DETECTION OF ⁸BE USING A SURFACE BARRIER DETECTOR TELESCOPE AND ITS DETECTION EFFICIENCY CALCULATION

Suresh Kumar, M. A. Eswaran, E.T. Mirgule Nuclear Physics Division, B.A.R.C., Bombay-400085

As ⁸Be nucleus even in its ground state is 92 keV unbound for decay into two alpha particles, the detection of ⁸Be particle involves detection of its breakup α -particles in coincidence¹). Here we report on a simple ΔE -E surface barrier detector telescope²), which was employed to identify ⁸Be besides other charged particles.

When the two α -particles of similar energy from the breakup of ⁸Be, enter simultaneously into a conventional telescope it is identified as a ⁷Li particle in the $\Delta E-E$ plot. This is because ΔE is proportional to $\sim mZ^2/E$ which is equal to 1/E, 16/E, 63/E and 64/E for protons, alphas, ⁷Li and ⁸Be of energy E. Though ⁷Li and ⁸Be are very close in $\Delta E-E$ plot, the Q-value corresponding to ⁸Be exit channel is often more positive than the ⁷Li exit channel. Hence upto ~ 15 MeV excitation range ⁸Be can be detected without any interference from ⁷Li.

In Fig.1(a) the velocity diagram is shown to illustrate the kinematic focusing of breakup alphas from a ⁸Be of velocity V_8 (energy E_8), into a narrow cone of half angle $\beta_{max} = \sin^{-1}(\overline{\Psi}/V_8) = \sin^{-1} \{(Q_8/E_8)^{1/2}\}$. Where Q_8 is the Q-value of ⁸Be decay

into two α -particles and $\overline{\mathbf{v}}$ is corresponding c.m. velocity of each alpha particle. In Fig.1(b) the radial distribution of α particles on detector corresponding to a given ⁸Be direction of is illustrated, where r. -D tan(β_{max}) and R_d is the radius of the detector. As B_{max} is small (< 4 for a E_8^{\sim} 20 MeV), the lab. angles β_1 and β_2 are approximately equal. With this approximation one can derive the fraction

Fig.1

-427-

 $F(r)^{1}$, for both breakup α -particles to fall in the annular region between r and r_m as $[1-(r/r_m)^2]^{1/2}$. If the ⁸Be incident direction points close to perifery of the detector, only part of α -particles' cone will be intercepted by the detector and hence probability of ⁸Be detection will

accordingly be less than 1. By integrating ^oBe detection the probability over the the (%) entire area of detector one a n ⁸Be calculate the detection efficiency. computer program Α CEFFA is written to ⁸Be compute the detection efficiency.

E Int= 63 MeV .

200

100

300

Fig.3

20

E (%)

160

128

96 COUNTS

64

32

0

Fig.2

As the detection efficiency depends only on the dimension of the detector relative to r_m , the ⁸Be detection efficiency, for circular aperture, plotted against (R_d/r_m) in Fig.2 which is applicable in general.

Such a telescope consisting of 30 μ m Λ E and 2 mm E surface barrier detectors with radius R_d of 11 mm at a distance D of 13.4 cm was employed to study²) the reactions $1^2C(1^{6}O, ^{8}Be)^{20}Ne^*$ and $1^2C(1^{6}O, \alpha)^{24}Mg^*$ for ¹⁶0 beam energy from 60 to 90 MeV. The alpha and ⁸Be spectrum were obtained using two dimensional

 $\theta_{\rm lob} = 9^\circ \pm 2.35^\circ$

A0 - 1 2.35

EIBE

400

CHANNEL NO.

O(MeV)

500

gates on AE-E spectrum. An ⁸Be spectrum example of obtained from the telescope at 63 MeV iø shown in Fig.3, where the Be peaks corresponding to low lying states of ²⁰Ne 12C(160,88e)20Ne can be clearly identified. The efficiency of the telescope which varies with ⁸Be energy is shown in the inset, where arrows 600 indicate the position of the four marked ⁸Be peaks in the spectrum.

1) G.J.Wozniak et.al. Nucl.Inst.& Meth. 120 (1974) 29 2) Suresh Kumar et.al. NP Symp. (DAE) Madras (1990)103