
SLflC—408 

DE93 007016 

FPP - A Fortran Preprocessor 
A d a m Boyarski 

Stanford Linear Accelerator Center 
Stanford University 

Stanford, California 94309, USA 

November 1992 

Prepared for the Department of Energy 
under contract number DE-AC03-76SF00515 

Printed in the United States of America. Available from the National Techinical Informa­
tion Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 
22161. 

MASTER 
iP 

:i3TFaauTiON OF TH;S DOCUMENT te UNUNITED 



Abstract 
FPP is a preprocessor which aids in porting Fortran source code across differing platforms. It provides 

conditional compilation features to enable or disable sections of code, and can modify file names in 
INCLUDE statements to a syntax suitable for a target platform. FPP is written in Fortran 77, and runs on 
VM/CMS, VAX/VMS, UNIX, and PC/DOS systems. 

1. Introduction 

When Fortran code is moved from one platform to another, it is frequently found that parts of the code 
need modification on the new platform. Extensions used on one compiler may not be recognized by the 
compiler on another platform. System calls, such as calls to get the date and time, or calls to issue a command 
to the operating system, may differ between platforms. The file name syntax on Fortran INCLUC statements 
or OPEN statements may also differ from one platform to arother. For all these reasons, it is ofle; -npossible 
to have a fortran file that compiles and executes successfully on all platforms. 

One solution to this problem is to keep separate versions of Fortran code on each platform, each modified 
to work correctly on its platform. But then code maintenance becomes difficult, since a change to one 1 le may 
require the same change be made to the files on other platforms. Another solution is to write a singl master 
file in a syntax that a preprocessor can recognize to produce Fortran code for each platform. A disadvantage 
with this method is the need for two source files, a master file and the Fortran file on each platform. 
Alternately, a preprocessor can be written to use the Fortran code on any one platform and modify it for use 
on any other platform, without the need for a master file. The latter scheme has been adopted by FPP. 

FPP is a preprocessor that provides conditional compilation by means of a control language some 'hat 
like that in CPP, the preprocessor fpr the C language. However, FPP never deletes or inserts any line of 
source code, but instead enables or disables lines of code with the use of the comment character. FPP so 
modifies file names in INCLUDE statements to syntax appropriate for 4 taiget platform. Code processes y 
FPP for one platform can be used in turn to generate code for any other platform by processing it with F. ? 
on the target platform. Disabled lines of Fortran code on one platform can be enabled when FPP processes 
the code on another platform. Lines of Fortran are disabled by inserting a "C" in column one, lines are enabled 
by removing the "C" in column one. There is no need for a "master" source file from which are made the 
compiled source files for each platform. The compiled file and the master file can be the same on each 
platform, as long as the file is processed by FPP on each platform before the compilation step. 

2. Conditional Compilation 

Conditional compilation is done by means of commented control lines in the Fortran source code. These 
control lines are comments to the Fortran compiler, but are treated as commands by FPP as it processes the 
Fortran source file. Control statements must begin with the string "C..#" or "CC..#", starting in column one. 
The user places these control statements in the source code before and after lines that are to be enabled or 
disabled. The following control commands are recognized: 

C.JIFDEF <key> <key>... 
C..#ELIF <key> <key> ... 
C..#ELSE 
C..#ENDIF 

where <key> is a control string. If any <key> on a IFDEF or ELIF control statement matches any of the 
defined keys supplied on the FPP command line (described later), then the block of code following this 
control statement up to the next control statement is enabled by FPP. If there is no match, the block of code 
is disabled by FPP. If no keys match, then the code following the ELSE control statement is enabled. The 

2 



ENDIF control statement terminates the rFDEF-ELIF-ELSE control sequence. These control statements may 
be nested to any level. For example, if we have the following code on VM: 

<norraal code> 
C..#IFDEF VM 

<code for VM> 
CC. . #ELIF VAX 
C <code for VAX> 
CC..#IFDEF UG 
C <code for VAX and UG> 
CC..#ELSE 
C <code for VAX, non UG> 
CC..#ENDIF 
CC..#ELIF RS6000 
C <code for RS6000> 
CC..#ELSE 
C <code for all other platforms> 
C..#ENDIF 

<normal code> 

where the conditional block "code for VM" following the "C..#IFDEF VM" control statement is enabled 
for this VM version, and other conditional lines following the "CC.SELIF VAX" or "CC.JELIF RS6000" 
control statements are disabled (commented out). Note also the nested control statements "S1FDEF UG", 
"#ELSE", and "#ENDIF" within the VAX block. If this file is sent to a VAX platform, and FPP were invoiced 
on that platform as follows: 

fpp -DVAX -DUG i n f i l e 

then the above VM code would be changed to: 

<normal code> 
CC..#IFDEF VM 
C <code for VM> 
C..#ELIF VAX 

<code for VAX> 
C..#IFDEF UG 

<code for VAX and UG> 
CC..#ELSE 
C <code for VAX, non UG> 
C..#ENDIF 
CC..#ELIF RS6000 
C <code for RS6000> 
CC..#ELSE 
C <code for all other platforms> 
C..#ENDIF 

<normal code 

Note that every conditional block of code not contained in the VAX block is commented out with a "C" 
inserted at column one, including the preprocessor command lines before each such block. Also, the nested 
"#IFDEF UG" has the UG code enabled within the VAX block, because both the VAX and UG keys were 
supplied with the "-D" option on the FPP command line. 

3 



If either the VM or VAX versions of the above code were copied to the RS6000 platform and 
preprocessed on that platform with "FPP -DRS6000 infile", then in both cases the resultant code would be the 
same with only the conditional code following die "#ELIF RS6000" control statement being enabled. 

3. File names on INCLUDE Statements 

The INCLUDE statement has been implemented in many Fortran 77 compilers, and is part of the Fortran 
90 standard. However, the file name conventions differ from pla'form to platform, and so the INCLUDE 
statement cannot be written in a platform independent way. Also, the INCLUDE syntax in Fortran 77 
compilers is not always compatible, some allow single quotes around die file name, some allow double 
quotes, and some allow parentheses around die file name. It is sometimes desirable to prefix the file name with 
a directory path which specifies where in the file system the included file is to be obtained. Path names are 
again platfonn dependent. It would be desirable for a preprocessor to be able to edit die prefix and suffix of 
file names on INCLUDE statements. FPP has this ability. 

The options "-P" and "-S" on die FPP command line specify the prefix or suffix for included file names, 
as described in the next section. The following example illustrates how FPP can modify INCLUDE file 
names. If the file "myfile" contains a Fortran statement like: 

INCLUDE (jumbo) 

and FPP is invoked on VM as follows: 

fpp - P ' -S .cmn ' m y f i l e 

or on a VAX or UNIX platform as* 

fpp " - p ' " " - S . c m n ' " m y f i l e 

then the resultant line of code would appear as: 

INCLUDE ' j umbo .a im ' 

where die old prefix "(", and old suffix ")" are stripped out and die new prefix'"" and suffi: ".cmn"' are 
inserted. 

It is sometimes desirable to be able to include files from several directories. This can be done with r-PP 
using die "-I" option, which provides a means for specifying a list of directories to be searched for include 
files. When m include file is found in a directory, die path string is inserted between the prefix and die file 
name on the INCLUDE statement. The Fortran compiler will men be able to access die file from die path 
given on die INCLUDE statement. 

If the "jumbo" include file were in another directory in a UNIX system, say in "../includes", then 

fpp -I../includes "-P'" "-S.cmn'" myfile 

would change the line of code in die source file to 

INCLUDE ' . . / i n c l u d e s / j u m b o . c m n ' 

4 



*Note - On UNIX or VAX, any command line token with an apostrophe should be surrounded by quotes. 

4. FPP Description 

Following is a description of the FPP command, and the FPP options. 

SYNTAX: 

fpp [options] Filename 

Filename specifies a file name, with or without an extension. (On VM, dots must separate the file name, 
the file type, and the file mode). If the extension is not supplied, defaults are provided on each 
platform. For example, if Filename is given as "MYFILE" on VM/CMS, then a ".FORTRAN.*" 
extension is added by FPP. On a VAX the default extension is ".FOR", and on UNIX it is ".f". The 
default extension, as well as default option settings, may be seen on any platform by issuing fpp 
without any argument 

OPTIONS 

-Dkey Defines a key control string for conditional compilation. This option is repeatable. 

-Ooutname FPP write1: its output to the file "outname". If this option is not given, and FPP detects that 
changes were made, then Filename is updated. 

-Idirectory Inserts "directory" into the search path for INCLUDE files. This option is repeatable. The 
search order starts with the current directory, then directories in die order given by we -I options, until 
the INCLUDE file is found. This option is useful for those platforms having compilers that cannot 
search subdirectories for INCLUDE files (e.g. sun, next). This option is ignored when the -K option 
is present. 

-Pprefix supplies the "prefix" string to be prefixed to the file names on INCLUDE statements. FPP 
strips off the old prefix and adds the new one on each INCLUDE statement. If this option is not 
supplied, a default prefix for each platform is provided. This option is ignored when die -K option is 
present. 

-Ssuffix supplies the "suffix" string lo be suffixed to the file names on INCLUDE statements. FPP strips 
off the old suffix and adds (he new one on each INCLUDE statement. If this option is not supplied, a 
default suffix for each platform is provided. This option is ignored when the -K option is present. 

-U Change INCLUDE file names to upper case. This option is ignored when the -K option is 
present. 

-L Change INCLUDE file names to lower case. This option is ignored when me -K option is 
present. 

-M Leave file names on INCLUDE statements in mixed case. This is the default if neither the -U 
nor -L options are given. This option is ignored when die -K option is present. 

5 



-K Preserve the file name syntax and case on INCLUDE statements. This option disables the 
-I,-P,-S,-U,-L,-M options. 

5. ERROR MESSAGES 

The error messages from FPP are shown below. FPPreturns a STOPcode of 101 in each case. 

No output file name specified. 
More than one input file given. 
Can not parse command line. 
File does not exist. 
Can not open input file. 
Can not open output file. 
#IFDEF nesting overflow. 
Incorrect SIFDEF... #ENDIF structure... 
Unknown fpp command. 
Internal FPP error. 
Error while deleting input file. 
Error while closing input file. 
Error while closing output file. 
Error while copying fpptemp file. 

6. FPPAvailability 

FPP is installed on the SLACVM (U disk), SLACVX (in user [AMB]), and the SCS UNIX cluster (Next, 
sun4, and aix) in /usr/local/bin. On VM, an exec file (FPP EXEC) is used for passing command line arguments 
to the FPP MODULE. When installing FPP on a VAX, the file (FPP.CLD) must be edited, and the DCL 
command "set command fpp" issued in order to make fpp into a DCL command. 

FPP is available on the internet by anonymous ftp from heplib.slac.stanford.edu in /pub/fpp.tar.Z (It may 
move to another subdirectory in the future). 

FPP is written in Fortran77 and is itself written with FPP conditional compilation statements. The 
following keys are built into the FPP source file at the time of this writing: VM_CMS, VAX_VMS, 
RS6000_XLF, SUN4, NEXT.ABSOFT. UNIX, and PC_F77L. Once an FPP executable exists, the FPP 
source file may be converted to any other by issuing "fpp -Dkey fpp" with the key for that system. 

When installing FPP on some other platform, the FPP Fortran file may have to be editted. The statements 
for getting the command line arguments and some OPEN statements may have to be changed, and new DATA 
statements added for defining defaults for the new platform. 

e 

http://heplib.slac.stanford.edu

