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1. Introduction

Making the use of a theorem due to Rainville [4, p.137 (Theorem 48)], the author has
derived two formulae of very general nature, for a generalized hypergeometric polynomial

defined as

(14 a)n -, 1+ a4+ 8+nar,...a,

fleBa’s; b's;v) =
1+C}.’,b1,...,bq
where n is a non—negative integer.

One more formula has been established by using the ordinary series manipulation
technique.

In the last section of this article, numerous interesting known and unknown partic-

ular cases have also been discussed.

2. Results Obtained by the Theorem

By specialising the parameters, we have from [1, p.178 (2.3)]

l+a+4 240+ 4
) 9 3a13"'1ap; —4Ut

R i =0
P+ a,by, ..o by
= (1+Q+ﬂ)n o ’ s n
= E_:O T{_—a—)———— fT(L ’B)(a s;b's vt

Regarding the virtue of this generating relation, we mark that Theorem 48 [4, p.137],

with
(1+a+ Blmlar)n... (ap)n
(1 4+ a)u(bi)n...(by)n n! 4" ’

c=1+a+tfy.=

1s applicable to the polynomial

(1‘!"0’!"/3)71

{o,i3) YT .
1+, P a’s; bssv)

falv) =

Therefore, the first property of the theorem yields the definition (1.1} of our poly-
nomial f{®#)(a’s; b’s;v) immediately.

The second property of the theorem offers the expansion formula:

Un:(l_i'a)n(bl)n Xn: "'n +a+ﬁ+‘)k)(l+a+ﬁ) « (a,ﬁ)(
(al)n---(ap k=0 (1+G+ﬂ)n+k+1(1+0) *

a's;b's;v) .
(2.1)

The applications of the third and fifth property of the theorem provide the two
formulae which can be had easily from [1, p.180 (3.1) and (3.6}].

Applying the fourth property of the theorem, we obtain the following formula:

S




v D fr(la'ﬁ)(a’-s; bsiv)—n floa’s; bs; v)
o —U+ak 5 (tatB
(1+a+ﬁ)n k=0 (I+a)k
X [(1 +a+8) fiNas;bs;0) + 20 D fia"j)(a’s;b's;v)] 1
where

D

I

d
— > 1. 2.2
dv’ nzl (22)

3. Another Formula

With the help of ordinary series manipulation, we prove the following formula:

2. (h)n (14 @) —m,l+a+F+m,—na,...,a
Z nl m! = piafype v|t"
m=e ‘ L+ a,h,by,. .. by
. —vt
=(L=t)7" £ (a’S; b's; 1 EJ (3.1)

Proof: The L.H.S. of (3.1) =

_ (ta)y & g (uemp(l bt 64 m)(nhla), - (a), O

m! = = ! (1 4+ ) (h)(51)r - . (Dg)s
Mt a) K(—m)(h) (1 +a+B+m)(a) ... (ap){—vt) S (h+71)n
= a4 P+ @) (B (by)r - (bl T

_ (14 a)m i (=m).(1 +a+ B +m)lar), ... (ap)r(—vt)
1+ a)e (b)) ... (by):

(1 —t) ™"

4, Particular Cases

The result (2.1} includes [2, p.161 (6.7)], [4, p.185 Ex.17, p.262(2), p.282(32),
p.285(4), p.288(8), p.292(12)].

The result (2.2), for p = ¢ = 1, yields a relation for generalized Rice’s polynomial

v D H*P)ay, by, v) —n H®Nay, by, v)

_ (0 +a). = (1+a+8)
k(l—l—a-}-ﬂ)n ?;, (14 a)e

[(1+a+8) HEar,bo) + 20 D HE (ay,by,0)]
(4.1)

whereDEd—d—, n >\l
v




The result (2.2) encompasses [4, p.135 Ex.18. p.262(1), p.282(34), p.286(6), p.288(9),
p.292(14)).

The result (3.1) includes [3, p.431(6)] for p = ¢ = 0. Also choosing p = ¢ =1 1n
(3.1), we get a relation for generalized Rice’s polynomial

oo —-m,l+a+F+m,—n,a
R, (1+ a)n m, ) » &y
YT Jo
n=0 ) ' 1 4+ o, h, by
, —ut
— (1= e (al,bl,l——_iiz). (4.2)

In (4.2), on putting a = J = 0, we get a similar type relation for Rice’s polynomial.
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