ИНСТИТУТ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ

IFUE - DEF -- 91-129.

ИФВЭ 91-129 09Ф

И.П.Барков^{*)}, И.М.Гезиков^{*)}, В.А.Качанов, Л.Л.Курчанинов, В.В.Рыкалин, В.Л.Соловьянов, В.А.Станкевич^{*)}, М.Н.Уханов, В.D.Ходирев

ИССЛЕДОВАНИЕ МАКЕТА ЭЛЕКТРОМАГНИТНОГО КАЛОРИМЕТРА НА основе кремниевых детекторов

Направлено в ПТЭ

•)нии по, Рига

Протвино 1991

УДК 539.1.074.2

Аннс тация

Барков И.П. и др. Исследование макета електромалититого калориметра на освове креминеных детекторов: Препрант МОВО 91-123. - Протвико, 1991. - В с., 9 рис., 2 табл., библиотр.: 9.

Создан макет влектромателятного калоримотра с использование и конперсора в кромнечны детекторов в качеотра ратаствартнаци амементов. Приведены результаты измерений отатичоских карактериотик соцтаюх партик кромниковых детекторов отечаствоного производства. Внергеятическое разрешение на путке електронов с измужьом 26 Тев/с соотвылят 17% и согладочется с отубликованими дая и долж 26 Тев/с

Abstract

Barkov I.P. et al. On Studying the Prototype of the 26 Calorimeter Based on SI Deteotors: LHEF Preprint 91-129. - Protvino, 1991. -P. S. figs. 9., tables 2, refs.: 9.

The electromagnetic calorimeter module with W converter and Si detectors is construct.... The results of static characteristics messurement of home-made Si detectors are presented. Emergy resolution on the 26 GeV/c electron beam is 17% that is agree with literature data.

© Институт физика высоких енергий, 1991

BBEITEHNE

В последнее время в связи с планами создания коллайдеров нового поколения SSC, LHC и УНК ведутся исследования электроматиятых и адронных калориметров, удовлетворящих требованиям компактитетих и возможности работы в сильных матилитых полях. Таком требованиям удовлетворяют калориметры слоистого типа, в которых в качастве активного вещества используются полупроводниковые кремикаемые детектов (Шп)¹¹.

Такие калориметри обледают рядом преимуществ^{/2/} по сравнению с детекторами типа санднич овинец-сцинтиллятор. Продольная сегментеция позволяет получать хорошее разделение влектронов и адроков без использования дополнительных детекторов (прередиетор и др.). Возможность использования поперечной сегментации обеспечивает координатное разрешегие < 1 мм.

К надостаткам можно отности нанкокую радиационную стойкость .1-2 мрад и относитально высокую стоямость детектора. Однаю такие излориметры быля бы очень полезны на мистих експериментальных установках УНК. В частности, в настоящее время рассматривеется вопрос об использовании модулей на основе кремениевых детекторов в центральной части электромагнитного калориметра (ЭК) установки НЕПТУН. В связи с этим нами был создан и исследован макет ЭК и электроники предверителького усыленки (ПУ).

1. KPEMHMEBHE DETEKTOPH

В макете электроматнитного калодиметра в качестве активного слоя использовались кремниване детекторы п-тяпа с удельным сопротивлением р ~ 1,644 ком. ко. Толщина кремения - 300 ими, техлология изготовления та же, что и в работе^{/3/}. Внешний вид полупроводниковой пластины и её размеры представлены на рис.1. В табл.1 приведены стратические карактеристики для 8 детекторов при перылельные иключении четирах стрицов. Резерос токов утечки от стриць к стрицу не более 20%. Емкость С и ток утечки I одной плоскости детекторе (#7) показены на рис.2 (4 стрице включены параслельные). Бидно, что рабочее непряжение должно быть выбрано. 150 В. ток утечки при атом I. «300 нА/стрии. ёмкость Кол терил.

Рыс.1. Внашний вид полупроводниковой пластини в миллиматрах.

Рис.2. Статические царактеристики одной плоскости детактора (4 стрипа включези парадлельно).

Ta	б.тлц 8	1

#	# Непрящение При V = 12		= 120 B
Детектора	полного обедн.	I, MIKA	с, пФ
7	150	1,2	660
8	150	1,2	660
9	150	3,0	670
28	160	0,84	730
32	80	1,0	600
46	160	1,2	730
47	120	0,6	600
48	60	-	600

2. ПРЕДУСИЛИТЕЛЬ

Схема предварительного усилителя приведена на рис.3. Парвий каскад (11-13) представляет сосой усилитель напряжения с козфрицаентом усиленая по напряжению к = 500, одвичения токовой офратной связью (резистор 20 КОм). Второй каскад - составной эмиттерный поэгоритель, рассчитенный на назноснопую негрузку (50 Ом). В качестве первого транзистора используется КТЗЭЭ, имекций неклучиме пуновье характеристики⁴⁴. ПУ ссединается с детектором кабелам длиной до 40 см. Вторное сопротивление ПУ выбрано близками к волновому сопротивлению кабеля, R_{ви} = 40 Ом. В тебл.2 приведены вумовые и актисутдные карактеристики ПУ для какдой сокции модуля.

Ряс.3. Схема предварятельного усилители. Т1 - транзистор КТЗ99, остальные при ~ типа КТЗ72, µпр - КТЗ109.

Табляца 2.

Кол-во детекторов	CD (mo)	S мB/10 ⁶ е	ENC (fwhm)	Длительность вых. сигнела, нс
3	500	14	65000	75
4	600	12	75000	80

Схема использованного нами ПУ не авляется окончательной. Как показаю в реботе⁴⁵, длятельность сигнала с ПУ может бить довадена до 20 но при бикостях детектора ~ 500 пФ. При этом сохраняется нажимй уровань акхавалентного шумового заряда (ЕКС) даже при дляне кабеля между детектором и ПУ в несколько метров. Это позволят вынастя влактронаку за предели калориметра, что уменьная размеры модуля, снимет проблемы потребляемой мощести и значительно улучшат теллановные условая для влектронока.

з. конструкция модуля

Кодуль состоят из 16 вольфрановых поглотителей с размерани 40-40-3 мм³ каждый и 7 плоскостей полупроводниковых детекторов. Размер модуля 40-40-80 мм³. Вся сборке помещена в алиминиевый экрая.

Полупроводниковые детекторы объедлинились в дее секции: З детектора в первой секции и 4 во второй. На рис.4 принедена скома включения детекторов с указанием количества материала погнотителя в каждом слов, выраковного в величинах ралиационных длик X.

Рас.4. Сдема включения детекторов с указанием количества материала поглотителя в величинах X. С = 1,3 пФ - калябровоченя бырость. Г - генератор примбутольних амкульсов.

Генератор прямоугольных импульсов Г и калибровочные ёмкости 1,3 по использованись для измерения сквивалентного шумового заряда предусилителей и калибровки тракта ампликтудного анализа (AUII) в величине вкодного заряда.

4. PEBUALTATH MOLENTARCE!

Измерения проводились на канале 14 ускорителя МоВЭ. Геометрия установки представлене на рис.5. Пучки электронов имел импульс Р ~ 26 ГаВ/си и АР/Р ~ 27. Триггер формировался «овладением сцинтивляционны счетчиков S₁ S₂ S₃, S₅ имол ракмер 5-5 км². Прибм данных осудествлялся на IBM Р0 аналогично^{*6*}. Знергетическое разревение макета алектрометивателс калориетра при обедлении уременевых детекторов до 200 мкм получено ревным № В. 17% и в основано определялось выбранной структурой модуля (рис.4). Из-за малого количестве креминевых плоскостей энергетическое разревения макета определялось свитивате флуктурыциями. Тапичный янергетической слектр при суматрования сигналов от обекх сенкии приведен на рис.6.

Рис.5. Слемы измерений внергетического разр-шания. С₁. С₂. С₃. С₄. оцинтиллиронные стетинся. Цучок – електроны с иллусть ч 26 Гев/с.

В работе⁷⁷ привадено знергетическое разрешение для модуля, состоящего из 12 кремниевых детекторов с обеднением 200 мкм при тощине поглотителя 24 X_x:

$$\Delta E/E = 17.6\% (\tau/E)^{1/2}$$

гда т - частота самплянга, выраженная в Х... По привеленной в^{77.} наскадной краной можно оценять разрешение ЭК с выбранным нами самплянгом. Оценочная воличие составляет ~ 85%//Е, что очень близко к полученному нами значению. Расчатасе значение энергетического разрешения по данным работы^{76/} составляет 66%//Е. Нас результет хуже, так как лажевы воманого шаре, чем используемый отран.

На рас. 8 приведен сузмерный для двут секций калориметра спектр от калабровочного сигнала велачиной 3,5 10⁶ с. Вадно, что шумовой спектр этого распределения гораздо уже спектра от частиц, и, следовательно, шумы електронски и дотектора не неосят заметного жилала в завергатическое разрешение.

Рис.6. Энергетический спектр при сумкировании сагналов от двух секций колориметра.

Рис.7. Энергетический спектр на первой (в) и второй (б) секциях.

Рис.8. Амплятудний спектр от калабровочного склувала велячиной 3.5.10⁶ електронов при суманровании по обены секциям.

5. ПРОБЛЕМА РАДИАЦИОННОЙ СТОЙКОСТИ

Одно из основных ограничений на использование кременених детекторов в кылориметрии - их невысокая радиационная стойкость. Приводимые в литературе данные¹¹⁷ ис допустимым дозам имеют отновение о основном к тряковым детекторам. Причиной деградации таких детекгоров является розг тока утвчки, приводящий к увеличению ЕМО. Изменение удального сопротивления вследствие изменения концентрации осконных носителей и разрушение р-л-перетода как правило не рассматурнаятся, так как наступнот при больших дозах. В случае ЭК увеличение тока утечки не будет сказываться на енергетическом разреления, так как при использовании биполярного транзистора в качестве головного влемента ПУ основной вклад в параллельный шум деет ток базм.

В свою эчэредь, уменьшение обедленной области приводит к увеляченые флуктуаций анерговиделения. Так, при уменьшении обедленного слоя с 300 до 100 мкм разрешение изменится на 463. Можео показать, что при использования более низкоомногт кремения, а следовательно, при большей начальной концентрации основных носителей, калориметр будет обладать большем ресурсом в условиях разниционных загрузок.

Сравним изменение кощентрации основных носителяй для кремния п-типа при двух значениях удельного сопротивления 500 0м-ом и 5 ком.ом в завискомости от потока вейтронев Ф. Нечальная концентрация основных носителей составляет $n_0 \approx 10^{13}$ см⁻³ и 10^{12} см⁻³ соответственно. Изменение концентрации примоси в зависимости от потока нейтроцев опконравется фонмилой⁹⁹:

$$n(\Phi) \approx n_{o} exp\left(\frac{-R_{o}\Phi}{-n_{o}}\right)$$
, (1)

где R_o - нечальная скорость удаления носителей, Φ - поток ней-тронов.

Эта зависямость показана на рис.9 (пунктир – для $\rho = 500$ См.см, сплощвя линия – для $\rho = 5$ кСм.см). Видно, что заметное изменение концентриции н. слядовательно, разрушение р-п-перехода, происходят при дозе – 10^{12} для высокоомного кремния и при дозе – $2 \cdot 10^{13}$ для низкоомного. Наобходимо также учесть, что стоимость кремния с удольным сопротивлением 5 кСм.см. превышает стоимость кремния с $\rho = 500$ См.см. более чем в 3 раза.

SARJIDUEHME

 Создани и испитени кремнизение дотектори для использования в влектромагнитных калориметрах. При напряжении полного обеднения . 150 Г. ток утечка составляет 300 нА/стрил.

 Показана возможность реализации предусилителя, позволяющего сохранить одно из преимуществ креминевых детакторов – их высоков бистродействие. Это дает возможность использовать калораметр для вираютски тритера визокто уровня. 5. Создан макит модуля электроматкитного колораметра на основе краминових детекторов. Проездени измирания анергатического разранечая на прика залетронов с энергией 26 ГаВ. Полученное разрешение "%."И сотласуется с расчетиям.

Рис.9. Расчетное изменение козщентрации основных косителей для удельных сопротивлений 500 Ом-см (пунктир) и 5 кОм-см (оплосияя лючия).

Список литературы

- Borchi E., Bosetti M., Puretta C. et al. CERN 90-10 ECFA 90-133, vol III. 1990, p. 721.
- Акамсь Ю.К., Игнатьев О.В., Калинин А.И., Кушнирук В.Ф. Полупроводникогые детекторы в эксперизментельной физике. – М.: Энергозони:здат. 1989. С. 138.
- Барков И.П., Газизов И.М., Курчанинов Л.Л. и др.- Препринт ИФВЭ 90-65. Протвино, 1990.
- Краснокутский Р.Н., Курчанинов Л.Л., Тихонов В.В. и др. Препринт MOR3 68-116. Серпухов. 1986;// ПТЭ. 1989. 5 5. С. 73.
- Краснокутский Р.Н., Сушков В.В., Фелякия Н.Н., Щувалов Р.С. Препринт (ФВЗ 91-48. Протвино, 1991.
- Барков И.П., Гезизов И.М., Качанов В.А. и др. Пропрант КОВЗ 90-76. Протвино. 1990.
- Lemeilleur F., Rancoita P.C., Seidman A. // NIM. 1984. V. 226. F. 66.
- 8. Peso D., Ros E. // NIM. 1989. A276. P. 456.
- Астенцатурыя Е.Р., Голотик О.Н. Проентирование влектронных схем с учётом радиационных воздействий. - М.: Изд. МКМ, 1984. С. 20.

Рукопись поступила 19 августа 1991 года.

И.П.Бруков и др. Иоскодование макото вляктромагнитного калориметря на осяове кумиловия, автекторов. Редактор Н.В.Биола. Технический редактор Л.П.Б.Мосина. Подпасаво к шечата 2.10.1991 г. Сормат 60-90/16. Сормата шечата. № Л. 0.50 г. Трода 260. Бака 047. Излакс Заба. Цола Ю мол. Икатичт цезика высокан авартия, 142284. Протвало Исслевской с.54. 10 коп.

Индекс 3649

ПРЕПРИНТ 91-129, ИФВЭ, 1991