١.

5.

JAERI-M 93-014

í

日本原子力研究所 Japan Atomic Energy Research Institute

1

teritani.

ſ

ز ا

1

JAERI-Mレポートは、日本原子力研究所が不定期に公刊している研究報告書です。 入手の問合わせは、日本原子力研究所技術情報部情報資料課(〒319-11 茨城県那珂郡東海村)あて、 お申しこみください。なお、このほかに財団法人原子力弘済会資料センター(〒319-11 茨城県那珂郡

東海村日本原子力研究所内)で複写による実費領布をおこなっております。

JAERI-M reports are issued irregularly.

Inquiries about availability of the reports should be addressed to Information Division Department of Technical Information, Japan Atomic Energy Research Institute, Tokaimura, Naka-gun, Ibarakiken 319-11, Japan.

C Japan Atomic Energy Research Institute, 1993

編集兼発行 日本原子力研究所 印 剧 ニッセイエブロ株式会社

JAERI-M 93-014

ALL STREET

ウラン(II)-硝酸-TBP-n-ドデカン系の第3相生成特性と数値計算モデル

日本原子力研究所東海研究所燃料安全工学部 阿見 則男・鈴木 伸一・阿部 仁・館盛 勝一

(1993年1月11日受理)

リン酸トリプチル(TBP)を用いた抽出系での第3相生成特性を調べるため、30% TBP-n-ド デカン-U(W) - 硝酸系で実験を行った。U(W) 濃度40~130g/f、硝酸濃度1.5~6 mol/f の範 閉の水相原液(10mf)に対し、同体積の有機溶媒を加えて搅拌し第3相を生成させた。水相、軽 有機相、第3相について体積、U(W) 濃度、硝酸濃度を測定した。第3相と軽有機相については、 TBPとn-ドデカンの濃度および水分を測定した。これらについて、水相原液の成分濃度や第3 相生成後の水相中成分濃度等を基準とした回帰分析を行い第3相、軽有機相体積や成分濃度や第3 相生成後の水相中成分濃度等を基準とした回帰分析を行い第3相、軽有機相体積や成分濃度を第 算する実験式を導いた。その結果、水相原液中のU(W)濃度増加(40から130g/f)に対して第3 相中U(W)濃度は70から190g/fと増加、また第3相体積は1.5から3.5mfと増加し、水相原液 中硝酸濃度をパラメータとして良い相関が得られた。第3相中TBP濃度(50から80%)は水相 原液中U(W)濃度(40から130g/f)および硝酸濃度(1.5から6mol/f)と相関を有する事、第3 相か生した場合にも水相中U(W)、硝酸濃度は、第3相か生じないとした分配計算の結果と良く一 数する事等がわかった。

東海研究所:〒 319-11 茨城県那珂郡東海村白方字白根 2-4

Giate

Formation Characteristics and Its Numerical Models of the Third Phase in the U(IV)-HNO3-TBP-n-dodecane System

> Norio AMI, Shinichi SUZUKI, Hitoshi ABE and Shoichi TACHINORI

Department of Fuel Safety Research Tokai Research Establishment Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken (Received January 11, 1993)

Extraction experiments were carried out to study characteristics of the third phase formation in the 30% TBP-n-dodecane-U(IV)-HNO₃ system. The third phase is formed by mixing 10 ml of aqueous solution and 10 ml of TBP-n-dodecane.

Volumes and concentrations of U(IV) and HNO_3 of the aqueous, light organic and the third phases were measured after an equilibrium. Concentrations of TBP, n-dodecane and H_2O in two organic phases were also measured. The numerical equations which calculate the volume and the concentrations of U(IV) and HNO_3 not only for the third phase but also for the light organic phase were deduced by the regression analysis method as functions of concentrations of U(IV) and HNO_3 in the initial aqueous solution. The results of present study are as follows:

 U(IV) concentration and volume of the third phase increased from 70 to 190 g/l and from 1.5 to 3.5 ml, respectively, with increasing in U(IV) concentration of the initial aqueous solution, from 40 to 130 g/l.

ij.

Girate.

- There were good correlation between U(IV) concentration of the initial aqueous solution and U(IV) concentration of the third phase, and between volume of the third phase and U(IV) concentration of the initial aqueous solution.
- 3) The TBP concentrations of the third phase (50 to 80%) were correlated to U(IV) (40 to 130 g/l) and HNO₃ concentrations (1.5 to 6 mol/l) of the initial aqueous solution.
- 4) The concentrations of U(IV) and HNO₃ in the equilibrium aqueous phase were equal to the values calculated with an equation for distribution ratio without taking into account the third phase formation.
- Keywords: Third Phase, Light Organic Phase, U(IV), TBP, Limiting Organic Concentration, n-dodecane, Distribution Ratio, Regression Analysis, Correlation Coefficient, Characteristic Model

目

. .

.

...

1

次

1.	序	20	à	••••			1
2.	実覧	防治	<u>.</u>	•••••		•••••	2
	2. 1	訹	調製	!			2
	2. 2	第 3	相の	生成			2
	2. 3	成分	の定	量法		•••••	2
	2. 3	8. 1	硝酸	およ	(びじ(W)の定量		2
	2 . 3	. 2	ТB	Pお	よび n-ドデカンの定量		2
	2.3	. 3	水分	の矩	<u>ेष</u>		3
3.	結果	しおよ	び考	察…			3
	3. 1	W 3	相、	軽有	「機相および水相の体積		3
	3. 2	第3	相、	軽有	機相および水相中成分濃度	••••••	3
	3. 3	第3	相、	軽有	機相中の TBP と n-ドデカン濃度		4
	3. 4	第3	相、	軽有	機相中の水濃度		5
	3. 5	第3	相生	成系	の特性モデル		5
	3. 5	. 1	特性	モテ	ルの特徴	••••••	5
	3. 5	. 2	第 3	桕、	軽有機相、および水相の体積モデル	••••••	6
	3. 5	. 3	第3	相、	軽有機相、および水相の成分濃度モデル	••••••••••••••••••••••••••••	7
	3.5.	4	モデ	ルと	実験値の比較	••••••	8
4.	ŧ	٤	め…	• • • • • •			8
5.	今後	の課	題…	•••••			9
参:	考文	猒 …		••••			9

۷

٦

۰.

1 ME." + -

Ă

Contents

1. Introduction1
2. Experimental 2
2.1 Preparation of Samples 2
2.2 Formation of the Third Phase 2
2.3 Analytical Methods 2
2.3.1 U(IV) and HNO ₃ 2
2.3.2 TBP and n-dodecane 2
2.3.3 Water
3. Results and Discussion 3
3.1 Volume of the Each Phases After Equilibrium
3.2 Concentrations of U(IV) and HNO ₃ 3
3.3 Concentrations of TBP and n-dodecane 4
3.4 Concentration of Water 5
3.5 Numerical Models of the Third Phase Formation5
3.5.1 Characteristics of the Models
3.5.2 Models to Calculate the Volume
3.5.3 Models to Calculate the Concentrations of
Components
3.5.4 Comparison of Calculated and Experimental Values
4. Summary
5. Future Perspective
References

1.序 論

再処理 Purex工程などのリン酸トリブチル(TBP)を用いた抽出系では、Pu(N)や U(N)等のア クチノイド(N)が、有機溶媒中である限界濃度(有機相中限界濃度:以下LOCと略す)を越えると、 第3相と呼ばれるアクチノイド(N)、硝酸、TBPが高濃度で蓄積した第2の有機相を生或する。Pu (N)の代りにU(N)を用いたミキサセトラ実験では、第3相が生じるとU(N)濃度分布はシミュレ ーションコードによる予測から大きく外れた。このようにPu(N)を含む抽出工程では、第3相が 生じれば、有機プロダクト中のPu(N)、硝酸、TBP等の組成が大きな影響を受け、工程管理上、 あるいは臨界安全上の考慮が必要である。アクチノイド(N)第3相の生成に関して、LOCについて 取扱った研究¹¹~⁴¹はしばしば見られるが、その組成について系統的に調べられたものは少ない。 このような第3相の生成特性や組成を明らかにするため、バッチ法による実験を行った。

水相原液中の硝酸および U(IV) 濃度の範囲は、P.D. Wilson⁴) ちによる第3相生成限界濃度の報 告を参考に決定した。Wilsonらの報告では、第3相生成限界濃度は水相または有機相を基準とし て硝酸濃度の関数として整理されている。水相を基準とした第3相生成限界濃度を図 1 に太い実 線で示す。図の横軸は、平衡後の水相中硝酸濃度であり、縦軸は平衡後の水相中U(IV)濃度を示 している。2本の実線は、20および40°Cにおける第3相生成限界濃度を示している。平衡後の水相 中硝酸および U(IV)濃度が太い実線より上であれば第3相が生成する。破線は、筆者が内挿した 25°Cにおける限界を示す。ところで、混合前の水相原液の成分濃度と第3相生成の可否の関係が わかれば実験濃度条件を設定するのにはより便利ともいえる。種々の濃度の水相原液と溶質を含 まない有機溶媒を高体積づつ混合した時に得られる平衡後の水相および有機相中の硝酸、U(IV) 濃度は第3相が生成しない時には既存の分配計算式を利用し、物質収支を考慮した計算により与 えられる。この様にして得た平衡後の水相中濃度(室温)から逆に混合前の水相中濃度を見る形に 整理し、図 1 の細い曲線から成る非直角座標が得られた。この曲線座標の縦軸は、混合前の水 相(水相原液)中 U(IV)濃度、横軸は水相原液中硝酸濃度である。曲線座標の縦軸は、混合前の水 相(水相原液)中 U(IV)濃度、横軸は水相原液中硝酸濃度である。曲線座標の水相原液中濃度から第 3相生成の判別もできる。図中の〇印は測定点(室温)の一例を示す。

実験結果を用いて第3相の生成量、含まれる成分量を予測できるようにするため、第3相特性に ついて水相原液中硝酸および U(Ⅳ) 濃度を説明変数とした回帰分析を行った。また、工程計算コ ードへの応用を検討するため、第3相と平衡な水相中硝酸および U(Ⅳ) 濃度を説明変数とした回 帰式ならびに第3相と軽有機相を平均化した全有機相中の硝酸および U(Ⅳ) 濃度を説明変数とし た回帰式を導いた。

2. 実験方法

2.1 試料調製

実験に用いたU(IV)は、U(VI)-硝酸-ヒドラジン水溶液を電解還元(1Aの定電流法)により調整し、 U(IV)生成率 99%以上を目標とした。従って実験では少量混在する U(VI)は無視した。電解還元 にあたり生成した U(IV)の U(VI)への再酸化を防止するため0.2mol/Q のヒドラジンを添加した。 この溶液を元に硝酸濃度 1.5から 6mol/Q、U(IV)濃度40から80g/Q の範囲で水相原液を調製し た。

2.2 第3相の生成

約50meの攪拌槽に硝酸および U(N)を含む水相(水相原液) 10me 、次に30%TBP-n-ドデカン 10me を入れ攪拌器で 5分間攪拌し、第3相を生成させた。静置後、三相それぞれをメスシリンダ に分取し、体積を測定した。成分濃度の定量には、微量混相の影響を選けるため各相を遠心分離 した。実験は室温(約25°C)で行った。三相分離後の水相について、以後、単に水相あるいは平衡 水相と記し、攪拌前水相は水相原液として区別する。

2.3 成分の定量法

2.3.1 硝酸および U(IV)の定量

硝酸濃度は、試料を予め、沸騰しない温度に加熱し、酸素ガスを吹込んで U(V)を U(V) に酸 化した後、硫酸アンモニウムで U(V)をマスクしてから 0.1 mol/ℓ NaOH による中和満定によ り定量した。その後、 h_2O_2 を加え U(V)を満定した。この U(V)濃度は、 以下に述べるU(V)濃 度の測定結果と合わせて解析に用いた。なお、 U(V)から U(V)への酸化に伴って U(V) 1 moi あたり 2 molの硝酸が生ずるので補正した。U(V)は、キシレノールオレンジ(XO)を発色剤とし た EDTA によるキレート満定で定量した。硝酸濃度定量および U(V)濃度定量のサンプル量は、 硝酸および U(V)濃度に応じて100~300 μ ℓ である。これらの満定には京都電子工業(株)製電位 差自動満定装置を用いた。

2.3.2 TBPおよび n-ドデカンの定量

TBPおよび n-ドデカンの定量は、(株)島津製作所製熱伝導度検出式ガスクロマトグラフィ装置 で、標準物質としてテトラデカンを用いた内部標準法によった。サンプルは、50μℓ 分取し同量 のテトラデカンと混合し、このうち10μℓ を用いた。TBPとn・ドデカンの溶液に同量のテトラデ カンを混合したサンプルのガスクロマトグラムには、n・ドデカン、テトラデカンおよびTBPに対 応したビークが現れる。TBPとn・ドデカンのビーク面積比から両者の相対的濃度比を得た。

TBP濃度の単位は、Purex工程では主として30vol% JTBPをn・ドデカン等で希釈して用いている ので、これと第3相生成に伴う変化を比較するためにvol%で表した。カラムはステンレス製とし、 充填剤[®]、としては、液相に20% Apiezon N を、担体に 60/80 メッシュの Chromosorb W を用い た。カラム温度は、270℃としキャリアガスはヘリウムとした。最も保持時間が長いTBPが約3分

となるようにキャリアガス流量を設定した。

2.3.3 水分の定量

軽有機相および第3相中の水分をカールフィッシャ法で定量した。両相ともサンプル量は 100 μ ℓ とした。 測定には、京都電子工業(株)製カールフィッシャ水分計を用いた。

3. 結果および考察

3.1 第3相、軽有機相および水相の体積

第3相、軽有機相およびこれらと平衡な水相の体積の測定結果を水相原液中濃度と合せて表 1 に示す。また、水相原液中 U(IV) 濃度と第3相体積の関係を回帰分析⁷⁾した結果を図2 に示す。 図中の実線は後述の回帰式による(以下、同様)。回帰式の結果は、データが存在する範囲につい て示してある。破線は、 95% 信頼区間を示す。回帰モデルの有意性を見る方法として、後述の 第3相中 U(Ⅳ)濃度のモデルと共に信頼区間を示したが、他のモデルでは相関係数と分散分析*·") の結果を示すにとどめた。図2からわかるように水相原液中硝酸濃度が1~5mol/2の範囲では 第3相体積は水相原液中 U(Ⅳ)濃度の増加とともに1.3から3.6mg へ増加し、硝酸濃度 3 および 5mol/ℓ では極大を持つ変化を示した。水相原液中 U(Ⅳ)濃度が70g/ℓ 以下では硝酸濃度が高い 方が第3相体積が大きい。 U(IV)濃度がそれより大きいと硝酸濃度が 5mol/e では体積は減少に 転じており 3mol/@ の場合が最も大きかった。また、表 1 からわかるように軽有機相体積は 7.2 から 9.2 № の範囲にある。この体積に第3相体積を加え、全有機相体積として見ると、そ れらは42データ中3例を除き、10.3 から10.6 mg と言う狭い範囲に入る。更に、水相体積は、初 期体積の10mg から減少し、36データ中 5例を除き 9.4 から 9.8 mg とやはり狭い範囲にあった。 総合的に見れば、分配による物質移動により水相は、約0.4 吨 減少し、全有機相は増加した。 そして、全有機相はその成分濃度により固有な体積の第3相と軽有機相に分離したという見方が できる。

3.2 第3相、軽有機相および水相中成分濃度

第3相、軽有機相およびこれらと平衡な水相の成分濃度の測定結果を水相原液中濃度と合せて 表1に示す。水相原液中硝酸濃度と第3相中硝酸濃度の関係を回帰分析した結果を図3に示す。 同図によれば、第3相中硝酸濃度は水相原液中硝酸濃度の増加に伴い減少する傾向が見られた。 次に、水相原液中U(IV)濃度と第3相中U(IV)濃度との関係を回帰分析そた結果を図4に示す。 同図によれば、第3相中U(IV)濃度は、水相原液中U(IV)濃度および硝酸濃度の増加に従って増 加した。水相原液中硝酸濃度3mol/eの計算結果について95% 信頼区間を示した。このモデル のデータに対する相関係数は、0.932であり95%信頼区間の幅は第3相中U(IV)濃度に関して±6% 以下となった。水相原液中硝酸濃度と軽有機相中硝酸濃度の関係を回帰分析した結果を図5に 示す。軽有機相中硝酸濃度は水相原液中U(IV)濃度が50g/eまでは水相原液中硝酸濃度の増加に 伴い増加する傾向を示し、水相原液中U(IV)濃度が60g/e以上では水相原液中硝酸濃度3mol/e

3

Sector Sector

4. ž

197

付近まで減少しその後増加した。水相原液中 以下) 遺産と軽有機相中以下) 遺度の関係を回帰分 析した結果を図 6 に示す。同図によれば軽有機相中 10(12)濃度は水相原液中硝酸および 5(13) 濃度の増加に伴い減少した。水相原液中硝酸濃度と平衡水相中硝酸濃度の関係を回帰分析した結 **果を図 7 に示す。同図によれば平衡水相中硝酸濃度は水相原液中硝酸濃度の増加と共に増加し、** B(Ⅳ)濃度の増加に伴い減少した。また、水相原液中 B(Ⅳ)濃度が30から90g/ℓ と変化しても水 相中硝酸濃度は、約 0.5molの変化にとどまり、U(IV)濃度の影響は小さかった。水相原液中 U(IV) 濃度と平衡水相中 U(IV)濃度の関係を回帰分析した結果を図 8 に示す。同図によれば平衡水相 中 J(IV)濃度は水相原液中 J(IV)濃度の増加と共に増加し水相原液中硝酸濃度が増加すると減少 することがわかった。すなわち、水相原液中硝酸濃度が高いと、U(IV)は抽出され易くなりその 結果平衡水梠中 U(IV) 濃度が減少したものと考えられる。第3相生成系における水梠中硝酸濃度 の実験値と同じ条件の水相原液中硝酸および U(N)濃度から分配計算式を用いて算出した第3 相が生成しない場合の水相中硝酸濃度の計算値を比較した結果を図 9-a に示す。同様に計算し た水铝中 U(N)濃度と実験値の比較を図 9-b に示す。また、全有機相についても実験結果から |求めた全有機相中硝酸および U(Ⅳ)濃度と計算値の比較を図 9-c、9-dに示す。全有機相中硝酸 および ij(IV)濃度は、第3桓と軽有機相中におけるそれらの濃度と両相の体積から計算した。著 目成分の濃度を第3相と軽有機相とでそれぞれCaおよびCuとし、体積をVaおよびVuとすれば全有 機相中濃度Coは、

 $C_{G} = (V_3 \cdot C_3 + V_L \cdot C_L) / (V_3 + V_L)$

である。

ſ

いずれの場合も計算値と実測値は1:1の直線に添っており良い一致が見られた。つまり、第3相 生成の有無に拘らず水相と全有機相との関係は、既存の分配比計算式(分配比パラメータ計算コ ード DIST⁸)の結果を用いたもの)が適用できる事を示している。これは、抽出工程計算コードで 第3相の生成を取扱う場合に平衡後の有機相を出発点として計算できる事、水相-全有機相間の平 衡関係は、第3相が生成しても変化がない事を示している。

3.3 第3相、軽有機相中のTBPとn-ドデカン濃度

第3相、軽有機相中のTBPおよびn-ドデカンの測定結果を水相原中硝酸およびU(N)濃度と合せ て表1に示す。水相原液中U(N)濃度と第3相、軽有機相中のTBP濃度の関係回帰分析した結果を 図10示す。同図によれば、第3相中のTBPは水相原液中U(N)濃度の40から130g/0への増加に より約50%から約80%へと増加した。水相原液中硝酸濃度が3および5mol/0の場合には一度増 加した後減少した。軽有機相中TBP濃度は、第3相中TBP濃度の変化と対照的に水相原液中U(N) および硝酸濃度の増加に伴い約20%から約7%へと減少した。第3相中 U(N)濃度が70から180 g/0へ2.6倍変化しても7BP濃度は50%から80%へ1.6倍の増加にとどまっている。

次に、第3相および軽有機相中のTBPと U(IV)のモル濃度比を U(IV)濃度の関数として図 11に 示す。同図によれば、第3相中 U(IV)濃度の増加に伴い比の値は、約 9から減少し 3に漸近して いる。また、軽有機相におけるTBPと U(IV)のモル濃度比は分散が大きいが第3相中における傾向 の延長線上にあった。通常、 U(IV)とTBPは1:2に配位していると考えられており、硝酸で1:1の 配位とすれば、第3相中硝酸濃度は0.2~1mo1/ℓ なので硝酸濃度の影響を考慮すれば第3相中では

4

配位していないTBPが U(IV)濃度の増加に伴って減少することが示唆される。平衡水相中 U(IV) 濃度の関数として見た第3相および軽有機相のTBP濃度について回帰式が示す結果を図17-dに示す 全有機相中 U(IV)濃度の関数として見た第3相および軽有機相中TBP濃度について回帰式が示す結 果を図18-dに示す。

3.4 第3相、軽有機相中の水濃度

第3相、軽有機相中の水濃度の否定結果を水相原液中濃度と合せて表 2 に示す。同表によれば 第3相中水濃度は 5.7 から 7.9 g/ℓ の範囲にあった。第3相中TBP濃度や硝酸、U(IV)濃度と高い 相関は見られなかった。軽有機相中水濃度は、1.3から 4.5 g/ℓ の範囲にあり、軽有機相中TBP 濃度や硝酸、U(IV)濃度と高い相関はなかった。

3.5 第3相生成系の特性モデル

3.5.1 特性モデルの特徴

水相原液中濃度基準のモデル、平衡水相中濃度基準のモデルおよび全有機相中濃度基準のモデ ルの3通りのモデルについてそれらの概念を図 12 に示す。特性モデルは、重回帰分析によった。 また、分散分析により回帰モデルの有意性を検討した。細い実線の矢印は第3相生成の流れを示 している。それ以外の太い矢印はモデルによる予測の方向を示す。モデルには、番号を付した。 水相原液中濃度基準モデル(図中①)は、水相原液中硝酸および U(IV)濃度を基に軽有機相、第3 相および水相の体積ならびに硝酸、U(IV)濃度、さらに軽有機相と第3相についてはTBP濃度を予 測するものである。水相原液中濃度基準モデルにおける第3相体積は水相原液と有機溶媒が

10me づつの場合に固有のものである。平衡水相中濃度基準モデル(2)は、平衡水相中硝酸および U(IV)濃度を基に軽有機相、第3相の体積ならびに硝酸、U(IV)濃度、さらに軽有機相と第3相 についてはTBP濃度を予測するものである。全有機相中濃度基準モデル(3)は、全有機相中硝酸 および U(IV)濃度と全有機相体積を基に軽有機相、第3相およひ水相の体積ならびに硝酸、U(IV) 濃度、さらに軽有機相と第3相についてはTBP濃度を予測するものである。

平衡水相中濃度基準モデルの回帰係数を算出するにあたり用いた平衡水相、第3相および軽有機相中の硝酸、U(N)ならびに第3相体積、軽有機相体積、TBP濃度等を表1に示した。全有機相 中濃度基準モデルに関しても全有機相と第3相および軽有機相に関する数値を表1に示した。

分散分析の結果、分散比を小さくする目的変数と説明変数の組は削除し、再度回帰分析を行っ た。このようなデータのうち目的変数である第3相ならびに軽有機相中の硝酸および U(IV) 濃度 ならびに第3相体積には、測定結果の表(表 1)において*印を付けて示した。これらのデータを 表に示したのは、これらが全有機相中濃度(説明変数)を算出するために必要である事による。一 方の回帰分析で削除したデータを他方で使用するのは矛盾があるように思われるが、削除の対象 は分散比を F検定に係る F値より小さくしてしまうような目的変数と説明変数の組であり、個々 の体積や濃度の値ではないと判断した事による。

5

. .

Υ.

Contrate -

. e 1

これらのモデルの特徴を整理すれば、以下の様になる

①:実験計画立案(予測)、データ整理に有用。

- ②:平衡系の考察に有用。水相と有機相の体積比が1:1以外の系では第3相の諸特性が推定できないところが欠点である。
- ③: 全有機相のデータがわかれば第3相生成に関する全因子が計算できる。

従って、向流式多段抽出工程のモデルに適用するには、分配計算により水相と全有機相の濃度 分布を出し、次に③を用いて全有機相条件より第3相に関する計算を行う。

3.5.2 第3相、軽有機相、および水相の体積モデル

3.5.2.1 水相原液中濃度基準モデル

水相原液中の硝酸濃度を[8](mo1/ℓ)、U(IV)濃度を[0](g/ℓ)として第3相体積 V₃(mℓ)の計 算には次の式を用いた。

Vs=A0+A1[H]+A2[U]+A3[H][U]+A4[K]²+A5[U]²+A6[H]²[U]²

ここに、A0~ A6は係数であり表 3に示した。

同彩にある、F(R)は回帰モデルに係る分散比を示し、F(6,33,0.01)は自由度 6、および 33に おける有意水準 1%での F分布表の値を示す(以下同様)。

F(R)>F(6.33,0.01) であり、回帰モデルは、1%水準で有意である。 回帰式による計算結果の一例を図2に示した。

3.5.2.2 平衡水相中濃度基準モデル

平衡水相中の硝酸濃度を[l](mo1/l)、U(IV)濃度を[U](g/l)として第3相体積 Vo(ml)の計 算には次の式を用いた。

Vs=A0+A1[H]+A2[U]+A°[H][U]+A4[H]*+A5[U]*+A6[H]*[U]*

ここに、AO~ A6は係数であり表 4に示した。

F(R)>F(6,34,0.01) であり、回帰モデルは、1%水準で有意である。 回帰式による計算結果を図 17-aに示す。

3.5.2.3 平衡後全有機相中濃度基準モデル

平衡後全有機相中の硝酸濃度を[H](mol/2)、U(IV)濃度を[U](g/2)として第3相体積 V₃(m2)の計算には次の式を用いた。

Vs=A0+A1[H]+A2[U]+A3[H][U]+A4[H]²+A5[U]²+A6[H]²[U]²

日本の日本の

ः 🔳

ここに、A0~ A6は係数であり表 5に示した。

1

F(R)>F(6,32,0.01) であり、回帰モデルは、1% 水準で有意である。 回帰式による計算結果を図 18-aに示す。

軽有機相体積 Vo(m2)および水相 Va(m2)は、三相全体の体積が一定(20.1m2)であり、水相 体積も一定(9.6m2)であることから回帰式によらず、

Vo=20.1-(Vs+VA)、VA=9.6 とした。

3.5.3 第3相、軽有機相、および水相の成分濃度モデル

3.5.3.1 水相原液中濃度基準モデル

水相原液中の硝酸濃度を[H](mol/ℓ)、U(IV)濃度を[U](g/ℓ)として第3相および軽有機相中の 硝酸(mol/ℓ)、U(IV)(g/ℓ)、TBP濃度(%)ならびに水相中の硝酸(mol/ℓ)、U(IV)濃度(g/ℓ)を計 算する。成分 $_1$ の濃度 C_1 の計算には次の式を用いた。

 $C_1 = AO + A1 [H] + A2 [U] + A3 [H] [U] + A4 [H] + A5 [U] + A6 [H] (U] + A5 [U] + A6 [H] (U] + A6 [H] + A6 [H] (U] + A6 [H] + A$

ここに、AO~ A6は係数であり成分毎に表 6に示した。

いずれの濃度でも F(R)>F(6,p,0.01) であり、回帰モデルは、 1% 水準で有意である。ここに、 pは、データ数(n)-6-1 である(以

下同様)。回帰式による計算結果は図 3 から図 8 および図 10に示した。

3.5.3.2 平衡水相中濃度基準モデル

平衡水相中の硝酸濃度を[H](mol/l)、U(IV)濃度を[U](g/l) として第3相および軽有機相中の硝酸(mol/l)、<math>U(IV)(g/l)、TBP濃度(%)の計算には次の式を用いた。

 $C_1 = AO + A1[H] + A2[U] + A3[H][U] + A4[H]^{2} + A5[U]^{2} + A6[H]^{2}[U]^{2}$

ここに、A0~ A6は係数であり表 7に示した。

いずれの濃度でも F(R)>F(6,p,0.01) であり、回帰モデルは、14 水準で有意である。

回帰式による計算結果を U(IV) について図 17-bに、硝酸について図 17-cに、TBPについて図 17-dに示す。

3.5.3.3 平衡後全有機相中濃度基準モデル

平衡後全有機相中の硝酸濃度を $[H](mol/\ell), U(IV) 濃度を[U](g/\ell) として第3相および軽有機$ $相中の硝酸(mol/\ell), U(IV)(g/\ell), TBP濃度(%)の計算には次の式を用いた。$

C1=A0+A1[H]+A2[U]+A3[H][U]+A4[H]²+A5[U]²+A6[H]²[U]²

ここに、AG~ A6は係数であり表 8に示した。

いずれの濃度でも F(R)>F(6,p.0.01) であり、回帰モデルは、 15 水準で有意である。

回帰式による計算結果を U(IV) について図 18-bに、硝酸について図 18-cに、TBPについて図 18-dに示す。

3.5.4 モデルと実験値の比較

. . .

上記3種類のモデルについて実測値とモデルによる計算値との比較を図 13から図 16に示した。 それぞれの図は、横軸に実測値をとり縦軸に計算値を取って示した。図は、縦3段に同じ成分に 著目した3種類のモデルについて示した。上から順に水相原液中濃度基準モデル、平衡水相中濃 度基準モデルおよび全有機相中濃度基準モデルである。実測値と計算モデルの間の相関係数は、 0.83~0.98であった。第3相体積を水相および全有機相中成分濃度の関数として見た場合につい て、回帰式が示す傾向をそれぞれ図17-a、18-aに示した。水相原液中 U(IV)濃度の増加に伴って 水相中 U(IV) 濃度、全有機相中 U(IV) 濃度とも増加するので水相原液中濃度に関して整理したも のと同様に U(Ⅳ) 濃度および硝酸濃度の増加に従い第3相体積が増加する傾向となった。次に、 第3相中 U(IV)濃度を水相および全有機相中成分濃度の関数として見た場合について回帰式が示 す傾向をそれぞれ図17-bと18-bに示す。水相中濃度基準モデルでは、第3相中 U(Ⅳ)濃度は平衡 水相中硝酸および U(IV)濃度の増加に伴って増加した。一方、全有機相中濃度基準モデルでは硝 酸濃度の影響は小さく硝酸濃度 0.2~0.6mol/ℓ の範囲では U(IV)濃度の変化を示す曲線は、ほ ぼ重なり合っている。水相および全有機相中成分濃度の関数として見た第3相中硝酸濃度の変化 をそれぞれ図17-cと18-cに示す。第3相中硝酸濃度は、水相中 U(IV)濃度の増加に伴い減少する 傾向を示し、水相原液中硝酸濃度の関数とした場合と同じである。しかし、全有機相中硝酸濃度 について見ると逆に全有機相中硝酸濃度の増加に伴い第3相中硝酸濃度も増加した。第3相中なら びに軽有機相中TBP濃度を水相および全有機相中成分濃度の関数として見た場合について回帰式 が示す傾向をそれぞれ図17-dと18-dに示す。いずれのモデルでも第3相中TBP濃度は U(Ⅳ)濃度の 増加に伴い増加し、軽有機相中TBP濃度は U(IV)濃度の増加に伴い減少した。

4. まとめ

U(IV)-硝酸-30%TBP-n-ドデカン系における第3相生成時の各相体積、成分濃度分布について実験結果をまとめると、

- 1. 第3相の U(IV)、硝酸およびTBP濃度ならびに体積は、水相原液中硝酸濃度および U(IV)濃度の増加に伴って増加した。
- 2. 生成した第3相の体積は、条件により変化したが、軽有機相を合せた全有機相体積として 見た場合、ほゞ一定値であった。

- 3. 第3相生成系においても U(IV)および硝酸の全有機相平均濃度は、第3相が生成しない系で 求められた分配則を延長適用して計算した濃度と良く一致した。
- 4. 水相原液、平衡水相および全有機相中の濃度を基準とした回帰分析により、何れも相関係 数が0.83以上の回帰式が得られた。

5.今後の課題

抽出工程計算コードに適用するには、U(VI)-U(IV)の系でのデータが必要である。まず、本報 告のような一段の攪拌槽による実験により物質収支の考え易いモデルを作り、次に多段向流のモ デルを考える。本報告で、はっきりした傾向が得られなかった第3相および軽有機相中水分も第3 相生成機構解明には欠かせないデータである。また『BP濃度の影響についても調べる必要があろ う。

参考文献

- Z.Kolarik "The Formation of a Third phase in the Extraction of Pu(IV),U(IV) and Th(IV) Nitrates with Tributyl Phosphate in Alkane Diluents", Physical and Inorganic Chemistry CIM Special,21,p178
- 2) T.V.Healy and H.A.C.Mckay "The Extraction of Nitrates by Try-n-Butyl Phosphates(TBP)".Trans. Faraday Sco., 52,633(1956)
- T.G.Srinivasan, et al., "Third Phase Formation in the Extraction of Plutonium by Tri-n-Butyl Phosphate", Radiochimia Acta 40, 151-154(1986)
- 4) P.D.Wilson, J.K.Smith, "Boundaries of Third-phase Formation by Uranium(IV) and Plutonium(IV) in TBP/Diluent System", I, 201(1986)
- 5) M.H.Campbell "Gas Chromatographic Analysis of Solvent Used in Reactor Fuel Reprocessing and Fission Product Recovery", Anal. Chem. 38, 237, 1966
- 6) 奥野 忠一、他「多変量解析法」、日科技連出版社、(1971)
- C.J.Brookers.et al. 著、石川 馨、武田 和久 訳「化学者・化学技術者のための数学と統 計学」、東京化学同人、(1973)
- 8) 未公開コード

Martine .

initial	initial aqueous sulution		Equilibrate aqueous pha	d se	Gross org	gani c phase		Third phase			
		Volume	l Concer	 ntrations	ions		Volume	Volumel Concentrations			
HNO a	U(IV)		HNO3	U(IV)	HNO3	U(IV)		HNO3		I TBP	
(mo1/@_)	(g/l)	(ml)	(mo!/&)	(g/l)	(moi/Q)	(g/l)	(mg)	(mol/g)	(g/@)	(%)	
1.21	67.7	9.8	1.19	35.8	0.385	20.9	1.3*2	1.05	105*3		
1.58	79.3	9.7	1.51	37.7	0.392	34.8	2.3*5	0.225*7	115	63.8	
			1.54	76.3	0.283	38.0	3.1**	0.89**	110**	69.2*1	
1.89	70.0	9.6	1.55	34.5	0.336	32.9	1.9*2	0.280*7	94.0*5	63.7	
1.95	67.4	9.7	1.75	44.4	0.523	51 .0	2.5*2	1.28*7	127* ³		
2	127	9.5	1.72	57.6			3.1*3		186*5	73.7*3	
2.01	109	9.6	1.78	46.1]	3.1*3		183*5	71.6*3	
			1.84	109			2.8**	1.17*1	151*1		
2.03	64.4	9.7	1.86	26.3	0.530	22.1	2.2*2	1.20	99.6 ^{*3}		
			1.89	25.5	0.249	32.5	2.6*1	0.49*1	108*1	64.4*1	
2.1	123	9.6	1.91	56.3			3.2*3		186**	70.3*3	
	79.4		1.97	39.4			1.2*7	1.24**	82.1*5		
2.18	51.9	9.7	2.00	40.1	0.481	18.7	1.5*2	1.09	80.8*2		
			2.29	115	0.174	65.2	3.4*1	0.50**	193*1	72.2**	
2.32	98.3	9.6	2.34	42.6	5		3.2* ³		154*3		
2.40	103	9.5	1.63	42.6	ł		2.7*5		164**	71.7*3	
2.42	51.5	9.3	2.16	22.0	0.240	30.1	1.7*2	0.385*2	86.3*5		
	88.1		2.24	42.3			2.4*7	0.84**	118*5	66.1**	
2.56	76.2	9.6	2.41	32.8	0.358	46.5	2.8	0.452*5	141	65.6	
2.58	48.9	9.7	2.55	20.8	0.560	30.9	2.3	1.15*2	94.1		
			2.34	27.6	0.327	37.9	2.9*1	0.58*1	131*1	67.5*1	
2.68	65.7	9.6	2.43	28.2	0.324	40.2	2.8	0.578	119	65.8	
	94.4		2.56	42.5			2.7*5	1.15*5	138**	73.5**	
2.79	54.5	9.7	2.73	23.4	0.366	33.9	2.4	0.636	98.7	61.8	
2.88	44.0	9.6	2.74	18.7	0.381	27.2	1.4*5	0.653	73.3*2	-	
							1				

Table 1 The initial conditions and the volume and concentrations of components of the equilibrated 3 phases

SECTION 1

Charles

- Citan

,

P

unse			Third phase	2		Light organic phase					
	Volume	0	oncentration	S		Volume Concentrations					
<i>.</i>)		HNO3	U(IV)	TBP	n • dodecane		HNO3	U(IV)	TBP	n • dodecane	
)	(ml)	(mol/&)	(g/ę)	(%)	(%)	(m2)	(mol/Q)	(g/l)	(%)	(%)	
•	1.3*2	1.05	105*3		34.7	9.1	0.29	8.93**	19.4	70.7	
•	2.3*5	0.225*7	115	63.8	28.8	8.1	0.439*7	12.0*2	15.7	77.6	
· ·	3.1*1	0.89*4	110**	69.2**	17.2	7.3	0.025**	7.62*1		84.2	
.	1.9*2	0.280*7	94.0*5	63.7	34.7	8.5	0.349*5	19.2*7	1	76.7	
	2.5*2	1.28*7	127* ³		36.7	7.8	0.28*2	26.8**		70.7	
	3.1**		186*5	73.7* ³	17.3	7.5		6.19*5	7.07*3	89.7	
	3.1* ³		183*5	71.6* ³	17.7	7.5		8.47	7.26*3	88.2	
	2.8*6	1.17*1	151**			7.6		5.95*6			
1	2.2*2	1.20	99.6* ³		29.6	8.2	0.35	1.31*7	16.6	74.9	
5	2.6*1	0.49*1	108*1	64.4*1	22.5	7.9	0.17**	7.74**	16.0*1	76.3	
	3.2* ³		186*5	70.3* ³	16.4	7.2		5.01* ³	7.16*3	90.1	
	1.2*'	1.24**	82.1*5		38.9	9.2	0.03*4			72.3	
T	1.5*2	1.09	80.8*²		37.5	93	0.38*2	8.33*1		70.3	
:	3.4*1	0.50**	193*1	72.2**	16.0	7.2	0.02*7	4.71*1	4.69*1	88.0	
	3.2* ³		15 4* 3		1 8 .9	7.2		7.62*3	7.28*3	91.0	
	2.7*5		164*5	71.7*3	19.6	7.8		4.4**		85.9	
1	1.7*2	0.385*2	86.3*5			8.8	0.212*2	19.3°7			
	2.4*7	0.84**	118*5	66.1**	30.5	8	0.03*7		20.7*"	72.3	
· .	2.8	0.452*5	141	66.6	23.5	7.6	0.323*7	11.8	11.9	80.8	
а I	2.3	1.15*2	94.1		37.5	8.0	0.39	12.7*1	17.3	75.0	
	2.9"	0.58*1	131=1	67.5*1	20.1	7.6	0.23*1	2.21*7	12.5*1	79.1	
2	2.8	0.578	119	65.8	22.6	7.7	0.231	11.5	13.7	79.9	
	2.7*5	1.15*5	138**	73.5**	22.0	7.8	0.08*7		9.64*4	87.9	
a I	2.4	0.636	98.7	61.8	31.0	8.0	0.285	14.4*5	16.8	79.3	
:	1.4*5	0.653	73.3*²		39.5	9.2	0.340*1	20.2*7	19.5	67.2	
- 1					ł						

--.-.

- -

SECTION 2

Table 1 (continued)

Initia	l aqueous		Equilibrated	20	Gross org	Gross organic phase			Third phase			
so li	ntion	Volume	l Concen	: itrations	1	1	Volume	l Cr	oncentration	IS		
HNO3	U(IV)	1	HNO ₃	U(IV)	HNO 3	U(IV) ′	1 1	HNO3 /	(IV)	TBP	n • dodec:	
(mo1/Q)	(g/ℓ)	(ml)	(mo1/Q)	(g/l)	(mo1/6)	(g/l)	(=e)	(mol/Q)	(g/l)	(%)	(%)	
2.97	68.1	9.6			1	[]	2.9*5	[]	132*3	70.5*5		
3.26	88.1	/	2.29	37.5	· ·	1 1	3.1*3	1 1	131*3	72.4*3	21.2	
	79.9	/	2.74	27.7	0.472	42.8	2.8*1	1.44*7	140*1	71.0*1	25.3	
		1	2.80	22.7	0.426	32.9	2.8*1	0.75**	108*1	65.0*1	19.1	
l	103	/	2.93	43.8	0.328	60.0	3.1**	0.68*1	162	1 '	16.3	
		1 1	2.87	33.2	0.394	43.6	2.7*1	0.55*1	150**	68.4 ^{*1}	19.5	
		- I - I	3.03	43.0	0.304	67.4	3.0**	0.19=7	178**	1 '	20.1	
l	87.7	1 1	2.85	32.3	0.583	51.6	2.9*1	1.45**	155	1 '	21.5	
	1		2.9	14.3	0.476	26.6	2.2**	0.77**	79.9**	1 /	30.1	
	66.5	1	2.9	20.6	1		2.6**	1.38*7	123**	1 '	26.0	
l	1		3.07	31.9	0.359	43.0	2.7*1	0.53*1	149**	68.3*1	25.5	
I	1		3.04	26.7	0.391	38.0	2.8*1	0.67*1	130*1	68.1*.1	18.4	
	1 1		3.1	37.8	0.340	47.0	2.5*7	0.37**	164**	1 1	22.7	
3.34	62.4		2.93	25.6	0.238	38.9	2.7	0.245*2	122	1 1	1	
3.35	98.9		2.20	44.7		(I	3.2*3	. I	146*3	72.8*3	20.5	
3.38	67.0	9.5	3.08	23.7	0.373	44.2	3.1*2	0.631	125	68.5	25.0	
	106		3.34	44.9	0.482	51.1	3.2*1	0.33**	159**	1	24.0	
3.44	57.5	9.6	3.18	20.7	0.385	40.2	2.8	0.693	109*3	65.2	30.4	
3.45	80.2	1 1	2.45	32.8		1	2.9*3	. 1	120*3	70.8*3	22.7	
3.47	60.6	1 1	2.69	23.0	1	1	2.4*3	· 1	74.3*5	64.9*3	31.5	
3.5	55.3	1 1	3.12	23.1	1	i	2.4*3	0.283*5	113*3	1	i	
	97.2	1 1	2.93	37.8	0.669	59.0	3.0	1.49*1	166**	1	20.2	
3.56	47.8	9.6	3.22	17.5 J	0.483	36.2	2.4	0.762	93.8*3	58.1	34.6	
3.64	54.9	9.6	1.86	19.3	0.577	38.8	2.8*2	1.2*3	105	63.8	28. 0	
			3.35	37.1	0.417	48.9	2.4**	0.61*1	158**	68.0*1	20.:	

		Third phase	, <u> </u>		Lignt organic phase					
Volume	1 0	oncentration	IS		Volume Concentrations					
1	HNO.3	1 U(IV)	TBP	n • dodecane		HNO ₃	U(IV)	I TBP	n • dodecane	
(mę)	(mol/@)	(g/l)	(%)	(%)	(ml)	(mol/Q)	(g/ℓ)	(%)	(%)	
		<u> </u>					<u> </u>	<u> </u>		
2.9**		132*3	70.5*5		7.4		8.93*5			
3.1*3		131*3	72.4*3	21.2			8.69**	9.08*3	87.8	
2.8*1	1.44*7	140*1	71.0*1	25.3	7.7	0.12*7	7.26*7	9.25*1	88.5	
2.8*1	0.75*1	108*1	65.0*1	19.1	7.8	0.31*1	5.89**	13.9*1	79.8	
3.1**	0.68*1	162		16.3	7.4	0.18*1	17.3*2	7.92	90.1	
2.7*1	0.55**	150**	68.4 ^{* 1}	19.5	7.8	0.34*7	6.88*7	8.9*1	79.5	
3.0*1	0.19*7	178*1		20.1	7.5	0.35*7	23.1**	8.01*1	79.1	
2.9*1	1.45**	155		21.5	7.6	0.19**	12.3**	5.59**	92.5	
2.2*1	0. 77*1	79.9**		30.1	8.5	0.4**	12.8"	18.7 ^{• 1}	73.2	
2.6**	1.38*7	123**		26.0	7.9	0.06*5		10.3**	86.8	
2.7*1	0.53**	149**	68.3*1	25.5	7.8	0.3**	6.28*7	9.17*1	78.5	
2.8*1	0.67*1	130*1	68.1 ^{*.1}	18.4	7.7	0.29*1	4.65*7	10.5**	79.3	
2.5*7	0.37**	164**		22.7	8.0	0.33*7	10.4**	9.18*1	72.3	
2.7	0.245*2	122			7.8	0.236*3	10.3*3			
3.2*3		146* ³	72.8°3	20.5			7.38*5		88.9	
3.1-2	0.631	125	68.5	25.0	7.5	0.267	10.8	11.9	82.4	
3.2*1	0.33**	159**		24.0	7.3	0.11**	3.81**		91.8	
2.8	0.693	109 * 3	65.2	30.4	<i>i.</i> 7	0.273	15.2*5	14.3	78.5	
2.9*3		120* ³	70.8* ³	22.7		:	7.26*5	10.3°3	86.3	
2.4*3		74.3 ^{*5}	64.9* ³	31.5			3.57*5	15.3* ³	80.4	
2.4 * 3	0.283*5	113*3				0.294*3	14.4 ^{*3}			
3.0	1.49*1	166**		20.2	7.5	0.34*4	16.2*4		91.3	
2.4	0.762	93.8 * 3	58.1	34.6	8.1	0.40	19.1*5		73.9	
2.8*2	1.2*3	105	63.8	28.0	7.7	0.35	14.5*2		78.2	
2.4**	0.61*1	158*1	68.0 ^{*1}	20.1	8.1	0.36*7	16.7**		81.5	

SECTION 2

Table 1 (continued)

sol	ution	a	queous phas								
		Volume Concentrations						Concentrations			
1110 s	U(IV)	1	HNO3	U(IV)	HNO 3	U(IV)		HNO 3	U(IV)	TBP	n • dodecane
u‱1/€)	(g/l)	(mę)	(mo1/Q)	(g/l)	(mol/Q)	(g/l)	(nl)	(mol/Q)	(g/ℓ)	(%)	(%)
3.76	44.7	9.6	3.48	13.1	0.705	24.8	2.5	1.49*5	85.2	58.7	32.9
3.81	68.7	9.6	3.65	25.1			2.9* ³		145*3		18.1
			3.71	92.0	0.309	44.0	3.1**	1.00*7	136**	73.2**	16.8
	106		3.26	43.3	0.670	62.4	3.0=4	1.62**	180**	76.7**	19.1
3.94	41.5	9.6	3.62	12.9	0.514	25.5	2.2	0.821	81.6	57.4	34.2
4.36	83.4		4.37	27.0			3.6**	0.181*5	152 ^{• 3}		
4.37	72.1	9.6	4.28	22.5	1		3.1*3		147* ³		18.8
4.65	68.4		4.31	19.2	1		2.9* ³	0.311*5	142*3		
4.74	54.6	9.4	4.35	15.0	0.490	42.7	3.0*²	0.526*5	118		
4.91	40.3	9.6	4.57	10.8	0.647	25.4	2.4	1.11	75.3* ³	60.1	36.4
4.91	51.7	9.6	4.66	13.1	0.599	27.1	2.5	1.11	97.2	62.1	28.8
5.90	46.2	9.5	5.50	9.76	0.686	28.4	2.7	1.22	86.0	67.2	36.4
5.91	40.5	9.5	5.56	8.93	1.00	29.8	2.8	2.15*2	80.9	59.2	37.3
5.97	31.5	9.5					1.9*5	ĺ	68.8*5	56.4*5	

*1	Omitted	from	regression	analysis	for	model	1		
*2	Omitted	from	regression	analysis	for	model	2		
* 3	Omitted	from	regression	analysis	for	model	3		
*4	Omitted	from	regression	analysis	for	model	1	and	2
* 5	Omitted	from	regression	analysis	for	model	2	and	3
ŧ£i	Umitted	from	regression	analysis	for	model	1	and	3
* 7	Omitted	from	regression	analysis	for	all mo	de	els	

SECTION 1

		Third phase			Light organic phase						
. ជារាម	Co	ncentration	S		Volume	Volume Concentrations					
	HNO 3	U(IV)	TBP	n • dodecane		HNO3	U(N)	TBP	n · dodecane		
·2)	(mol/Q)	(g/l)	(%)	(%)	(ml)	(mol/Q)	(g/ę)	(%)	(%)		
. 5	1.49*5	85.2	58.7	32.9	8.0	0.46		16.6	73.1		
9=3		145*3		18.1	7.6	0.14*5	8.45*5	8.80*3	85.5		
1•4	1.00*7	136**	73.2*1	16.8	7.4	0.02*5	5.66*1	8.22*1	86.9		
()*4	1.62*4	180**	76.7 * '	19.1	7.5	0.29**	15.5*1	6.16*1	92.2		
.2	0.821	81.6	57.4	34.2	8.3	0.433	10.6**	17.9	75.9		
.6**	0.181**	152*3			ĺ	0.151*5	6.25**				
1=3	ĺ	147*3		18.8	7.5	0.12**	8.21*5	8.46**	86.4		
. 9 * 3	0.311*5	142* ³	' i			0.273*5	10.2*3				
.0*2	0.526*5	118			ł	0.476*3	12.7				
2.4	1.11	75.3*°	60.1	36.4	8.1	0.510	10.6	16.9	76.3		
5	1.11	97.2	62.1	28. 8	7.9	0.437	4.88*7	13.8	79.2		
.7	1.22	86.0	67.2	36.4	7.9	0.504	8.69	15.4	76.5		
.8	2.15*2	80.9	59.2	37.3	8.2	0.608	12.3*2	17.7	75.3		
.9*5		68.8*5	56.4*5		8.5	[15.6*5	20.3*5			
<u>-</u> •	I			I		_,L		1			

SECTION 2

~

Initial	aqueous	Water concentration				
solu	tion	Third	Light organic			
ENO3	U(IV)	phase	phase			
(mol/Q)	(g/l)	(g/l)	(g/ℓ)			
1.58	79.3	7.6	2.4			
1.89	70.0	5.7	2.7			
2.56	76.2	7.6	2.6			
2.68	65.7	7.1	2.0			
2.79	54.5	6.2	2.9			
2.88	44.0	6.2	4.5			
3.38	67.0	6.6	1.3			
3.44	57.5	7.9	1.8			
3.56	47.8	7.6	2.7			
5.90	46.2	6.2	1.9			

Table 2 The initial conditions and water concentrations in the third and light organic phase

Table 3	Coefficien	t values o	f model l
	for the th	ird phase	volume

ļ

ŀ

AO	-3.506
Al	1.154
A2	0.07228
A3	2.318E-3
A4	-0.0912
A5	-2.726E-4
A6	-1.182E-5
Correlatio	n
coefficien	t 0.9053
F(R)	25.0
F(6,33,0.0	1) 3.41

Table 4 Coefficient values of model 2 for the third phase volume

AO	2.581
AI	-0.514
A2	0.0382
A3 .	-7.32E-4
A4	0.0877
A5	-3.524E-4
A6	2.758E-5
Correlation	
coefficient	0.8910
F(R)	22.5
F(6,34,0.01)	3.37
1	

F(R) is ratio of variance by regression F(6.33,0.01) is $\ F$ value of the F-examination

ſ

1

	for the	101	rg phase	VOLUME
Γ	AG		-5.86	
	Al	,	13.30	
	A2	•	0.3005	
	A3		-0.3461	8
	A4	i	-4.287	
[A5	1	-2.076E	-3
	A6	l	3.2273	5-3
C	orrelatio	n		
c	oefficien	t	0.910	3
	F(R)		25.8	
	F(6,32,0.	01)	3.43	

Table 5 Coefficient values of model 3 for the third phase volume

Table 6 Coefficient values of model 1 for concentrations of components in the third and the light organic phases

Third phase			Light organic phase			
	HNDa	U(IV)	TBP	HNO ₃	U(IV)	TBP
AD A1 A2 A3 A4 A5 A6	10.5954 -3.07333 -0.239001 0.0401236 0.30256 1.56429E-3 -6.2723E-5	-62.08 18.84 2.469 0.0357 -1.587 -5.975E-3 -1.571E-4	-10.53 11.57 1.057 0.0403 -0.873 -3.972E-3 -2.570E-4	-0.7444 0.47889 0.027102 -9.5989E-3 -0.01700 -1.2414E-4 9.013E-6	-1.37 17.35 0.250 -0.2613 -1.53 -3.70E-4 2.955E-4	46.83 -5.20 -0.364 -0.0550 0.422 1.248E-3 1.083E-4
Correlation coefficient F(R) F(,p ,)* P	0.8695 7.23 4.46 14	0.9324 36.5 3.41 33	0.9223 19.0 3.87 20	0.9053 14.4 3.94 19	0.9226 18.0 3.94 19	0.9790 88.5 3.71 33

* F(,p ,) indicates F(6,p ,0.01). p= n-6-1. n= number of data.

**

· · · · · · · · ·

١

• •

Ľ

:

1

-

1

.

Chird phase				Li	ight organic	phase
	fing a	Ű(ĪV)	78P	HNO ₃	U(N)	TBP
AO	-2.2797	207.61	77.20	0.4306	13.72	16.07
A1 IA	1.32071	-84.59	-14.57	0.03637	-0.277	4.04
A2	0.129682	-4.285	-0.2685	-0.002502	-0.3052	0.342
A3	-0.04844	3.0515	0.3725	-3.5750E-3	0.1277	-0.3235
A4	-0.08529	7.87	1.67	4.061E-3	-0.219	-0.327
۸5	-5.48892-4	0.01355	-4.05E-4	9.537E-6	8.28E-4	-1.214E-3
A6	8.4864 E ~5	-0.005353	-6.17E-4	6.623E-6	-2.287E-4	6.124E-4
Correlation						
coefficient	0.8300	0.9523	0.8586	0.9672	0.8705	9.9110
F(R)	6.65	68.1	14.0	53.1	8.87	25.2
F(,p,)	4.01	3.29	3.48	3.76	4.10	3.45
р	18	42	30	22	17	31

Table 7 Coefficient values of model 2 for concentrations of components in the third and the light organic phases

* F(,p ,) indicates F(6,p ,0.01). p= n-6-1. n= number of data.

Table 8	Coefficient values of model 3 for concentrations of	components
	in the third and the light organic phases	

Third phase				L	ight erganic	: phase
	HNO 3	U(IV)	TBP	HNO3	U(TV)	TBP
AO	2.1980	-100.52	-38.69	-0.1913	105.31	65.00
A1	-1.72052	314.77	192.23	1.31818	-226.10	-90.23
A2	-0.080549	6.957	4.155	0.008997	-4.074	-1.732
A3	0.0600204	-8.0657	-5.7724	-0.0133373	7.5777	2.2414
A4	1.98859	-160.22	-83.65	-0.38226	79.06	40.32
A5	6.8987E-4	-0.03139	-0.03186	-9.332E-5	0.02972	0.01044
A6	-2.72289E-	4 0.097133	0.074698	7.8565E-5	-0.086987	-0.024590
Correlation						
coefficient	0.9462	0.9664	0.8992	0.9623	0.9192	0.9427
F(R)	34.2	54.I	15.5	43.8	16.3	33.2
F(,p ,)	3.67	3.71	3.76	3.81	4.01	3.63
р	24	23	22	21	18	25

* F(,p ,) indicates F(6,p ,0.01). p= n-6-1. n= number of data.

Fig.1 Limiting concentration of the third phase formation as functions of concentrations of U(IV) and HNO; in both the initial and the equilibrated aqueous phases

The concentrations of HNO₃ and U(\mathbf{IV}) in the initial aqueous solution indicated by intersected solid lines are correspond to the concentrations of HNO₃ and U(\mathbf{IV}) in the equilibrated aqueous phase (abscisa and ordinate). Volume ratio of the initial aqueous solution and 30%-TBP-n \cdot dodecane is 1:1. O:Experimental points

L

and HNO_2 concentrations in the initial aqueous solution

JAERI-M 93-014

JAERI-M 93-014

- Chieffer

1

Fig.3 HNO₂ concentration in the third phase calculated as functions of HNO₃ and U(${\rm IV}$) concentrations in the initial aqueous solution

٦

1.11

Fig. 4 U(IV) concentration in the third phase calculated as functions of U(IV) and HNO $_3$ concentrations in the initial aqueous solution

3

1.

 HNO_3 concentration in the initial aqueous solution (mol/ ℓ)

Fig.5 HNO; concentration in the third phase calculated as functions of HNO; and U(IV) concentrations in the initial aqueous solution

. .

. 1

Fig. 6 U(IV) concentration in the third phase calculated as functions of U(IV) and HNO_3 concentrations in the initial aqueous solution

JAERI-M 93-014

- 25 --

JAERI-M 93-014

ļ

HNO₃ concentration in the initial aqueous solution (mol/ ℓ)

Fig.7 HNO₃ concentration in the equilibrated aqueous phase calculated as functions of HNO₃ and U(IV) concentrations in the initial aqueous solution

JAERI-M 93-014

--, ---

- -

.

 $\mathbb{U}(\mathbb{IV})$ concentration in the initial aqueous solution (g/ ϱ)

きまたかい

Fig.8 U(IV) concentration in the equilibrated aqueous phase calculated as functions of U(IV) and HNO₃ concentrations in the initial aqueous solution

JAERI-M 93-014

Measured HNO₃ concentration (mol/ ℓ)

Fig.9-a Comparison of calculated and measured HNO₃ concentrations in the equilibrated aqueous phase

の日本である。

JAERI-M 93-014

Measured U(IV) concentration (g/ℓ)

Fig.9-b Comparison of calculated and measured $\mathrm{U}(\mathbf{N})$ concentrations in the equilibrated aqueous phase

The second se

JAERI-M 93-014

.

J

Measured HNO₃ concentration (mol/ ℓ)

Fig.9-c Comparison of calculated and measured HNO_{\Im} concentrations in the gross organic phase

Construction of the second

į

• •

÷

,

١

A State of the second s

Fig.9-d Comparison of calculated and measured U(IV) concentrations in the gross organic phase

. '

Fig. 10 TBP concentration in the third and the light organic phases as functions of U(IV) and HNO₃ concentrations in the initial aqueous solution

.

- 32 -

JAERI-M 93-014

U(IV) concentration (mol/e)

. '

Fig. 12 Concept of three models and their relationship

JAER I- M 93-014

- 34

,

,

, ¦

: 1

JAERI-M 93-014

. -

ia. Nati

•

N.

۲

• • ••• .

•

.

JAERI-M 93-014

1

. 1

- 37 --

4.00

*

. .

1

-

Fig. 16 Comparison of calculated and measured values (IV)

- 38 -

7**.**2.2

Children in the

·~~

Fig.17 Characteristics of the third phase with the model based on concentrations of components in the equilibrated aqueous phase

- 39 -

Fig.18 Characteristics of the third phase with the model based on concentrations of components in the gross organic phase

国際単位系 (SI) と換算表

表1 SI基本単位および補助単位

a distante

ſ

i

f	t	名称	記 号
Ę	đ	メートル	m
質		キログラム	kg
峙		10	5
π.	流	アンペア	A
熱力的	温度	ケルビン	ĸ
物「	1	モル	mol
光	度	カンデラ	cd
Ψ d	i A	ラジアン	rad
7 t	16 角	ステラジアン	SE

賽3 固有の名称をもつ SI 組立単位

2	名称	記号	他のSI単位 による表現
周成数	~ ~ "	Hz	s'
カ	ニュートン	N	m⊶kg/s²
円力, 応力	パスカル	Pa	N/m²
エネルギー、仕事、熱量	ジュール	J	N-m
[串.放射束	7 y F	W	J/s
電気量,電荷	クーロン	С	A-s
進位、電圧、起電力	ポルト	v	W/A
静電容量	ファラド	F	C/V
電気抵抗	t - L	Ω	V/A
コンダクタンス	ジーメンス	S	A/V
鐵 束	ウェーハ	WЪ	V⋅s
进 束 密 度	テスラ	Т	Wb/m ²
インダクタンス	ヘンリー	Н	Wb/A
セルシウス温度	セルシウス度	r	
光 束	ルーメン	lm	cd · sr
照 度	ルクス	lx	lm/m²
the set of the	ベクレル	Ba	s ⁻¹
	1 1 1	C.	
		~	1/L -
	<u> </u>	Sv	J/Kg

$N(=10^{5} dyn)$	kgf	ibf
1	0.101972	0.224809
9.80665	1	2.20462
4.44822	0.453592	1

粘 取 1 Pa-s(N-s/m²)=10P(オアズ)(g/(cm·s)) 動粘度) m⁴/s=10⁴St(ストークス)(cm²/s)

1 1 1	C1	ı.	(JE FA	*	÷	z	1675	
28 Z	ы	c	DT HI	e	Ŧ٤	ົ	里虹	

名称	记号
分,時,日	min. h. d
度、分、秒	•. •. •
リットル	1. L
r 7	t
電子ボルト	eV
原子質量単位	u

 $1 eV = 1.60218 \times 10^{-19} J$ 1 u = 1.66054 × 10⁻²⁷ kg

裏4 SIと共に暫定的に 維持される単位								
名	称		紀	号				
オングス	10-	- 4	Â	<u> </u>				
<i>is</i> -	-	~	b)				
	-	v	be	Г				
ガ		n	G	al				
+ _	· 1J	-	C	i				
レン	ኑ ኅ	~	F	Ł				
7		+	ra	d				
r		4	re	m				

 $1 \stackrel{A}{A} = 0.1 \text{ nm} = 10^{-10} \text{ m}$ $1 \stackrel{b}{b} = 100 \text{ fm}^2 = 10^{-20} \text{ m}^2$ $1 \stackrel{b}{b} a = 0.1 \text{ MPa} = 10^5 \text{ Pa}$ $1 \stackrel{G}{Gal} = 1 \stackrel{c}{c} \text{cm/s}^2 = 10^{-2} \text{ m/s}^2$ $1 \stackrel{C}{Gal} = 3.7 \times 10^{10} \stackrel{B}{Gal}$ $1 \stackrel{R}{a} = 2.58 \times 10^{-6} \text{ C/kg}$ $1 \stackrel{R}{a} = 1 \stackrel{C}{Gg} = 10^{-2} \stackrel{G}{Gg}$ $1 \stackrel{R}{rem} = 1 \stackrel{C}{cSv} = 10^{-2} \stackrel{Sv}{Sv}$

表5 SI佳城語

倍数	後頭語	足号
10**	エクサ	E
10"	~ 9	Р
1012	τž	Ť
10"	÷ 7	G
10*	1 h	м
10'	+ 0	k
10²	ヘクト	h
10'	÷ カ	de
10 '	τ >	d
10 7	センチ	c
10 '	i 9	m
10.4	マイクロ	μ
10-*	+ 1	n
10 ''	۲ J	р
10-13	7141	f
10-10	7 1	8

(1E)

5 e ~

- 表1 5は「国際単位系」第5版、国際 度量衡局 1985年刊行による。たたし、1 eV および Luの値は CODATA の1996年推奨 値によった。
- 2 表4には毎里、ノット、アール、ヘクタ ールも含まれているか日常の単位なのてこ こでは省略した。
- 3 barは、JISでは成体の圧力を表わす場合に限り表2のカテコリーに分類されている。
- EC閣僚理事会指令では bar. barn およ ひ「血圧の単位」mmHg を表2のカテョリ ーに入れている。

换 弹 表

Æ	MPa(=10 bar)	kgf/cm'	atm	mmHg(Torr)	lbf/in²(psi)
	1	10.1972	9.86923	7.50062 × 10 ³	145.038
h	0.0980665	1	0.967841	735.559	14.2233
	0.101325	1.03323	I	760	14.6959
	1.33322 × 10 ⁻⁴	1.35951 × 10-3	1.31579 × 10 ⁻¹	3	1.93368 × 1014
	6.89476 × 10-'	7.03070 × 10 ⁻²	6.80460 × 10 ⁻²	51.7149	1

I	J(=10'erg)	kgf• m	k₩•h	cal(計量法)	Btu	ft • lbf	eV	1 cal = 4.18605 J (計量次)
イル	1	0.101972	2.77778 × 10⁻¹	0.238889	9.47813 × 10 ⁻⁴	0.737562	6.24150 × 1018	= 4.184 J (熱化学)
Ŧ 1	9.80665	1	2.72407 × 10 ⁻⁶	2.34270	9.29487 × 10 ^{- 3}	7.23301	6.12082 × 10 ¹⁴	= 4.1855 J (15 °C)
仕	3.6 × 10*	3.67098 × 10*	1	8.59999 × 10°	3412.13	2.65522 × 10*	2.24694 × 1025	= 4.1868 J (国際蒸気表
-	4.18605	0.426858	1.16279 × 10 ⁻¹	1	3.96759 × 10-3	3.08747	2.61272 × 10 **	仕事率 1PS(仏馬力)
	1055.06	107.586	2.93072 × 10 ⁻¹	252.042	1	778.172	6.58515 × 1041	= 75 kgf·m/s
	1.35582	0.138255	3.76616 × 10- '	0.323890	1.28506 × 10 ⁻¹	1	8.46233 × 10 **	= 735.499 W
	1.60218 × 10 ⁻ **	1.63377 × 10 ⁻²⁰	4.45050 × 10-24	3.82743 × 10-20	1.51857 × 10-22	1.18171 × 10 ⁻¹⁹	1	

rad 100 1

放	Bq	Ci	썴	Gy	Γ
Ħ	1	2.70270 × 10-11	₩	1	Γ
靘	3.7 × 10 ¹⁰	1	T.	0.01	

۳L	C/kg	R
報	1	3876
	2.58 × 10 ⁻⁴	1

腺	Sv	rem
4	I	100
	0.01	1