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Abstract

Quantum Phase Space is given a description which entirely parallels the usual

presentation i,l Classical Phase Space. A particular Schwinger unitary operator basis, in

which the e'ç j >ion of each operator is its own Weyl expression, is specially convenient

fur the pu r The quantum Hamiltonian structure obtains from the classical structure

by the < •/. t? rsion of the classical point wise product of dynamical quantities into the

noncoiiiir Jf tti .e star product of Wiguer functions. 1'he main qualitative difference in the

general s'n . .ure is that, in the quantum case, the inverse symplectic matrix is not simply

anlis) / i.clric. This difference leads to the presence of braiding in lhe backstage of

Quantum Mechanics.
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1. INTRODUCTION

Consider the classical phase space E of some mechanical system

with generalized coordinates q = (q1, q 2 , . . . , qn) and conjugate momenta

P = (Pi. P2, • • . Pn)- Dynamical quantities F(q, p), G(q, p), etc, are

functions on E2 n (the euclidean 2n-dimensional space) and constitute an

associative algebra with the usual point wise product like (F-G)(x) =

F(x)G(x) as operation. Given any associative algebra one may get a Lie

algebra with the commutator as operation. Of course, due to the

commutativity, the classical Lie algebra of dynamical functions coming

from the pointwise product is trivial. In Classical Mechanics, it is the

peculiar noncommutative Lie algebra defined by the Poisson bracket

which is physically significant. This is a rather strange situation from the

mathematical point of view, as natural brackets are those coming as

commutators in associative algebras and the Poisson bracket does not

come from any evident associative algebra of functions. We know

however that a powerful geometric background, the Hamiltonian (or

symplectic) structure, lies behind the Poisson bracket, giving to its

algebra a meaningful and deep content.

In Quantum Mechanics, the product in the algebra of dynamical

functions (that is, the operators) is noncommutative and the consequent

commutator has a fundamental role. Nevertheless, despite the foresight

of Dirac who, in his basic paper (Ij, calls commutators "quantum

derivations", the well known noncommutativity in Quantum Mechanics

has more of algebra than of geometry. The difference rests, of course, in

the absence of specifically geometric structures in the algebra of

operators, such as differentiable structure, differential forms, connections,

metrics and the like - in a word, in the absence of a differential

geometry. It is true that in this respect much knowledge has come up



Wont those quantization procedures related to geometrical quantization.

For instance, there docs exist a certain connection underlying

prequantization, but the whole procedure does not lead to full

quantization |2 | end its study is still in progress. On the other hand, the

real mechanics of Nature is Quantum Mechanics, and classical structures

must come out as survivals of those quantal characteristics which are not

completely "erased" in the process of taking the semiclassical limit. It is

consequently amazing that precisely those quantal structures backing the

basic Hamiltonian formalism of Classical Mechanics, in particular the

sympleclic structure, be poorly known.

The recent developments in noncommuiative geometry [3j have led

to renewed attempts to make explicit the quantum symplectic structure.

Manin's "quantum space" |4j, for example, is a step towards it. Our

objective here is to study the question of quantum differential geometry

from this point of view and to unravel the problem of the sympleclic

structure. We shall restrict ourselves to a specially simple case in which

everything seems to work quite well: the lattice 2n-torus, whose

continuum classical limit case is precisely the above E2a. Notice that E2n,

the simplest example of phase space, is enough to model any case in

u Inch the configuration space is a vector space. It is always good to have

such a fair, siraightly working case in sight before one proceeds to more

involved problems.

In crude language, the usual lore of noncommuiative geometry 15]

runs as follows |6J. Functions on a manifold M constitute an associative

algebra C(M) with the pointwise product. This algebra is full of content

because it encodes the manifold topology and differentiable structure. It

contains actually all the information about M The differentiable structure



of smooth manifolds, for instance, has its counterpart in terms of the

derivatives acting on C(M), the vector fields. On usual manifolds (point

manifolds, as the phase space above), this algebra is commutative. The

procedure consists then in going into C(M) and working out everything in

it, but "forgetting" about commutativity, preceding as if the product were

noncommutative, while retaining associativity. In the E2 n above, this

would mean that F*G is transformed into some non-abelian product F o

G, with "o" being a new operation. The resulting geometry of the

underlying manifold M will thereby "become" noncommutative. Recall

that a manifold is essentially a space on which coordinates (an ordered set

of real, commutative point functions) may be defined. When we go to

noncommutative manifolds the coordinates, like the other functions,

become noi.^ommutative. Differentials come up in a very simple way

through the (then nontrivial) commutator. Associativity of the product Fo

G implies the Jacobi identity (i.e, the character of Lie algebra) and this

makes of the commutator |F, GJ = F o G - G o F, with fixed F, a

derivative "with respect to F": |F, |G, H| ) = | |F, G|, H J + |G, |F, Hj)

is just the Leibniz rule for the "product" defined by |, j . It is known since

long |7| that the product "o" related to quantization is the so called "star-

product" and that classical-quantal relationship is better seen in the Weyl-

Wigner picture of Quantum Mechanics. In that picture, quantum

operators are obtained from classical dynamical functions via the Weyl

prescription and the quantum formalism is expressed in terms of Wigner

functions, which are "c-number" functions indeed but multiply each other

by the star product. It will be seen that this procedure is in one-to-one

correspondence with the operator point of view in which, instead of the

function algebra, a matrix algebra is at work.



We intend first to establish a general notion of the Wcyl

prescription, by recognizing as such the expressions of quantum operators

in a certain well-chosen basis of unitary operators. Then, with that notion

in mind, we examine the differential geometry of the space of quantum

operators, with central interest in its symplectic structure. As already said,

we adopt the lattice torus as a privileged example: it exhibits the basic

ideas in a simple way and the continuum classical limit gives the usual

euclidean phase space E2" of very simple systems. While from time to

time making contact with the continuum limit, we use actually the

discrete Weyl-Wigner procedure inherent to the lattice, which avoids

most of the difficulties involving integration measures and reduces

quantum operators to finite matrices. The Hamiltonian quantum structure

comes up in a direct way and it is an easy task to compare their

characteristics with those of its classical correspondent.

The "well-chosen" unitary basis alluded to is a symmetrized

Schwinger basis for the Weyl realization of the Heisenberg group. In that

basis, operators appear in a luminous way as the quantum versions of

classical dynamical quantities, whenever the latter exist. Relationship

between classical and quantum objects are of permanent interest, but here

Weyl-Wigner transformations will help bridging the gap between

classical differential geometric concepts, of which the symplectic form is

an example, and their quantum counterparts. The operators belonging to

Schwinger's basis are labelled by a double-integer index forming a lattice

torus, which we call quantum phase space (QPS). The coefficients in the

operator expansions are functions defined on QFS. An exposition [8j (to

which we shall refer as "1") has been given previously of the role and

basic characteristics of this space.



Two ingredients will be essential to establish a differential

geometry on the space of quantum operators and/or on the space of

Wigner functions. The first will be the Weyl-Wigner transformation.

Section 2 is .devoted to introducing the necessary notation, state

properties of Schwinger's symmetrized basis, recall some general facts on

QPS given in I and add some new necessary material. Operator

expansions in that basis are related to Weyl-Wigner transformations in

section 3. Also a short incursion is made into twisted convolutions and

products with the aim of making clear the interpretaton of the Weyl

prescription as a Fourier operator expansion. Although we avoid as a rule

the rather involved mathematics which stays behind the whole subject, a

few comments of a more formal character are made in section 4, whose

main intension is to explain why our case is so simple that full

quantization can be achieved. Quantum groups are sketchly discussed, as

well as their relationship to braiding and Yang-Baxter equations. The

quantum analogue to classical phase space is fundamentally a matrix

space, and here comes the second basic ingredient: it will be the "matrix

noncommutative differential geometry". We shall here simply apply to

the space of quantum operators the matrix geometry |9j introduced by

Dubois-Violette, Kerncr and Madore (DKM hereafter), which is

summarized in section 5. Besides other important characteristics, these

authors have found a natural symplectic structure on differential matrix

space, leading to a naturally defined "Poisson bracket". The differential

geometry of operator space is examined in section 6. It is known that the

structure corresponding to the quantum commutator in a c-number

formulation is not the Poisson bracket, but the Moyal bracket |IO). We

find this bracket as a natural feature of matrix differential geometry. It is

also shown the perfect isomorphism between this operator formalism and

the formalism using Wigner functions with the star product. In section 7,



we look for braiding behind the formalism and exhibit nontrivial

solutions for the braid (or Yang-Baxter) equations. The existence of these

solutions is related to a specific property of the quantum case: the inverse

quantum sympleciic matrix is not an antisymmetric matrix. Unless

explicitly indicated, we shall dispense with Einstein convention on

repeated indices and indicate explicitly summations wherever they

appear.

2. THE WEYL-SCHW1NGEK BASIS

Weyl realizations 1 l l | of the Heisenberg group are built up in

terms of two "conjugate" unitary operators U and V satisfying the basic

relation VU = w UV, where w is a complex number. Finite dimensional

representations are obtained by taking for U and V matrices NxN such

that UN= 1, VN= 1. There is une realization for each integer number N. It
follows by taking determinants in the basic relation that u> = exp|i ~\. The

group elements are then power products of the type UnlVnu>P, which

satisfy automatically the Heisenberg group defining relations in terms of

triples, (m, n, p) • (r, s, q) = (m + r, n + s, p + q + 5|ms - nr|).

These monomials in U and V constitute a complete basis for all

quantum operators related ;o the physical system. In a basis for the space

of states given by orlhonormalized kets lvk>, with k integer, , U is

defined by

U |vk> = Wkti> , with Ivk+N> • lvk>. (2.1)

Of course,
U m l v k > - lvk+m> (2.2)



and the cyclic condition imposed on the kets ensures l )N = 1. The

eigenvalues uk = eK2a/N)k o f u correspond to eigenkets fixed by

Uluk>= ukluk>. (2.3)

The other operator V is given by

Vluk> = luk.,> (2.4)

and

Vn luk> = lukn>. with lukN> - luk>. (2.5)

Then also VN = 1 and the V eigenvalues are vk = e
i ( 2 n / N ) k . The

eigenkets lvk>such that

V lvk> = &**** |V|t> (2.6)

are just those we have started with. Of course, Vnlvk> = ei(2n/N)kn

lvk>.A direct calculation shows that the basic relation

V U = c * 2 3 1 ^ U V , (2.7)

or

yn jjm _ ei(2n/N) m n jjm y n

is implied by the ket cyclic conditions. It follows also that all numbers k,

m, n, etc, are defined mod(N).

The above expressions are invariant under the simultaneous

changes U -* V, V -• U'1, m -» D, n -• • m. This symmetry leaves

invariant the operators

(m.o) — v U V ,

which are such that S(O.o) • 1, S'1^, „> = St ( m n) = S(.m, .„, and constitute

a complete orthonormal (in a natural metric given below) basis to whose
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special virtues we shall repeatedly refer. Further properties are:

associativity, (S(m. n , V s>)S(k. D = S<m. n)(S(r. $) S,L i,); quasi periodicity,
S(N. p) = (-)PS(0. p) and S(p N ) = ( - ^ p . 0 ) : and two-foldcdness: S(N> N)

= (-) S(o.o) (more on this property may be seen in |I2 |) . Powers are

given by S"(m. n) = S(pm. pn,. The explicit form of S(m. B) = 2 k e1

J in the V-diagonal ket basis is

0
0

0

0

0

0

0

0 ...
to2" ...

0
0
0

on(N m 1)

0
0

0

o
o

o
o
o

0

0
/

(2.9)

The upper leit zero bloc is an m x (N-m) matrix. Each dynamical quantity

will be an operator A belonging to the group algebra, and will be written

in this basis as A = jq-2minA
(m>n)S(II,>n), with complex coefficients A(m*n) =

lr |St(mn,AJ. It is easily checked that tr|S(m>n)J = ôm.oôn>üN, IrA = A(K).

A (mn) = |St(mn)A|(ü'ü)and tr At A = 2m.nIA(mn)|2. The trace actually

delines an internal product on the algebra by <A, B> = tr (BtA). A trivial

metric is thereby defined,

g(m,nXr.s) = N = 6 "

The basis {S(m>n)} is orthonormal in this metric, lhe set of operators

constitutes thus a metric algebra with unity. The double indices are a

token of phase space, as will become clear below when we discuss the

classical limit. We shall most of the time use a compact notation in terms

of two-vectors m = (mi, 1112), n = (nj, n2),r = (n,r2),0 = (0,0), -m =



(-mi, - m2). m + r = (mi + ri, m2 + 17). m x r = ( m ^ - n^i), m . r =

| + r r ^ ) , etc. The basis members arc then

mVm- (2 10)

and the above properties become So « 1, S '*, = S t
n = S.m, etc. We

introduce a double delta on, r in terms of which the metric is simply

Operators are then written

A = iSn.A-S, , . (2.12)

with
Am = tr|StmA| . (2.13)

means summation over all the distinct pairs m = (mi, rr»2).

It is immediate to find that

Smlvk>= e'

where

a,(k;m)= ^(2k+m,)m2. (2.14)

For each value of N, the Sm's realize a representation of the

Heisenberg group as a projective representation (or abelian extension) of

the double cyclic group ZN 0 ZN. They indeed satisfy

Sr Sm = e2'"** r>Sm Sr = j"*™* r> S,^, (2.15)

with
02(111,10= jj(m|r2-m2r,)= J (mxr) . (2.16)



1U

Unlike u | t the phase a, is actually independent of the state label. There

arc many helpful identities and properties, such as

^ e . lai/Njui-P) = 6ip (2.17)

for simple index summation; or, for double indices,

òr.. ( 2 1 g )

N-

and

jSrSA^St, = (ir A) I . (2.19)

They are of calculalional interest and shall be slated when needed.

lhe operators U and V, introduced by Weyl, were brought to the

forefront by Schwinger, who in a series of papers 113J stressed both their

role as purveyors of a complete basis and the optimal uncertainty

provided by their conjugacy (2.7). The basic facts of Quantum Mechanics

were expressed in this formalism. A fact of particular interest is the

following: when N is a prime number, the pair (U, V) describes one

degree of freedom taking on N possible values. When N is not prime, it is

a product of prime numbers and the basis { S m } factorizes

correspondingly into a product of independent sub-bases, one for each

prime factor, that is, one for each degree of freedom. This fact leads to a

classification of the quantum degrees of freedom in terms of prime

decompositions of integer numbers. If we want to work simultaneously

with two or more degrees of freedom of a physical system, we must use

for N a well-chosen non-prime value, but it is, in general, more

convenient to analyse the system into its independent degrees and

examine each one at a time. In any case we must qualify our previous
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statement concerning expression (2.12): it holds for any operator which is

dependent on the degrees of freedom under consideration (and of course

of the corresponding conjugate momenta).

Although the set of products {U m V n } constitute by itself a

complete basis for the operator algebra, the complete symmetrized basis

{Sro} is of particular interest because of its many remarkable properties.

It is immediate from (2.9) that the SmD's reduce to the Pauli matrices for

N = 2. For N £ 2, they are those generalizations of Pauli matrices

providing the finest grading of the linear complex Lie algebra gl(N,C)

114]. Gratlings of Lie algebras are physically important because they

establish the existence of preferred basis admitting additive quantum

numbers. {Sm} is a preferred basis in this sense. Furthermore, as seen

below, this basis is directly related to the semiclassical limit and to Wcyl-

Wigner transformations.

The lattice torus spanned by the labels (m, n) has been called

quantum phase space (QPS) in I. Because of their property of two-

foldedness, S(Nt N) = (-)NS(o,0)*tne operators Sm constitute a double

covering modulo N of the torus. It was shown in I how closed paths on

QPS lead to open paths in operator space and how this fact is related to

noncommulativity. The numbers m and n may be seen as coordinates

mod N. Or else, we may think of Um and Vn as global "coordinates",

with values in the group ZN © ZN. In this case, due to the projective

character of the representation, such coordinates will appear as

noncommutative "point functions". The usual continuum limit

corresponds to taking to infinity both the torus radii, while N -* °of each

number of form V2JI/N m — some constant a, V2JI/N ZL -» fda, and the

area (2n/N) of each elementary lattice plaquetic on QPS tends to zero.
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The resulting expressions are dependent on Planck's constant and the

classical limit is, ol course, h -» U.

The phases in (2.14) and (2.16) have been shown in 1 to be the

result of the action of algebraic cochains on the group elements, aj(k; m)

= ut(k; Sm) and u^m, r) = u2(k; Sm, Sr). On such cochains a derivative

Ò satisfying Ó2 - 0 is defined, and the resulting cohomology gives

information on the projective representation involved. Thus, if a( is exact,

i.e. a, = ôuo for some 0-cochain ao , a ( may be eliminated by adding a

phase u o to the wavefunclions. When a-, is exact, a, = 6p, it can be

eliminated by absorbing its "integral" phase p in the operators, which

thereby appear as "gauged", or state-dependent. It turns out actually that

a, = óu, in the present case, so that 6uo • 0. This means that the two-

cochain u2 is a cocycle, a condition which is equivalent to associativity

(Sn,Sr)Si = Sn,(Sr Sk). The two-cochain 02 being a cocycle means also

that it might be gauged out by modifying the Sm's. We shall not do it

because some important aspects are more easily seen when its presence is

explicit, but the whole formalism keeps in consequence some analogy to

gauge theories. We may call u2 the "fundamental cocycle" because,

beside being the analogue on QPS of the symplectic form in Classical

Mechanics, it actually tends to it in the classical limit. It defines a "pre-

symplectic" structure on QPS, which is at the origin of the classical

Hamiltonian structure. The cochain a,, on the other hand, has a role

analogous to Liouville's canonical form. When there exists a limiting

classical system, such cochain properties will have classical counterparts.

The usual case of the position and momentum operators q, p turns

up when we choose S(m 0 ) = Um = e» V 5 ^ "^ and S(Of n) = Vn = e« V 5 ^

"P. In the continuum limit, expressions like V2JI/N m and Vãl/N n tend to
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constants aj, a2, etc, so that the eigenvalues of q and p, which are of the

form VH/N k, tend to numbers q, p. Thus, S ( m 0 ) — S ( 3 | o) = e'aiq> S(0, n)

and

(2.20)

(a|.or<o.a2)

On the other hand, S ( a | t 0 ) S(0 ^ = e1"^0 ' ^ « i - 0 )i S(a, a2) by the

very definition of a,, so that a.,|(a), 0), (0, a2)| = -<> a l a 2 • We have been

using h =1, which can be corrected when necessary by simple

dimensional analysis: while a commutator has no dimension by itself, the

Poisson bracket has dimension (action '). The case above has an

especially simple classical limit, as higher order terns vanish in the Weyl-

Wigncr transformation. Only the Poisson bracket comes out, and we find

that a2|(ai, 0), (0, a2)| = a2(e ia»q, eia2P) = - ( h/2){aiq, a2p}. Notice that

the operators appear in the exponents. The relationship will become more

clear in section 6, where we shall see that the symplectic structure on the

operator algebra is in reality related to the sine of ar But one learns

already from the example above that, as soon as one leaves the group to

consider general operators, one's interest becomes focused on the operator

space itself: one goes from the group elements to members of the algebra

they generate. In classical Hamiltonian formalism, we may start with

phase space as defined (say) by the (q, p) pair, but canonical invariance

implies that any other pair of conjugate dynamical functions F(q,p),

G(q,p) may be used as well. And, indeed, only through the use of general

dynamical functions do we arrive at the complete picture. Here, although

starting from QPS, we shall be led to work on the operator algebra. It will

be on this algebra that the quantum symplectic structure will find its

general expression.



I he phase chosen in (2.10) is at the origin of the nice properties of

basis {Sm}. The special form (2.20) of the continuum limit exhibits the

main reason for that choice: it gives to {Sm} the role of a Fourier basis

and renders it fundamental to Weyl-Wigner transformations.

3 WEYL-WIGNER TRANSFORMATIONS

The operaloi expansions (2.12) are discrete versions of the Weyl

prescription giving the quantum operator in correspondence with a

classical dynamical quantity. Let us only recall in general lines how the

prescription 113] works for the E 2 n coordinate-momentum case. The

Wigner functions Aw(q, p) are written as Fourier transforms [16] of the

Wigner densities A(a, b).

Aw(q, p) = H|AJ = JJdadb e1 ̂ ^ A i a , b). (3.1)

'1 hen the Weyl operator A(q, p), function of operators q and p which

corresponds to Aw. will be

A(q,p)= JJdadb e ' ^ ^ A ^ b ) . (3.2)

We may denote by r this operator Fourier transform, so that

|Aw | | (3.3)
and

= F|M|A|] . (3.4)

As is well known, the Wigner functions are c-number representatives of

quantum quantities (they will include powers of fa, for example) which

tend to the classical quantities in correspondence when h -* 0. The
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densities A = p' |Awl = r~'|A| include commonly Dirac deltas and their

derivatives. From (2.20),

A(q,p)= JJdadbS(a.b)A(a,b), (3.5)

•

of which (2.12) is a discrete version, with the coefficients A m as Wigner

densities. This also shows how quantization casts its roots in Fourier

analysis: an operator is given as a Fourier expansion. We may, if we

wish, use also here a double-index notation x = (q, p), a = (aj, a2) so as

to be able to write e1 <ai«l+a2P> - c ' M , A(x) = Jda Sa A(a), etc.

The product of two operators is

p[ £ ] p , (3.6)

from which the densities

(AB)P = tr [StpAB] = *R 2mA111 B^e 1 a 2 ^ m ) (3.7)

are directly read. This expression is a discrete twisted convolution, as

seen below.

The commutators

[Sr, Sm] = 2isin|a2(m, r^S^r (3.8)

lead, for two general operators, to

| A, V| = ^ S ^ A - B ' 2isin|a2(r, nDIS.Hr =
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^ i sinMp, m)|Sp. (3.9)

This is the We> I prescription for the commutator and the expressions

|A.B|P= tKSVlA,B|) =

^ I 2i s inMp, m)| (3.10)

will be the densities of the discrete version of the Moyal bracket. u 2 alone

will appear in lhe first order of the sine expansion. It is obvious that a2,

which had in (2.15) marked the projective character of the representation,

appears as the source of noncomroutativity in (3.9). For sake of

completeness and to allow immediate comparison with the classical case,

we write down also the continuum versions, for once reintroducing

Planck's constant wherever due:

= ^/da/dbA(b)B(a-b)sin|h

Summing up, the Schwinger symmetrized basis appears as a

(discrete finite at first, or continuum infinite in the limit) operator Fourier

basis 117]. In the expansion (2.12), for example, the operator A is just the

operator Fourier transform of the Wigner density A"1. An example of

Wigner density is related to the power of the Weyl operator U, (UJ)m = N

bm\ òm2o, leading to U\v(r, s) = e1 (23I/N)jr, independent of s and coherent

with the previously indicated continuum limit:
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The star product (or twisted product) is introduced in a simple

way through the notion of twisted convolution 118|. Let us again consider

the phase space E2n, using now the notation x = (X|, X2, . . . , xn, X'I, xN,..

. , x'n) and y = (yi, y: )„• y'i, y'2, • • . y'n) for its points. The

complex functions f, g defined on E2 n constitute a commutative algebra

with the usual pointwise product. Such products of functions are the

Fourier transforms of convolutions. More precisely, if F|f) is the Fourier

transform of f, the pointwise product is f g = F"1 |Flfl • Flgll- By the

way, to the usual convolution of two functions,

(f«gXx)=/f(y)g(x-y)dy.

will clearly correspond the expression «rZmA^BP"111 in the discrete case.

One may realize the passage from the commutative to the

noncommutative, alluded to in the Introduction, by going from the

pointwise-product algebra C°°(E ) of complex differentiate functions

on E2n to a noncommutative-product algebra in the following way. The

twisted convolution of index c is defined by

(f *cgXx) = Jel(c/2)(%A)r) f(y)g(i-y)dy. (3.11)

where (XAy) = \\y\ - \\y\. The corresponding expression in our case,

^ B P*m e i ( c / 2 ) m AP, (3.12)

shows that (AB)P given by (3.7) is just a twisted convolution whose
index is the area ~- of an elementary lattice plaquette. The twisted

product "o" stands to twisted convolution as the pointwise product stands

to usual convolution: it is defined as an inverse Fourier transform of the

twisted convolution of Fourier transforms:
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f o g = F I | F | f | » c F | g | | . (3.13)

It defines thus on C°°(E2n) a new, noncommutative algebra, a

deformation of the algebra defined by the point wise product.

We have up to now avoided giving the explicit form of the

Wigner functions, or the discrete version of (3.1). The reason is that

Fourier transforms are expansions in the irreducible unitary

representations and in our case we should use actually not unitary

representations, but projective representations. Recall that, in order to

have a Weyl realization of the Heisenberg group, one needs to perform an

extension of the group ZN ® ZN. The truly unitary representations would

in reality be related to ZN ® ZN and not to the Heisenberg group. We are

now in position to circumvent this difficulty. We start by learning how to

read the coefficients, or Wigner densities, and establishing as a rule that

densities never simply multiply, but always convolute in the twisted way

given by (3.7). Once this is kept in mind, we may use a unitary

representation and write

Aw(r)= ^ I n . A ' - e ' ^ ^ ^ . (3.14)

This expression, we repeat, only makes sense if the rule (3.7) for twist-

convolving the coefficients is used every time some multiplication is

performed. Aw(r) with r = (rj, r?) e ZN © ZN may be seen as a function

on QPS (in reality, on its Fourier dual). Either we use operators (2.12)

with the coefficients Am taken as functions belonging to the usual

commutative algebra of point wise products and usual convolutions or we

use Wigner representation (3.14) with A" belonging to the twisted

algebra. This point is of extreme importance, for it allows us to keep I

I



using usual Fourier transformations, while taking noncommutalivily into

account exclusively in the coefficients. We shall below (after equation
3.18)) give an alternative which is formally simpler. By using 6rm = ^

2keu2n/N)Mi m) (3 j 4 ) g i v e s immediately

Am = ^ 1 * l ( 2 l x / N M m r)Aw(r). (3.15)

It becomes also immediate to verify that the Wigner function

corresponding to an hermitian operator A =^S m A m S r n - jq-XmnA
("

m)*Sm is a real function.

Looking at (3.6) we recognize that AB = fc IF^Awl^F'lBwII It

follows (AB) = f^^ABl = IP'lAwKP'lBwIJ and consequently, from

(3.4),

(AB)w = FIlP'lAwJ *cF
I|Bwlll = A w o Bw, (3.16)

a twisted product in which the phase a2 provides the twisting, i.e, the

deformation of the function algebra. As a2 * 0, the "classical" dynamical

quantities Aw, Bw in correspondence with quantum dynamical quantities

multiply each other no more by the pointwise product, but by the

noncommutative twisted product. If a2 vanished, twisted convolution

would turn into simple convolution and twisted product would reduce to

pointwise product. But this is never the case and twisting is an inevitable

mark of quantum behavior. With the twisted-convolution prescription we

are able to circumvent a further mathematical complication, whose

discussion we shall leave to the next section.

Let us consider an example in the case N = 2. It is immediate to

obtain from (2.9) the Pauli matrices oj = S )0 , o2 = Sj, and o3 = S0(. We
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obtain the Wigncr densities from the general operator expressions like

o,= L 2Lm(2òm| ̂ "'-(OS,,, and Wigner functions as their Fourier transforms,

(a^ir) = \ Zm(2òm' ,6%) c'(2jl/N>m\ etc. The results are (o,)w(r|, n)

= eatl. ( o 2 ) w (n . n) = ein{r'+r2>and ( o 3 ) w ( n . r2) = e1'™. The twisted

convolutions are of the type (o?coxf*M = j2mJ,(2ômiü6
m2iK26i» m«,6Í2

n.2o)ciia/2i(i|m2.i2m,)= 2 ô ' i ,6 '2 i e-Wi\ -\ne twisted product comes then as

( (o 3 ) w o ( o , ) w ) ( n , r2) = i e1JI(r'+r2> = (O2)w(n, r2) = ((03 o , ) w ) ( n , r2).

This example illustrates the extreme simplicity which comes from

discreteness. It also exhibits clearly the role of ZN 0 ZN. But above all it

shows how the noncommutativity is taken into account exclusively

through the twisting.

It will not be too bad to repeat the main points. It is well known

that the geometry of a manifold M is "encoded" in the properties of the

algebra C(M) of functions defined on it. The very definition of a

differenliable manifold, for example, is based on the differentiability of

some special functions, the coordinate transformations. The subset C°(M)

of continuous functions will contain information on general lopological

properties, but no information on the differentiable structure. All such

information is, nevertheless, contained in the set C°°(M) of indefinitely

differcntiable functions. Such function spaces are usually taken as

algebras with the operation of pointwise product. Mathematically, they

are simple cases of '-algebras. We have seen the emergence of

noncommulative geometry related to QPS coming precisely from the fact

that, in order to keep the quantum information, the functions representing

quantum quantities - the Wigner functions - do not belong to an algebra

built up with this simple commutative product, but require a twisted

product. We have passed into a noncommutative "-algebra.
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Mathematicians use such commutativity-breakings in *-algebras of

functions on a manifold as the starting point to uncover

noncommutativity in the manifold itself. We have said in the Introduction

that in a noncommutative geometry coordinates also become

noncommutative. After all we have seen, the pair of coordinates q, p in

Quantum Mechanics is a paradigmatic example: they must multiply each

other via the star product and their commutator coincides with that of the

operators q, p.

Let us go back to (3.14). It represents a Fourier expansion in the

basis {qWr) = e
l (2j l /N) ln-r} of functions on the lattice torus. This is

actually a basis of ZN ® ZN characters. The Wigner functions (Sn,)w

corresponding to the basis operators will be simply

= <Pm(r). (3.17)

Thus, in the Weyl prescription, the Wigner functions corresponding to the

basic Sen winger operators are just the Fourier basic functions. This is one

more quality of the symmetrized Schwinger basis. The correspondence

between functions and operators is then complete. We may for instance

find the "translations" in terms of Wigner functions of the operator

properties given in section 2. With the help of ^r£r<p*ni(r)(Pn(r) =

Ôn̂ n, the properties involving the trace come up directly, like (3.15), Am

= j^2r<p*ni(r)Aw(r). We shall only make explicit the main results. One

finds the twisted product (S r )w o (Su)w(q) = e' a-{Ul r )(S r + u)w(q) ,

leading to the basic result

= (Sr)w (q)o (Su)w(q) = e'a2(u- r)qv+M<q). (3.18)
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Notice that the characters, initially providing a unitary representation,

give now a projective one. And this leads to another point of view

concerning the use of the star product. Instead of convoluting the

coefficients, we may write Aw(r)= c r l u A " <pm(r) and use directly

(3.18). With the twisted product as the function algebra operation, the

measure of its noncommutativity gives automatically the Moyal bracket

for the Wigner functions

o y* - (JJb. o qv] (q) = 2isinla2(m, r)J q W q ) - (3.19)

which is the Weyl-Wigner version of (3.8). The counterpart of (3.6) will

be

(AW o BwXq) = 2p(AB)P q^(q> (320)

with the coefficients given by (3.7). Finally, (3 9) is translated into

I Aw , Bw |o(q) = Fj?2 ro2 rA
inB r fcsinMr, m) | ( |W (q) =

p, m)|cpp(q) (3.21)

We sec that the parallelism is complete and that quantization may be seen

(i) as a passage from classical dynamical quantities to operators or (ii) a

deformation in the algebra of the coefficients or still (iii) as a deformation

in the algebra of the basic functions, from pointwise product to twisted

product. It will be seen in the following that the parallelism goes over to

the Hamiltonian structure.

I
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4. SOME INTERMEDIATE COMMENTS

It is convenient to make here a parenthesis and digress briefly on

some mathematical topics before proceeding to the final assault to our

main problem. The discussion, though not quite indispensable, will help

us to get a better understanding both of what we have being doing and of

the forthcoming results. In special, it will bring to light the main reasons

for the particular simplicity of our case.

One of the most fascinating developments of the last decade has

been the discovery of the relation of Hopf algebras (or bialgebras, or

quantum groups) to Yang-Baxter equation and, consequently, to braid

groups |19|. The simplest example of hi algebra in Physics appears in the

sum of two angular momenta, usually written J = Ji + J2 This operator

applies however on direct-sum kets \yV> = l«Pj> © IT2>, which shows

(hat J should in reality be written J = Jj ® I + I ® J2 and is consequently

an object belonging to a Hopf algebra. Further investigation has

uncovered the relationship of Hopf algebras to an impressive number of

seemingly disparate topics. It has established the existence of common

points in as distinct subjects as statistical lattice models, integrability of

non-linear equations, infinite algebras, the inverse scattering method,

topology of low-dimensional manifolds, low-temperature

superconductivity, non-abelian harmonic analysis, conformai models in

field theory, noncommutativity geometry, quantum Hall effect, etc, etc.

We shall of course ignore almost everything of all that and concentrate

into a few topics of immediate interest to our theme.

There are many ways to approach Hopf algebras (20) besides the

purely algebraic one. Among physicists, the most usual method involves

group deformations {2l|, but we may also generalize the mt»tho<i HC<»H tr>
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introduce the classical groups as those transformation groups which

preserve given scsquilincar forms |22|. Or still find a gate through free

calculus, as in knot theory |23j, where they make a brief act of presence in

terms of Alexander matrices, but are immediately abelianized in the

calculations leading to invariant polynomials. The main point is that the

entries of the usual matrices appearing in "classical" subjects become

noncommulative, although subject to certain rules. In very very rough
lines, it happens the following, lhe entries t- of usual matrices consist of

real or complex numbers and consequently i t™ = t JJ1t1-. Matrices

constitute Lie groups, that is, smooth manifolds. To each group element

corresponds a matrix. Each point on a manifold, each matrix in the case,

is entitled to have coordinates, a set of real numbers describing it. Thus,
each matrix will have its coordinates, which are just the entries Ç if they

are real and, if they are complex, their real and imaginary parts. If now

we take the very entries of the matrices as noncommutative, the new

"coordinates" will be of a new kind. Noncommutative geometry comes to
the fore. The noncommutativy is written in the form RJĵ  tj tjj1 = RJ^ fls ,

where the R'ĵ 's are complex coefficients. Some restrictions, in the form of

constraints on these coefficients, are imposed to ensure a minimum of

"respectability" to the new algebraic structure which comes out. In

particular, the imposition of associativity leads to the Yang-Baxter

equation, whose form and relationship to braid groups are given in

section VII. The resulting new structure is a Hopf algebra. Thus,

"quantum groups" is a general name for some sets of matrices whose

enlries are themselves non-commutative. They are not groups at all but

structures trying to generalize them. In our case, we shall find
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"hypermalrices", matrices whose entries are themselves matrices which

can be expanded in Schwinger's basis.

We may say a few words in the same naive style on another

approach [24], which is the nearest to our purposes. It emphasizes the role

of Fourier transformations and is concerned with harmonic analysis on

groups. It takes as starting algebras the spaces of functions on groups.

Recall classical Fourier transformations on the line or on Euclidean 3-

space: they establish a duality between the space of functions on the

original space and the space of the Fourier transforms. The original space

is actually a translation group T and its dual T is the space of

(equivalence classes of) unitary irreducible representations of T. In this

classical, abelian case, the dualT is another group. It happens that, when

the original group G is locally compact commutative and compact, or

discrete, the dual setC is a locally compact commutative group, which is

furthermore respectively discrete or compact. This is the Tontriagin

duality". Actually, the transformations take place between the respective

group rings, to which the representations can be extended. Important

examples of Fourier-dual spaces are: the group R of the real numbers,

dual to itself; the circle S1 and the group Z of integers are dual to each

other; and, specially important for our purposes, the cyclic group ZN is

dual to itself. This is a first reason for the simplicity of our case: we

remain in the same ZN while going to and fro by Fourier transformations.

A great change comes up when the original group is

noncommutative: the corresponding dual set is no more a group. Much is

known for the case in which G is compact. The dual G is then a category,

that of the finite dimensional representations of G, that is, a category of

vector spaces (or an algebra of blocs). This new duality, between a group



and a category, is called Tanaka-Krcin duality. The reason fur the special

simplicity of abelian groups is that their unitary irreducible

representations have dimension one and the tensor product of two such

representations is another one-dimensional representation. Each such

representation may be considered simply as a complex function f, f: G —

C, g - • f(g), with f(gig2) = f(gl)f(g2)- Tensor product is then reduced to

the simple pointwise product of functions and the set of inequivaient

unitary irreducible representations is then itself a group. This is the

property which does not generalize to the noncommulative case. The

good question then is: is it possible to enlarge the notion of group to

another object, so that its dual come to be an object of the same kind ?

The complete answer has been found in the case of finite groups: the

more general objects required are precisely Hopf algebras. So, quantum

groups are that generalization of groups allowing for a "good" notion of

Fourier duality.

We have in the previous section prepared ourselves, through the

resource of absorbing the noncommutativity in the coefficients, to

perform the Fourier transformation starting from the commutative group

ZN ® ZN- 1 n c Heisenberg group is non-abelian, but with the twisted-

convolution prescription we are able to circumvent this problem. The

algebra of functions on Z N ® ZN with multiplication given by H*c" is

Fourier-transformed into the algebra of functions on ZN 0 ZN with

multiplication V . One works as if the domain space were in both cases

commutative groups. The prescription is a trick allowing one to use the

simpler formalism of Pontrjagin duality, instead of working with Tanaka-

Krein duality. Or, if one prefers, it allows one to avoid the explicit use of

Hopf algebras. This is another reason for the simplicity of our case.
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In the case N = <», we touch the subject of infinite algebras |25|.

The {S m } basis has been a source of ideas in model building. It was

extensively used by Floratos, first in the study of the (discretized) torus

membrane |26], then to obtain special representations of the GLq(2)

quantum group (27] and finally to relate Manin quantum space to

Quantum Mechanics [28]. The double-graded algebra (3.8), with its

"fermionic" anticommutator counterpart

ISr, Sm]+ = 2 cos M k ; Sro, Sr)]Sn»r,

have been used [29] in the N = oo case as a supersymmetric example of

Kac-Moody type algebras.

But the main analogues to our case are the so called algebras of

area-preserving transformation generators [30]. Let us recall the main

points for the special case of a phase space. One starts by supposing that a

set {cpm} of basic functions exists, in terms of which every function on

the space may be expanded. Given the Poisson bracket {,}p, the basis

functions will establish an algebra {(pm, (pn}p = crmn <JV- In Hamiltonian

theory, each function F = ^ 2 m F m ( p m on phase space will define a

Hamiltonian field LF which is such that Lp G = {F, G}P for all G. With

the notation x = (xj, X2 , . . . , xn, X'I, x*2, . . . , x'o) for the coordinates on

phase space, LF = 2kdkFdk. - dk.Fdk = (8~*F) x ~d is the field generating the

canonical transformations whose generating function is F. We may thus

attach to the basis {<pm(r)} a basis {Lm} of Hamiltonian fields defined

by LmG = {(pm. G}p for all G. An algebra of differential operators

results, with
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Notice thai Lmtyn = {tym, tyn) = trnin<Pr- The Un's will generate

canonical transformations, preserving the area (or volume) by Liouville

theorem. The formalism is more general, as such area-preserving

transformations may be defined also on manifolds which are not phase

spaces. According to Fletcher |25j, every infinite double-indexed Lie

algebra like the above one may be put into the Moyal form (or its

particular case, the Poisson form) in some conveniently chosen Junction

basis . Actually, he shows that any (infinite double-indexed) bracket

algebra may be transformed into Moyal's, provided only that it satisfies

Jacobi identities, lhe systems of basic functions {(pm(x)} depend, of

course, on which phase space is considered. Proposed basis are, for

instance: {tpm(x) = x,1"1^"12*1} for the plane and (qWx) = x,m> 'e'"12^}

for the cylinder. In reality, such basis are chosen so as to provide infinite

algebras of proper interest. But the question which remains is: when we

expand general functions in terms of such basis, how do we calculate the

coefficients ? In order to have well-defined situations, functions should

constitute an inner-product space, with an integration measure provided.

Notice further that, in the regular representation needed, also the

coefficients represent the group. The basis proposed above are local basis

and do not allow expansions of functions on the plane and the cylinder,

but only on limited domains of them. However, different domains mean

actually different spaces. It is enough to recall one true basis for the

plane, the quickly converging Hermite functions, to realize that the

behaviour at infinity must be accounted for in some way. Furthermore,

for quantization we need unitary characters and polynomials are not

enough. Abraham and Marsden [31], for instance, have considered the Lie

algebra of real-valued polynomials on E2n , but showed soon after that no

full quantization is possible. Non-unitary characters |32j may be very

hell ul for other ends, such as analytic continuations to make contact with
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Laplace transform, but quantization is related to true Fourier expansions,

summations over (non equivalent) unitary irreducible representations.

Thus, in what concerns quantization, the whole issue is not clear and

deserves further study. The third reason for the simplicity of our case is

that our basis {(pm(r) = e
l ( 2 j | / N ) n i r} for the torus and its limit do respect

the unitarity requirement, and that is why we shall be able to obtain a full

quantization. In what follows we shall do something similar to the infinite

algebra procedure, but finding directly the Moyal bracket {f, g}M o y a , =

limx_* x' |-sin(scfxif ')f(x)g(x')], and with full justification coming from

operator space via Weyl-Wigner transformations. Let us say once more

that ours is the simplest case and that quantization on non-trivial spaces is

a vast and very difficult problem [33]. Finally, we are here comitted to

Weyl prescription. There are others (34], leading to other infinite

algebras, and to other kinds of quantization. They are ignored in this

paper.

5. MATRIX DIFFERENTIAL GEOMETRY

We have previously established that functions describing

quantum phenomena are noncommutative. Noncommutativity of

functions being a signal of geometrical noncommutativity, let us address

ourselves to the differential geometrical aspects. We look for the

Hamiltonian structure in the space of quantum operators, which on the

lattice torus are finite matrices. What follows in this section is a

simplified resume of the DKM results. Let us start by receai I ing some

basic facts of algebra. Given the set MN of NxN matrices of complex

elements, the set End(MiM) of all the endomorphisms (linear operators)

MN — MN is an associative algebra and the set of its commutators,

indicated by |Rnd(Misi)l, is a Lie algebra. Any endomorphism D:



MN such thai IXab) = (Da)b + a(l)b) is a derivation. The Lie algebra

|EIUJ(MN)I contains D(MN). the subspace of all the derivations of MN, as

a Lie subalgebra: the commutator of two derivations is a derivation. Each

element a 6 MN defines a derivation ad(a) = ada by the adjoint action,

ada(b) = |a, bj. Conversely, every derivative on MN is of the form ada for

some a e MN- We slate ihese well known facts to emphasize the

distinction between an algebra and its derived algebra. Perhaps the

example which best illustrates this point conies from Classical

Mechanics, where the derivative corresponding to a member of the

algebra of the dynamical quantities, say F(q, p), is the corresponding

Hamillonian field Xp, whose effect on another quantity G is given by the

"commutator" involv d, the Poisson bracket: Xp(G) = {F, G}. The

Hamiltonian field Xj is the infinitesimal generator of the canonical

transformation whose generating function is F.

On a differenliable manifold V, differential forms map fields into

the space C°°(V) of differenliable functions on V. C"(V) is, with the

operation of pointwise multiplication, a commutative algebra. We shall

find out a non-comutative geometry by replacing functions by matrices,

the space C°°(V) by MN- Let us then inlroducce differentials in matrix

space. Differential forms will become MN-valued and some new

properties will come forth.

A set of SU(N) matrices Ek, with |£j, Ekl = C'jkEi, provides a

basis for the algebra M N , and the derivative algebra will have a basis

{ek}, with ek = ad^. A general derivative X will be written as X = Xkek-

In a way similar to differential forms, a whole graded algebra Q =

©p£2p(Mn) of matrix-valued forms is given in the following way [35].

" n ) is identified to MN itself. Just as the differential of a function f
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acts on a field X according to df(X) = X(f). the space ftl(Mn) of 1 -forms

is introduced once a differential operator d is defined by

dM(X) = X(M) = adxM = |X. M|. (5.1)

For higher orders, d: QP - • Q1*1 is given by

(p+lKdH)(ei,e2

e4 ep) - Sde, , e 2 ] , e3 , . . . , ep+i) + E(|ei, e3) , e2 , . . . ,

S(le,, e 4 ] , e2 e^i) + . . . + (-)p S(|ei, e ,»,] , e2 ep) + 2(e,, le2

,e3l ep+i) + . . . + (-)pS(e,, e2 , e3 , . . . , |ep,epti]).
(5.2)

This "dn is the well known derivative |36] used in the study of Lie algebra

cohomology (37). Each expression like e|H(e2, e3 , . . . , ep+i) means here

that ei is to operate as in (5.1) on the result of applying S to (e2, e 3 , . . . ,

ep+i), that is, for instance, eiE(e2, e3 , . . . , ep+i) = | d , S(e2 , e3

ep+i)]- It comes out from this definition that d2 • 0. For example,

(d2M)(e,,e2) = e,(dM(e2)) - e2(dM(e,)) - dM(|C|,e2]) = e,(e2(M)) -

e2(ei(M)) - |ei, e2](M) = 0. Now that the functions of usual differential

calculus have been replaced by matrices, notice that dM N (X) = dM(X)

N = [X, MJ N * N dM(X) = N IX, MJ, that is, dM N * N dM.

An interior product is provided by an antiderivation ix

corresponding to each derivation X of the algebra. It is given by the

requirement that

(ix S)(X|, X2 Xp.i) = S(X, X | , . . . t Xp.,) (5.3)

hold for all sets {Xj, X2 Xp.j} of derivatives. Then Lx = d o ix +

ix o d is a derivation, the matrix analog to the Tie derivative. Properties
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alike to those valid in differential calculus, such as d o Lx = Lx o d, { ix t ,

ix2} = 0, |Lx,, Lx2l = L|Xp x2j' e lc« m a y be shown to keep holding.

It is immediate that dEk(ej) = ej(Ek) = |Ej, Ek) = C'jkEj. The forms

dEk constitute a basis for Q'(MD). Higher order multilinear mappings

would constitute the analogous to higher order forms, but there is an

important difference: due to matrix noncommutativity, dM dN * - dN dM

in general. The basis {dEk} has this defect. A far more convenient basis

is formed by those GJ which are dual to the ej's.

(5.4)

In this basis,

dEk = CikEi&. (5.5)

Now the Bi's, unlike the dEk's, do satisfy

&& = -&&, (5.6)

and furthermore
£j (5.7)

a formula of Maurer-Cartan type.

Introducing the "canonical form"

(5.8)

DKM have shown that the two-form

(5.9)



provides a natural symplectic structure on the matrix space, defining

consequently a Poisson bracket. In Classical Mechanics, the Poisson

bracket of two dynamical functions F and G equals the symplectic form

applied to the corresponding hamiltonian fields Xp and XQ- {F, G} =

£Í(XF, XG) - - XF(G) = XG(F) = dF(XG) = - dG(XF). On the matrix

space, to each A E MN will correspond a hamiltonian field XA £ D(MN)

which is such that G(Y, X A ) = Y(A) = dA(Y) for all Y 6 D(MN). The

matrix Poisson bracket is defined by

{A, B}M = «(XA, X B ) • (5.10)

Due to linearity, it is enough to examine the relations for the basis

members. Thus, {Ei, EJ}M = Q(ei, ej) = dEj(ej) = ej(Ej) = i|Ej, Ej| and in

consequence {A, B}M = I A, B|. We shal find it convenient, by reasons of

hermiticity, to define the derivatives as X(M) = ad,xM = i|X, MJ in the

following. In this convention,

{A,B}M = i |A,B | . (5.11)

Thus, the Poisson bracket coming out from the natural Hamiltonian

structure in a matrix manifold is just the commutator. We shall in the

following show that, despite some peculiarities, once the formalism is

applied to the quantum operator algebra, this symplectic structure is
exactly that provided by the cocycle a 2 and the Poisson bracket is

directly related to the Moyal bracket. Many more things may be

introduced on matrix space, such as integration, coderivative and the

Laplacian, connections and their curvatures. Also general theorems like

the Hodge decomposition have been proved by DKM, but we shall not

need them here. We only remark that on Manin space a similar

differential calculus has been defined |38|.
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6. QUANTUM SYMPLECTIC GEOMETRY

Excluding the unit So = S(o,o). the Sm's are n2-! unitary traceless

matrices and may be used as a basis for the algebra of the special unitary

group SU(N). The dynamical quantities, as expressed in (2.12), belong to

the algebra MM- In reality, the Sn,'s generate a subgroup of the complex

linear group GL(N,C) with the center as commutator subgroup. Taking

them as a basis for the algebra, we consider the related derivative algebra
generated by the operators em = ad(iSm) = adis (for all Sm * So). Using

the Jacobi identity, we find that, for all Sfc, |er, em)(Sk) = 2sinl<i,(r, m)j

*Wr(Sk). so that the general commutators are

= 2 sinlu2(r, m)j ero
+r.

(6.1)

The structure coefficients

<ym = , m (6.2)

(where ^ ) have the symmetry <:*„„ = Cr.ni,pand define

a Curtail Killing metric,

This has an obvious relation to the metric (2.11): k,. f = 6^ = CT tr(Sr$tg)

= grk. It is important to keep in mind that all numbers, also in the

Kronecker deltas, are mod N and that, for all that concerns the derivative

fields, the vanishing index 0 = (0,0) is excluded. For this reason we must

use an adaptation of (2.18) in the above calculations: if we indicate by X,

I
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with primed indices, the summation excluding the (0,0) contributions, it

becomes

(6.4)

The metric k n establishes a relationship with the hermitian conjugates,

which furthermore allows an improvement in notation. In fact, we verify

that, defining Sm - k m n S D , such "covariant" versions of the

"contravariant" Sm's are just their hermitian conjugates:

Thus, (2.13) is also Am = tr [SniA].

We introduce a basis of 1-forms 8*" dual to the er,

which satisfy

&" & = - GT Of". (6.5)

It is immediately seen that

dSro (er)= CAS*) = |iSr, Sml = CnnSp = 2

so that

dSm = Sp CP™ e r = 1T 2 sin[a2(r, m)]Sm+rer. (6.7)

Calculating del* (em, er) by (5.2), we find

de?=- L <ym e»" e1» = Zm 2sin|o2(p, m)i or or»*. (6.8)

We define then the matrix-valued I-form



(6.9)

and the symplectic two-form

Q = d 8 . (6.10)

It follows that

ü = SpO>
mre

me r= 2p2m2sm|a2(m,p)| Sptf" ei"».

or equivulently

ü = 2 r 2 m sin[a2(r, m)] Sm+r e
r e m , (6.11)

or still

L22 (6.12)

Here we have isolated the components

Pn.= CPnBSp = i|Sr,Sin] (6.13)

in terms of which

eo,(A)= £2ramrA
r : (6.14)

|A,B| = - j^2 r , m A r i 2 r m B m ; (6.15)

dSm = 2 rO r mef; (6.16)

dA = ^2 r f mA rQm re
m ; etc.

We may form a matrix with entries C2rm,(2 = (Qrm), which will be the

analogue of the classical symplectic matrix. Q will be a hypermatrix, a
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matrix each entry of which is itself a matrix, and this is an intimation of a

Hopf algebra.

The hypermatrix *Q has actually an inverse, defined as a

hypermatrix f with the properties f Q = Ü f = Í . One verifies using

(6.4) that

rü = JJT Sj S* = ^2 ete*W>S*J = ĵ r e ^ ' ^ ' S 1 * * . (6.17)

We find also

We are used to the fact that the inverse to an antisymmetric matrix is

another antisymmetric matrix. This is not necessarily true for

hypermatrices, and indeed rU is not antisymmetric. Using (6.17), we find

j ( 6 , 9 )

and (6.13) tell us that

ri» - t*i = ttü = kin» ki" Qmn . (6.20)

Given any field X = ^£mXn>eni, the interior product i\ e = e(X)

= ^r2n,SnjG
m(X)= 1

Fr2m.nSinX'n. We verify easily that d i X e = -iXQ.

Thus, the Lie derivative of 6 vanishes for all X. Then Lx ft = Lx o de

= d o Lx O = 0, and consequently, in classical terminology, all fields X

are strictly hamiltonian (39). The operators of the form ©(X) = Ò-

ImSmXm play the role of generating functions: d|e(X)) (Y) = Q(X. Y) =

- d|9(Y)) (X) for all X, Y. This corresponds to a result of 1, where the
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fundamental cocycic 1x2 has been shown to vanish under the action of the

Lie derivative defined by any transformation.

Conversely, to operators A = jq-2mAniSin and B = jq-2rBrSr, will

correspond hamiltonian fields XA = - ^-£niAloein and XB = - f^£rBrer

[the factors (-i) being necessary if the coefficients are to remain the same

of (3.10)|. The corresponding "Poisson bracket" is defined by (5.10) and

it follows that

{A, B}M = £ IpSmA-BP™ sinMm, p)| Sp. (6.21)

A glimpse at (3.9) confirms (5.11),

{A, B>M = i IA, BJ, (6.22)

and we can read the (discrete version of the) Moyal bracket components

in (6.21). We see thus that the DKM symplectic form gives directly the

Moyal bracket. Concerning the relationship between a 2 and Q, we might

say that a2 stands to Q as the Poisson bracket stands to Moyal's. As a last

point, it is easy to verify that |em, er | (Sp) = d{Sm, Sr} (ep) = ep({Sm,

Sr}), from which follows that

|XA, XBI (C) = d{A, B} (Xc) (6.23)

for all operators A, B, C. This means that the matrix Poisson bracket of

two operators works as the generating function of the commutator of the

respective derivative fields. In reality, the classical formula

{A, B} = Q (XA(XB) = e,(B) fl ej(A) (6.24)



keeps holding here. We must only be attentive to the fact that, as each

factor is now a matrix, this expression holds only in that precise given

order.

Equation (6.22) does not come as a real surprise. It has a clear

analogue in Classical Mechanics: suppose the Liouville canonical form s,

(which is such that the symplectic form is ft = - do) has vanishing Lie

derivatives with respect to all members of a field basis {e^}, such that |ej,

ejl = ckjjek. Then the fields have global generating functions o(ck) and

their Poisson algebra just mimic the field algebra, {o(ei), o(ej)} =

ckijo(ek). However, this is not always the case in Classical Mechanics.

For classical systems in general Hamiltonian fields are only locally

related to a generating function, while we have found above that all fields

are strictly Hamiltonian in the quantum case. In classical systems, the

commutator of two fields is not necessarily generated by the Poisson

bracket of the respective generating functions [40]. The difficulty in the

classical case comes from the necessity of global fields. Basically, it

supposes the phase space to be a parallelizable manifold, such as a Lie

group. Here, by taking a case whose semiclassical continuum limit is

purely euclidean, we have avoided such difficulties of the general

classical case.

Let us now quickly examine the Weyl-Wigner counterparts of all

that. With the star product, the functions constitute a unit algebra, as

<Po(p) = W(0.0)(P) = 1; <Pr<p) o qpo(p) = qUp), etc. We could obtain the

whole structure without further resource to the operator version, through

the use of the derivatives Mpmiq) = {<Pi<p)i Wm(p)}Moi^ and their dual

forms a* such that a'(Lr) = Ô\. We shall however prefer to use the
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parallelism ol both formalisms. The Wey I -Winner versions of the

symplectic form entries are

, <Pm(q)}MoyaJ ; (6.25)

and of the inverse,

py(q) = (rii)w(q) = fir eia*W><pVj(q) • (6.26)

Good use of (6.4) leads indeed to

2j-pU(q) o wjk(q) = ô'k. (6.27)

As expected, we find also that

= UfWp) = W p ) , <Pm(p)}MoytJ = u>nn(p),
(6.28)

so that

d(pm(p) = Ir{q)r(p), <Pm(p)}Mmal a
r = r . (629)

On the other hand, we have uf(p) = - Zmprm(p)d(J)m(p) and

2f2mu>rTn(p)u'(p)a'"(p) = 2mdcpm

= - 2m2kd(pm(p)pmk(p) dq)k(p).

It follows then from 0 = d2qpm(p) =

da'(p) that

+ |LfqPm(p)J

da'(p) = - 'r 2£jCrya*(p)ixJ(p), (6.29)
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and

2rt«HqWp)a«"(p)) = \ ZiSjtoija'CpMp). (6.30)

These are the Weyl-Wigner versions of (6.12) and (6.10).

There is a complete isomorphism of differential algebras, a direct

correspondence between the operator algebra and the noncommutative

algebra of Wigner functions. We may use either the hypermatrices with

matrix entries or usual matrices with entries in the "star-product algebra".

The statement that the dynamical quantities are the same in Classical and

in Quantum Mechanics, only (the product defining) their algebra being

different, is thereby vindicated.

7. THE QUANTUM WEB: BRAIDING BEHIND PHASE SPACE

We shall examine now the presence, in the above formalism, of

solutions of Yang-Baxter equations, or, equivalently, of solutions of the

relations defining braid groups.

We have been finding matrices the entries of which are themselves

NxN matrices. The natural abodes of such hypermatrices are direct

product spaces. Recall that in direct product index notation the product A

® B of two matrices has entries

Blmn> = <ilAlm> <jl Bln>,

the direct product of three matrices will have elements

<ijklA 0 B ® Clmm> = <ilAlm> <jl Blnxkl Clr>,
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and so on H R = A ® B, and E is the N x N identity matrix, we use the

compact writing

= A ® B ® E ,

= A ® E ® B ,

R23 = E ® A ® B, etc.

Matrix elements are <ijlRlmn> = R'Jmn and, more important for what

follows, <ijrlR ® Bmns> = Ô̂ RÜ

Representations of the braid groups |41j come out very simply in

this notation. Recall that, for the n-strand group, we may use as basis a set

{OJJ obeying lhe relations

i= 1,2 n-1;

OJ oj = oj oi for li-jl £ 2.

The symmetric group So is the special case coming up when all these OJ'S

satisfy the additional conditions (oj)2 = 1. To see how the direct product

representation works, look for the braid group generators 01 and 02 as o,

= B12 and o2 = B23, B being some direct product as above. Then,

jil o, o2 O|lmnr> = <kjil b^labsxabsIB^ lucxxucxlB12lmnr> =, o2 O|lmnr> = <kjil b^labsxabsIB^ lucxxucxlB12

on the other hand,

<kjil o2 o, o2lmnr> = <kjil



The braid equation a, a2 a,= o2 o, o2, or

^12^23^12 = ^23^12^23' (7.1)

becomes
. (7.2)

Given B satisfying this equation, the matrix R = PB, defined by the index

permutation P fixed by R'Jmn = BJ'mn. will satisfy the Yang-Baxter

equation,

RikabR'bcrRcamn = R'JcaR^bR^nr , (7.3)

which in compact notation is

R12^)3^23

There is a direct realization of these relations in terms of the metric

kri: R^mn = (^n^m + a ^ kmn) is a solution provided the

complementary condition a + a"1 + N2 = 0 is satisfied. A quantum group

may be introduced in a way analogous to a classical group, as that Hopf

algebra of hypermairix transformations preserving a given bilinear form.

The above R matrix is just the one related to the preservation of the

metric [42], The complementary condition is better understood in terms

of braids: it corresponds to the equality of two braids differing only by a

Reidemeister move (of type 11), by which one changes the relative

position of two strands without any "passing through" between them.

We shall however show the presence of another kind of solution,

which is non-trivial due to the multiplicity hidden in (2.15). When we

write Sr Sm = e2>a^n' r)Sm Sr, we are not actually telling the whole

story: this gives simply the commutation condition for two fixed matrices
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Sr and Sui But Sr Sm is actually related by phases to any other product

of pairs of basis matrices such that the sum of the indices equals r + m.

Let us define the set B = { B \ | } of commutation coefficients

between the members of the algebra basis by:

InSn. (7.5)

Then the general solution is

B«mn = ô^nrtt. e ^ ™ » n>" a2& J>J . (7.6)

We may check directly that this does respect equation (7.2), but we

may also use another way which, though lengthier, shows clearly how

representations of the braid groups come up very simply from any

associative algebra. We shall here follow a simple method leading

directly to the braid equations for the Schwinger basis, but it will be clear

that the procedure is valid for more general cases. The only specificity

will be that here all indices are double. Let us impose coherence of the

commutation coefficients with associativity and compare two different

series of ways of bracketing the S'*s:

S k S * S 1 = ( ) ab^)

= B^abB^rB^nmS™ S n S r ,

on the other hand,

SkS* S1 = Sk(SÍ S') = Bi i
ca(SkSc)S l l =

B^.nb S m (Sb Sa) = BJ«« B^no, B * , , S m SBSr
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Consequently,

appears as an acceptable condition. This is just the braid equation (7.1),

though here with double indices.

Notice to begin with the role of B as a kind of "grandmatrix",

representing the exchange of matrices. More interesting is the fact that the

subindices reflect just the order used in the bracketing: we have, to obtain

the left-hand side of B12B23B12 = B23 B12 B23 , taken first the lrst and

the 2nd of the S's (which finally yield B12), then the 2nd and the 3rd (to

obtain B23), finally again the lrst and the 2nd of the S's (to get the final

B12) And quite analogously for the right-hand side. Each S is related to a

strand of the braid.

Equation (7.1) is a presentation of the 3rd braid group B3,

corresponding to only three strands. For higher number of strands, we

may consider higher order direct products and obtain elements of higher

order braid gioups. Adjacent bracketings lead to expressions of the type

°i°i+l°i = °i+i°i°i+l above. Non contiguous bracketings will then lead

to exchanges in which the Si's ignore each other, and thus to expressions

of the type oypi = ojok for li-kl 2 2. Untouched Si's correspond to non-

exchanging strands.

Let us proceed to a inspection of the matrix elements of (7.6): (i) in

the diagonal, m = i and n = j , we have just the identity; (ii) the case m =

j;n = i, with

B«U = ôíkôVr1"** i)= ô í ^ e
2'«2(k. I), (7.7)



corresponds to (2.15). This case is trivial in the sense that B2 = I, so that

it is not a representation of the braid group, but one of the symmetric

group which is meant. The other cases are non-trivial and come up from

the mentioned fact that the product S'S^ is, up to the compensating phases

of (7.6), equal to any other product SmSn, with the only proviso that i + j

= m + n. The existence of non-trivial matrices B is directly related to the

fact that r*J is not simply antisymmetric. Indeed, (7.5) is the same as rJI =

£in,n BÜmn r"m. If the matrix B were a negative-diagonal hypcrmatrix,

then B2 = I and only the symmetric group would be present. Braiding as

found above is consequently a specifically quantum effect.

A negative point from the practical point of view is that the

matrices are of very high orders. Because indices are double, the matrices

are N^xN^, too large for direct manipulations. For N = 2, B is a 16x16

matrix; for N = 3, it is a 81x81 matrix, etc. It remains anyhow that we

have found braids at work in the backstage of Quantum Mechanics,

although their meaning and importance (if any) are yet to be examined.

8. FINAL REMARKS

As said at the end of section 2, we have started with QPS as we

would have started with the simple pair (q, p) in Classical Mechanics, and

finished by finding a symplectic structure in the very algebras of general

operators and/or Wigner functions, which appears directly as the quantum

version of the algebra of general dynamical functions. Quantization

appears directly as a deformation of the algebra of classical observables,

as a manifestation of the non-commutative character the geometry of

physical observables. Perhaps the most striking aspect of the formalism
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above is precisely this directness, an obvious consequence of working at

the same time with Weyl-Wigner transformations and with matrices. The

expression of each operator is automatically a discrete version of the

Weyl prescription relating classical dynamical quantities to their quantum

representatives through their Fourier components. The advantages of the

discrete formalism come from its finiteness and formal simplicity.

The differential geometric treatment provides a clear distinction

between the operators and the corresponding derivative fields (the true

"quantum derivations") and clarifies some aspects of 1. It was noticed

there that the relation between the fundamental cocycle 02 and the

classical symplectic form was of exponential type. We see now that it is

(he sine in Moyal's bracket which establishes the exact correspondence.

The DKM natural symplectic structure on the differential operator space

is related to the Moyal bracket, thereby vindicating those authors'

assertion that "quantum mechanics is noncommutative symplectic

geometry".

Structures of Classical Mechanics come in principle from quantum

mechanical structures, although something may be lost or distorted in the

limiting process. From all that was said here, the classical symplectic

structure stems in the long run from the cocycle a 2 and is, as a

consequence, a relic signal of the basic noncommutative character of

quantum mechanical geometry. We have in the introduction started with

the set of dynamical functions F(q, p) defined on classical phase space.

With the "classical" pointwise product that set constitutes a trivial

algebra. Quantization changes neither the functions nor their set, but

changes their product. And even the mathematically "strange" Poisson

bracket, "strange" because it did not come from an associative product,

comes out now as a limiting case of the quantum bracket, thus as part of

the quantum heritage of Classical Mechanics.



Acknowlcdmcnts The author is very thankful to Ph. Tourrenc and K.

Kerner for hospitality at the Institut Henri Poincaré, University of Paris

VI and CNRS, France, in a period when the initial part of this work was

done, and to FAPESP, São Paulo, Brazil, for financial support during that

time. Warm thanks are due to D. Galetti, R. Kerner and J. Madore for

many helpful discussions. Particular gratitude is due to M. Dubois-

Violelte for patiently shedding light on many points of noncommutative

geometry to the author's neophyte eyes.

REFERENCES

| l | P.A.M. Dirac, Proc.Roy.Soc.A109(1926) 642.

|2| R. Abraham & J. Marsden, Foundations of Mechanics , 2nd ed., Benjarnin-

Cuminings, Reading, Mass., 1978.

131 Fur a general overview, see A. Connes, Géométrie Non-Commutative,

InterEditions, Paris, 1990.

|4| Yu.l. Manin, Coinmun.Malh.Phys. 123(1989) 163.

|5| M. Dubois-Violelte in C. Bartocci, U. Bruzzo and R. Cianci (Eds), Differential

Geometric Methods in Theoretical Physics, Proceedings of the 1990 Rapallo

Conference, Springer Lecture Noles in Physics nr. 375, Berlin, 1991.

|6| R. Coquereaux, J.Geom.Phys. 6(1989)425.

|7| F. Bayen, M. Flato, C. Fronsdal, A. Uchnerowicz and D. Sternheimer, Ann.Pbys.

HI (1978)61 and 111.

(H| R. Aldrovandi and D. Galelü, J.Malh.Phys. 31 (1990) 2987.

|9| M. Dubois Violette, R. Kenierand J. Madore, J.Malh.Phys. 31 (1990)316.

|io) J.E. Moyal, Proc. Cambridge Pbys. Soc. 45 (1949) 99.

1111 H. Weyl, Theory of Groups and Quantum Mechanics, E.P.Dutlon Co., New

York, 1932.

112) D. Galetti & A.F.R. Toledo Piza. Physica A1 $6 (1992) 513.

1131 J. Schwinger, Proc.Nat.Acad.Sci. 46 (1960) 570. 893; and 47 (1961) 1075;

included in J. Schwinger, Quantum Kinematics and Dynamics (Benjamin, New York,

1970).

114| J. Palcra and H. Zassenhaus, J.Math.Pbys. 29 (1988) 665.

I
i



49

1131 See for instance D. Galetti and A.F. Toledo Piza, Physic a AI49 (1988) 267.

|I6| See also G.A. Baker. Phys.Rev. 109 (1958) 2198; G.S. A gar* a I and E. Wolf.

Phys.Rev. D2 (1970) 2161.

117) R. Aldrovandi, Discrete Weyl-Wigner transformations .to appear in

H.D.Doebner, W.Scherer & F.Schroeck Jr. (Eds.), Classical and Quantum Systems

- Foundations and Symmetries , Proceedings of the II. International Wigner

Symposium, 16-20 July 1991, Goslar, Germany, World Scientific, Singapore.

|I8| See K.C. Liu, J.Malb.Phys. 17 (1976) 859 and references therein.

|I9| For a general review see L. Alvarez-Gaumé, G. Sierra & C. Gomez, Topics in

Conformai Field Theory , CERN-TH .5540/89, to appear in the Knizhnik Memorial

volume. World Scientific. Short appraisals from the mathematician point of view are

J.S. Birman, Math.Intelligencer 13 (1991) 52 and V.F.R. Jones, Intern J.Mod.Phys.

B4( 1990)701.

|20] V.G. Drinfeld, Sov.Math.Dokl. 27 (1983) 222. See also M. Dubois Violette,

preprint Orsay-LPTHE 89/20.

|2l] S.L Woronowicz, Commun.Math.Phys. I l l (1987)613.

|22| M. Dubois Violette & G. Launer, Phys.Lett. 245 (1990) 175.

|23) R.H. Crowell & R.H. Fox, Introduction to Knot Theory , Springer Verlag,

New York, 1963.

|24j A, Kirillov, Elements de la Théorie des Representations , MIR, Moscow,1974.

|2S| See for instance P. Fletcher, Phys.Lett. B248 (1990) 323 and references therein.

|26) E.G. Floratos, Phys.Lett. B228 (1989) 335.

|27) EG. Floreios, Phys.Lett. B233 (1989) 395.

|28| E.G. Floratos, Pbys.Lett. B252 (1990) 97.

|29) D.B.Fairlie. P.Fletcher and C.KZachos, Phys.Lett. B218( 1989) 203.

130) V. Arnold, Annales de I'lntitut Fourier XVI (1966) 319

131 ] Reference |2] above, p. 435 on.

|32) G.W. Mackey, Unitary Group Representations, Benjamin/Cummings, Reading,

Mass., 1978, chap. 25

|33] See C.J. I sham's lectures in the XL (1983) Les Houches Summer School, in

Relativity, Groups and Topology II , B. S. DeWitl & R. Slora (eds.), North-

Holland, Amsterdam, 1984.

|34] G.S. Agarwal and E. Wolf, ref.| 16] above.

135] M. Dubois-Violette, C.R.Acad.Sci.Pans 307 (1988) 403.

|361 N. Jacobson, Lie Algebras (Interscience, New York, 1962).

|37J A short introduction may be found in R.AIdrovandi, J.Math.Pbys. 32 (1991)

2503.



50

|3K| J. Wcss and B. Zumino. preprint CbRN - TH S697/90, to appear in the volume

dedicated to R. Stora on his 6uth. birthday.

|39| A.A.Kirillov, ref. |24| above.

|40| V.I. Arnold, Lti Mélhodes Malhtmaliques de la Méchanique Classique , MIR.

Moscow, 1976, mainly appendix 5.

|4l| For a resume on the subject, see R. Aldrovandi, Fortsch. Phys.40 (1992) 631.

|42| M. Dubois-Violelle & G. Launer, ref. |22J above.


