(z) <£ 1. For the power law functions (32) far from source
(z 3 s ZQ) it is true if

1. (33)( V •
However, one has to keep in mind that the developed turbulence condition k,irc > 1
may be violated for too large z. Indeed, although the correlation length rc(z) increases
as jr2'5, the microscale rj = k^1 = {u/W(z})1^ increases more rapidly (what can be
seen from (32) that rd ~ zn/2a). Thus, the necessary condition of the developed
turbulence

- ~ ( — ) 3 / 4 ( ^ ) 3 / 2 ( | ) - 3 / M > l (34)
Ti v V L

is valid if the Reynolds number Re = VLju is sufficiently large, Re 3> 1.
The inequalities (33), (34) have been fulfilled in experimental conditions [4, 5, 6].

The obtained experimental results for functions rc(z), e(z), W(z) are in good agree-
ment with the expressions (32).



4 Equations for scaling functions
The relations (21), (23) allow us to exclude the time-dependent terms from equation
(18). By setting 2f = Cj - 11/3 we obtain

The relations (17) and (35) become the full set of equations for the scaling functions
9nj(y)< f>j(v) 'f t n e E-diagrams (14) are calculated. To do it we write explicitly the
tensor structure of <?,_,, f,j. As we said above (Sec.2) these functions have two parts:

(36)

(37)

(38)

and the inverse matrix (g'1)aj is

In accordance with (11), (15), (16) the propagators G™, G"° have the corresponding
forms:

+ }Q9P)V] >

, t) =
(39)

(40)

where the subscript (...), denotes that all g and / in brackets depend on y = krc{t).
We remind that E(jr) in equations (17), (35) must be calculated with | k |= 1, R = 1.

The elements (14) of £ matrix have the analogous form as (36), (37):

We can write the £ matrix in the following form:

J

(41)

(42)

where n = k/fc, k is an external momentum, p = n - q and q is an integration
undimensional variable. By substituting propagators (15), (36), (39), (40) to (14) for
scalar functions Ep(y) and EQ(J/) we obtain

3(nq)

» =

(43)

(44)

Jin —

A"J =

A'l = a'1

!q9p)rv1P[l ~ (nq)]}

• (nq)][ffo(9!/)(sp.

(45)

(46)

- (nq) - </4]

- q2]} (47)

(48)

(nq) + q4} + gQ(qy){gQfl + 2gPfPfQ

q-nlV/3{ -gq(qv){gpfP

2 - l ) } , (49)

(50)

The equations (17), (35) have been considered in our paper [1] in the limit of k —t CM.
Ft has been shown there that the solution of these equations exists if all functions gp,
gq, fp, JQ are constant. Note that Sj>(oo) may be equated to gp(oc) = 1 because it is
the definition of the scale R{t), in fact. The obtained values [1] of the other parameters
are: gq ^ ±1.0, /g(°c)//p(°°) s; Tl-7., but /p(oo) ~ [1 — Sfgfoo)]"1'2 was not well
determined by reason of large relative error in calculation of small quantity [1 — </£(oo)].

Unlike [1] the momentum representation used here is more useful for nontrivial
k-dependence scaling functions. However, this leads to necessity to take into account
the counterterms in (7) which are intended to cancel the UV divergences in E,",
£jv diagrams [1]. Their main divergences are proportional to A1I/3 (A - the cut-ofT
parameter) but these are cancelled in the sum of diagrams £"" = EJ* + EJ" [l]. The
odd divergences which are proportional to J^A5'3 for EJ? and fcA2'3 for Eg" may be
eliminated by the corresponding choice of the constants ipo, 4>0 in (7). We do not write
these subtractions in (47)-(50) owing to their complexity.

5 Conclusion
In the present paper the generalization of statistical approach for decaying turbu-
lence based on the principle of maximal randomness of velocity field has been obtain.
Our consideration was based essentially on the hypothesis that the statistical quan-
tities of velocity field vary relatively slowly in time (for homogeneous turbulence) or
along any axis (for the flow behind the grid). It allowed us to obtain the set of self-
consistent equations describing the evolution of equal-time correlation functions. We
have searched for a scaling solution of these equations in which correlation functions
depend on t implicitly through the correlation length and dissipation rate. A natu-
ral supposition has been done about the asymptotics of pair correlation function in
the ranges of large and small wave vectors k, namely, the power-law decay in inertial
interval with some exponent and a finite limit at k = 0. As a result, the variables t
and k in all equations have been separated. We have solved the time-dependent part
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of these equations and have obtained the well-known power laws of correlation length
and turbulence intensity which are in good agreement with the experimental data. At
the same time the found laws justified our main assumption.

Much more complicated equations have been obtained for the scaling functions
depending on a dimensionless variable - the product of the wave vector and the cor-
relation length. For the asymptotically large values of this variable (inertial interval)
these equations have solution of the expected power form with Kolmogorov exponent.
The other parameters (in particular, gyrotropy coefficient) of the solution have been
obtained in our previous paper [1], The absence of both UV and IR divergences in
the equations were substantial for the existence of this solution. We expect to find the
numerical solution in all range of the wave vectors. This solution must coincide with
the one found in inertial interval (the solution selection). It will allow to determine
the quantity of the spontaneous gyrotropy not only in the inertial interval, but also in
the energy-containing range and to compare the total helicity with experimental data
[7,8].

Acknowledgement

One of the authors (Hnatich M.) would like to thank Professor Abdus Salam, the
International Atomic Energy Agency and UNESCO for hospitality at the ICTP. He
expresses also his thanks to Professor Hilda Cerdeira for her help and support during
his stay in ICTP. This work was partly supported by the Slovak Academy of Sciences
and by grant SAV 2/999036/92.

References

[1] Adzhemyan L.Ts., Hnatich M., Stehlik M. (1992) Preprint UEF-01-92, submit-
ted to Phys.Rev. A.

[2] Adzliemyan L.Ts., Naiimov M.Yu. (1992) Preprint HU-TFT-91-66 Helsinki.

[3] Monin A.S., Jaglom A.M. Statistical Fluid Mechanics; Mechanics of Turbulence
Vols. 1 and 2, 1975, MIT-Press, Cambridge.

[4] Compte-Bellot G., Corrsin S. J. Fluid Mech. 25 (1966) 657.

[5] Batchelor G.K., Townsend A.A. Proc. Roy. Soc. (London) A 193, (1948), 539.

[6] Srrenivasan K.R., Tavoularis S., Henry R.,Corrsin S. J. Fluid Mech. 100 (1980)
597.

[7] Kit E., Tsinober A., Balint J.L., Wallance J.M., Levich E. Phys.Fluids 30 (1987)
3323.

[8] Wallance J.M., Balint J.L., Ong L. Phys.Fluids 30 (1987) 3323.

10


