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ABSTRACT

The time interval sequences and the spatio-temporal patterns of the firings of a
coupled neuronal network are investigated in this paper. For a single neuron stimulated by
an external stimulus / , the time interval sequences show a low frequency firing of bursts
of spikes, and a reversed period-doubling cascade to a high frequency repetitive firing
state as the stimulus / is increased. For two neurons coupled to each other through the
firing of the spikes, the complexity of the time interval sequences becomes simple as the
coupling strength increases. A network with large numbers of neurons shows a complex
spatio-temporal pattern structure. As the coupling strength increases, the numbers of
phase locked neurons increase and the time interval diagram shows temporal chaos and
a bifurcation in the space. The dynamical behaviour is also verified by the Lyapunov
exponent.
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1 Introduction

Aspects of the dynamical behaviour of a coupled neuronal system, such as the synchro-

nized patterns of neural activity which result from the cooperative dynamical properties,

have attracted considerable interest over recent years [1, 2, 3, 4j. Some experimental

results have been obtained in the olfactory system, the visual cortex, and other brain

areas. Local groups of neurons responding to a common stimulus display synchronized

activity, and neurons responding to separate stimuli are also phase locked [5, 6]. It has

been suggested that the selective synchronization of neural activity serves as a mech-

anism for binding spatially distributed features into a coherent object [5, 7]. It has

also been welt known for decades that a major component of sensory information is

transmitted to the brain using a code based on the time intervals between firings of

neurons, that is, action potentials or spikes [8, 9, 10, 11]. Moreover, statistical analysis

of experimentally obtained spike trains have concluded that the time intervals contain a

significant irregular component [12]. It is thus important to investigate how the sensory

information is encoded and how this process is affected by the irregular firings.

Recently an investigation of synchronized chaos in a network model of bursting neu-

rons responding to an inhomogeneous stimulus has been made by Hansel and Som-

polinsky (HS) [13]. They found that there are three types of phase for the network:

asynchronous stationary state, synchronized oscillations and synchronized chaos. They

concluded that the mechanism for generating the synchronized chaotic state in their

network model is the long range positive interactions in a population of neurons with a

distribution of local driving currents.

In this paper, we are interested in the dynamical properties of the time interval

sequences and the spatio-temporal patterns of firings in a coupled neuronal system which

presents a complex dynamical behaviour of the neural activity. The outline of this paper
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is as follows. In section II, we describe the models of the coupled network. In section

III WP present, and discuss the results. In section IV a summary is given.

2 A coupled neuronal network

A network of coupled Hindmarsh-Rose neurons [14] is represented by the following equa-

tions [13]:

fit

c/Z,
dt

= MA',, V,,Z,) = r[s{Xi - Xo) - Z,}.

(1)

(2)

(3)

The Hindmarsh-Rose neuron of three variable model is a modification of Fitzhugh's

B.v.P. (Bonhoeffer-van der Pol) model [15, 16], with the property that each action po-

tential is separated by a long interspike interval typical of real neurons. That is, each

neuron is characterized by three time-dependent variables: the membrane potential Xi\

the recovery variable V;, and a slow adaptation current Z{. The external inputs are

given by /,. In the coupled neuronal network, the effect of the firing activity of the

j — th neuron on the i—th neuron is modeled in Eq.(l) by an impulse current to the :—th

neuron, proportional to the synaptic strength Jij, generated when the j—th neuron is

active. The neuron is active whenever its membrane potential exceeds a threshold value

A",

SJ(l)=0{XJ(t)~X-l (4)

where 0(.r) = 1 if J > 0 and 0(x) = 0 if x< 0.

We first consider a network consisting of only two neurons that respond to a common

external stimulus /:

^ = ft[Xi.Yi,Zi) + I + J$iit) (5)
it

rfV,
dt

If

(6)

(7)

where t = 1,2 and j = 2,1 respectively.

To characterize the dynamical behaviour of the time interval sequences we record the

successive times when the variable X crosses the X = 0 line from above. That is, we

define Tn by X(Tn) = 0 and X{T~) > 0. After this, the time intervals 6n = Tn+1 - Tn

can be obtained for all firings. From these 6n values we can know that if the firing

pattern is a train of bursts of one spike fperiod-1), the Sn will have an unique value. For

a train of bursts of n spikes (period-n), we get n different values for £n. For a train of

bursts of undetermined number of spikes (chaotic), the Sn will show a spread of values.

In this paper we have also studied the spatio-temporal patterns of the firings for coupled

neuronal network, Eqs.(l-3), with the numbers of neurons N = 800. We used a uniform

distribution for the stimulus /,, with 1 < /, < 5 (i.e., /,- = 1 + 4 J'/JV). This distribution

is the same used in Ref. [13]. The spatio-temporal patterns of the firings are obtained

by plotting the neural activity, i.e., the firing time ( = Tn, as defined before, with a point

in the time axis against the space, i.e., the location of the i-th neuron.

All the numerical calculations are done by using a modified fourth-order Runge-Kutta

method. In the study of the time interval sequences of the firings for a single and two

coupled neurons, the time steps were chosen as A( = 0.0125. We first run the program

to t = 2300 to discard the transient and then followed the time to t = 3800 or longer.

To get the spatio-temporal patterns of a network with a large numbers of neurons, the

time step was chosen to be At = 0.1. We have also done some calculations with smaller

steps, finding that the patterns are not changed. All parameters are held constant at

a = 1.0, b = 3.0, c = 1.0, d = 5.0, s = 4.0, r = 0.006 and Xo = -1.6, which are the

values used in Refs. (14].



3 Results and discussion

3.1 The firing of a single neuron

Firstly, in this section, we present results for the time interval sequences for firing when

there is no coupling between the neurons in the network. In this case, we only need

to study one set of the Eqs.(V7) with J = 0. In Fig.l, we plot the time interval Sn

against the stimulus /. From Fig.l, we can see that when / < 1.32, there is no spike

since the stimulus / is too small to stimulate the neuron from it stable quiescent state

with .V = A'o < 0. As / increases there is a train of regularly spaced spikes, the period-

1 stale. There is only one Sn value for each / value when 1.32 < I < 1.57. When

1.57 < / < 2.13, there are periodic bursts of two spikes per burst, i.e., a period-2 state.

For this case, in Fig.l, there are two values of 6n. Then, it follows period-3 and period-

4. At / = 2.83, there is an intermittency transition to chaos. Finally, there follows a

reversed period-doubling cascade to a period-1 state again. This is due to the fact that

for a large stimulus / , the system is in a high frequency repetitive firing state. The

encode for the information process is different for the different firing states.

3.2 The firing of two coupled neurons

When the neurons in a network are completely synchronized and phase locked, we can

USP A simplified model of two coupling neurons to study the network aince from Eqs.(i-3)

all thr states of neurons are equivalent and all the neurons are fired at the same time.

In Fig.2(a)-2(c), we show the time intervals of the firings Sn against the stimulus /

for the coupling strength J = 0.5, 1.0 and 3.5, respectively. From these plots, we can see

that as the coupling increases, the complexity of the time interval sequences becomes

simpler. That is, as the coupling increases, the bifurcation regions become narrower.

When the coupling is low, for example, in the case of J = 0.5, the firing of the system

keeps most of the features of the single neuron, the case of J = 0. There ia a bifurcation

to low frequency repetitive firing state consisting of a train of regular spaced spikes,

and a region of chaotic firing, as well as a reversed period-doubling cascades to period-1

state (see Fig.2(a)). However when J = 1,0, the bifurcation region is small (see Fig.2(b))

and there are almost only period-1 and period-2 firing states. Finally when J = 3.5,

the bifurcation region disappears and there is only a period-1 repetitive firing state (see

F'g-2(c)). Actually as the coupling increases, the effective stimulus V = I + JSj(t)

is increased, which enable the neuron to be stimulated with a repetitive hring. If the

coupling is larger than a certain value, there is no more chaotic firing.

3.3 The Spatio-temporal patterns of a coupled network

Now we turn to consider a network consisting of N neurons with different values of /;

coupled globally by excitatory interactions, Ji3 = J/N. Here we are using /, distributed

uniformly between 1 and 5, as before. Simulations of the network with 0 < J < 6.0

revealed three phases (13J: asynchronous stationary state, synchronized oscillations and

synchronized chaos. Here in this paper, we are interested in the spatio-temporal patterns

and the time intervals of the firings of the network as showed in Fig.3 for the coupling

strength J = 0.5, 3.0 and 6.0, respectively. From these plots, we can see that there are

some structures of the firing state. For the lower stimulated region (the smaller i region)

the firing period is longer, and for the higher stimulated region the period is shorter and

the points become dense since for the high stimulus / the neuron is repetitively fired. In

addition, for some small groups, or clusters, of neurons, the activities have a synchronized

behaviour as they have the same frequency of firings, phase locked. Notice, however,

that the actual time of firing within one of these clusters is widely distributed. When

the coupling increases, the synchronization is expanded to a larger group of neurons,

and finally to the whole network of neurons.

7



When J = 0.5, we can see from Fig.3(a) that the pattern of firings can be divided

into foul regions: (1) Nonftring region for (« < 60) — there is no firings since the local

effective stimulus / ' = / + JZj JijS^t) is too small and is not enough to stimulate the

neurons from its quiescent state. (2) Periodic firing region for (60 < i < 370) the

Tiring is period-1 to period-4 but the time widths of these period-n bursts are different.

(3) Chaotic firing region for (370 < i < 500) — the firing is chaotic, the time interval is

irregular and with no structure in the pattern. The total numbers of chaotic neurons is

about ?i = 130, which takes about n/N ~ 16% for the network. (4) The repetitive high-

frequency firing region for {500 < t < 800) — for this region, the pattern is regular. In

Fig.3(b), wo have constructed a time interval sequence versus the local neurons from the

spatio-temporal pattern showed in Fig.3(a). From this figure, we can see that the time

interval property is similar to Fig.2(a). There is a bifurcation of a train bursts consisting

of one, two, three and four spikes, and an intermittency to chaotic state, as well as a

reversed bifurcation to period-1 firing state. The difference is that this bifurcation is in

the ncuronal space and not in J as seen before.

As the coupling strength J increases, the number n of neurons being chaotic also

increases, For example, when J = 1.5, the number n is about n = 700 which takes

about H/,V ~ M% of the neurons in the network. For J = 2.0 this factor is almost one

wbicli means that all the neurons are chaotic. In Fig.3(c) we have showed the case for

.1 = 3.0. an intermediate coupling. We can see that the nonfiring region has disappeared

and I here is a spatially correlated oscillation for the neurons. But, the oscillation is not

phase locked in the whole network and only in some very small regions there is a phase

locked activity. The synaptic current I,(t) is periodic in t and very noise. The activity of

most of t lie neurons tends to synchronize with this periodic current /,(*)• We call this a

quasi -synchronization. From the time interval figure showed in Fig.3(il), the bifurcation

regitni is extended to the whole network and a lot of points are distributed irregularly

near the two main values of 6n for each neurons. As our conclusion, such an irregular

spatio-temporal behaviour, is definitely chaotic since the time interval sequences against

the local neurons can be recognized as an attractor for the network.

In Fig.3(e) and Kg.3(f) we presented the results for J = 6.0. From the spatio-

temporal pattern of the activity, we can see that the spatial structure is more ordered,

i.e., all the neurons are phase locked together. But for the temporal behaviour, the

activity of the neurons is chaotic.

It should be noticed that for very small values of J (and even for J = 0), the synaptic

current I,yn is not given by a constant plus noise. In fact, we have found that a periodic

component, albeit of very small amplitude, appears for large values of N. This periodic

component simply represents the effects of the oscillatory behaviour of the independent

neurons for most of the values of / included in the interval 1 < / < 5. An average over

some set of periodically evolving variables will have in general at least quasiperiodic

behaviour, and is only in special cases that the periodic components balance perfectly

and the average becomes a constant. There is of course a noisy component, coming

from the chaotic neurons, but this component decays for large N. In addition, the

introduction of the coupling acts as a positive feedback and tend to increase the periodic

component. In Fig.4 we plotted the periodicity of the synaptic current for (a) J = 0,

and (b) J - 0.5, in a network of 104 neurons. It is clearly seen that the synaptic current

is periodic even for J = 0. In Fig.5 we show the corresponding power spectra of the

synaptic current ltyn{t). As the number of neurons is increased, the noisy part decreases,

but there still exists a peak of very low frequency which represents the periodicity of the

synaptic current. However, in the case of large values of J, the synaptic current /,„„(*)

is impulse-like. The neurons are synchronized to this impulse-like current. The fronts of

the activity of the neuron encode the information at the same time (except for the high

/ region there are some dilute activities).



Finally. in order to verify the chaotic behaviour, we have also calculated the local

maximum Lyapunov exponent A, against the neuron i as shown in Fig.6(a) and Fig.6(b),

respectively. From these two figures, we can see that there are positive value of A* for

the chaotic region and negative ones for periodic behaviour. At the transitions between

one phase-locking region and another, there are some small factors with positive A,.

4 Summary

Ncuronal activity is well-known to be noisy. This stochasticity is observed both during

information transmission and spontaneously. One of the most obvious features of such

stochast.irity is in the uncertainty arising in the interspike interval (the time interval

sequences studied in this paper), for example in the interspike interval distribution for

a neuron in tlie spinal chord of a decerebrate cat, where there may be a variance of

the order of '20% of the mean interval [17]. In this paper, we started from a model of

coupled neuroiial network without any noise and studied the time interval sequences and

the spatio-temporal patterns of the activities of the neurons. We found that: (1) For a

single neuron, or a network with zero coupling, the chaotic activities can exist for some

range of Ilir external stimulus [16]. (2) For a coupled two neurons models, the chaotic

activity is dominated by the coupling strength. For large coupling, the bifurcation region

can disappear totally. (3) For a coupled network with an uniform distribution of the

external stimulus, the activity of the neurons can be regular or irregular (chaotic). From

the spatio-temporal patterns, the strong coupling results in a spatio-order phase, or

synchronized firing state of the neurons, while the temporal behaviour of the neurons is

chaol i<\ The whole cliaotic behaviour can not be accounted for by the finite size noise.

The three phases for this coupled neuronal network are: (a) asynchronous stationary

state (0 < ./ < 0.S); (b) quasi-synchronized chaos (0.9 < J < 3.2); (c) synchronized

chaos (./ > .{,:>). However, for more strong coupling, we can also expect to have a

S

non-chaotic activity of neurons, the fronts of activity appear in n regular lime interval.

since: a) the strong coupling increases the spatio-conelation which ran have a complete

synchronization of the neurons, b) the effect of this very high coupling or the synaptic

current is shifted to the local neurons, and it can result in a high frequency repetitive

firing of the neurons.

It is worth to note that for modelling more realistic neuronal network, one must

consider the structure of the network. This can be done assuming the local coupling and

stimulus are a function of the number of neurons, i.e., differently in the space. However,

the qualitatively results for the nonlinear behaviour are the same as the simple model.
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Figure Captions

Figure 1:

Sn = 7',1+i - '/'„. the time interval sequences of the firing for a single neuron versus the

external stimulus /. Results from simulations of one set of Eq.(5-7) with J = 0, and the

time step At = 0.0125 were used. For each / value, the time is followed to t = 5000 and

the first / = 2:100 are eliminated for transient.

Figure 2:

Sn = Tn+i — "/'„, the time interval sequences of the firing for two coupled neurons with

the coupling strength J versus the external stimulus / . (a) J = 0.5; (b) J = 1.5; (c)

J = 3.5. The time step At = 0.0125 was used. For each value of / , the time is followed

to t = 5000 with the first t = 2300 are eliminated.

Figure 3:

Thr spatio-lrmporal patterns: neuron, i, versus the time intervals of the firing of spike

for a coupled network with different coupling strength J: (a) and (b) J = 0.5; (c) and

(d) ./ = :l.0; (e) and (f) J = 6.0. The time step At = 0.1 and the numbers of the neurons

N = 800 were used.

Figure 4:
The synaptic current /,„„ versus time for a coupled network with the number of the

neuroriH ;V = 10000 and the coupling strength: (a) J = 0; (b) J = 0.5.

Figure 5:

Pown- spectra of the synaptic current /,„„ for a coupled neuronal network with the

or of thr neurons N = 2400, 4800, 10000 (from the top curve to the bottom one)

ami ihr I'oupliup strength: (a) ./ = (1: (b) .! = 0.").

Figure 6:

rhc local maximum Lyapimov exponent A, versus the neuron, *. The time is followed

to / = !)<)()() arid first / = 1000 are eliminator! for transient, (a) ,/ = 0.5; (1>) J = 3.0.
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