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Abstract

The hopping rate of localized defects interacting with a two-dimensional electron
system is studied. It is shown that, at low temperatures, the hopping rate is an
oscillatory function of the inverse of the magnetic field. The period and the amplifi-
cation of the oscillations are independent of the electron-defect interaction and the
detailed structure of the sample. It is predicted that the temperature dependence of
the hopping rate differs significantly between the cases of filled and half filled Landau
levels.

1990 PACS # s: 66.30.Jt, 71.45.Gm

(submitted to Physics Letters A)



Localized defects in solids (e.g., muons in metals or muoniuns in semiconduc-
tors) presents an interesting problem in condensed matter physics.1"5 Due to the
nonvanishing offdiagonal matrix elements of the Hamiltonian, these defects can hop
from one potential well to a neighboring one. When they hop, the environment can
be excited (e.g., electronic excitations and phonons). Even a slowly moving heavy
charged particle in a degenerate Fermi gas can excite electron-hole pairs with small
excitation energy. These low energy electrons are not able to rearrange themselves so
that their wavefunction are centered around the new site. As a result, the hopping
bandwidth is greatly reduced. This result is a consequence of the "Anderson orthog-
onality catastrophe".6 This comes about as a result of the presence of a large number
of electron-hole pairs of low excitation energy that must be accounted for within the
structure of the many-particle wavefunction in the basis of electronic eigenstates. By
assuming a model electron-particle interaction Vo, and a constant density of states
p of width D for conduction electrons, Kondo found that the hopping rate is pro-
portional to T2K~\ where K = VOV(1 - sin2 kFa/(kFa)2). Here a is the nearest
neighbor hopping distance and kp is the Fermi wavevector. This can be understood
as follows: T2K comes from the effect of the screening of electrons whereas T"1 comes
from the level broadening proportional to T. Experimentally, this T2K~l behavior
was observed by Kadono et al in muon diffusion in Cu.7'8

By treating the dynamically screened fields of electrons selfconsistently, we have
shown in a recent work9 that the reduction of the hopping bandwidth is not only due
to the wavefunction overlap but comes from all possible electronic virtual excitations.
The plasmon excitation contributes a normalization factor which can be as large as
one to two orders of magnitude in normal metals.

In this letter, we shall study the hopping of localized defects in a structure where
electrons are confined in a two-dimensional (2D) or quasi 2D plane and are under a
constant magnetic field perpendicular to the plane. We shall show that the hopping
rate can exhibit some new features quite distinct from the case where electrons are
free particles. Due to the unique properties of 2D systems under a magnetic field,
our study provides a method of modulating the motion of the defects by varying
the applied field. On the other hand, it is also suggested that one may study the
properties of the electrons (e.g., density of states) via the motion of the defects. The
structure used here can be a heterostructure, a double barrier struct ire with a thin
well in between. Electrons are assumed to be confined in the direction perpendicular
to the plane.

The transition probability of a particle in eigenstate |t) hopping from lattice
site 1 to lattice site 2 in eigenstate | / ) is given by 3>1°

(1)

where Ja is the hopping band width. The average appearing in Eq. (1) is carried out
over all possible initial states. In writing Eq. (1), it is assumed that the energy levels
for a particle at lattice sites 1 and 2 are virtually the same, or the energy difference
between corresponding energy levels at the two lattice sites is small compared to the
temperature.

The initial Hamiltonian Hi is given by (assuming spin degeneracy)

ff. = .ffe+Vi (2)



where

2 Yl ]£ u,^nm(g*,fc»+9w»fcw)«'»ni(9x,*l,9y.i)
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(3)
Here U is a potential due to short-range scatterers and Vi is the electron-defect
interaction when the defect is at position (z^,^) given by,

Vi = E Vte"'" «''** J»'(fc. *•.*»- «>U««'.*>+* (4)
f

In these equations the symbol Jnm is given by

J«m(fc, *„ *'y) = / ~ diC'Vn (y + I*,) V- ( j + '*.) (5)

where the following notations have been used, uc = eB/m is the cyclotron frequency,
/2 = l/(mwc) is the magnetic length and xo = Pkv is the center coordinate. The
coordinate R is along the x-y plane and z is along the third direction perpendicu-
lar to the plane. The function fn(

x) IS the nth eigenfunction of a simple harmonic

oscillator, a\ k and an,ku
 aie creation and destruction operators for an electron with

quantum number n and Jkw and v, = 4ire2/q2 is the Fourier transform of the Coulomb
interaction. In the following, we take Ri = 0 and and ^2 = R- In the interaction
representation

4(t) = (eiH-'e-"'') = (f exp[i / ' drV(T)]) (6)
Jo

where T is the time-ordering operator, V(t) = elH%tVe~tH%l and V is defined as

V = V2 - Vi = E "^nn'Cgr, *», *:» - 9»)al,fc,an'.fc,+,ll (7)

with u, = Vr,[e~»t3e'«^ - e~qz'\ Expanding <j>(t), keeping only the lowest order term,
we obtain

# t ) = exp[F(O], (8)
where

F{t) = -f di1dt3(V(tl)V{ti)) = -[ AiA8i;V fV;(n(^«Hfl J0). (9)

Here n(9,f) = E^nn'(-9i, fcy,*» + 9y)aI,t,(0an'.t,+«ll(*) i s t h e density operator. In
our calculations, we keep terms up to order uj. Therefore, the average in F(t) can
be replaced by the average over Ht. The density-density response function, by its
definition, is given by

V f/>^[^] (10)



where /? = T ' . I n the random-phase-approximation (RPA), -

e{q,u) = 1 - vqX(q,u) (11)

and the single-particle density-density response function is

n,n'

where for (n' > n),

Tl! i vi

Cnni(q) = 2^, Jnn'iqx, ky, ky — qv)Jn'n{—qx, ky — qv, ky) = p—Xn ~ne~ [IrJJ ~n(X)]2

(13)
with p = (2eB)/(irhc), X = (ql)2/2, and L™(X) is the associated Laguerre polyno-
mial. The function II is denned as

where w/ = i(2l + l)T. The single particle Green's function is given as Gn(w) = [hu —
(n + l/2)ftwc — E]"1. It should be noted that all quantities used here are retarded ones.
We shall assume that the electronic selfenergy is due to some short-range scatterers
and we will treat it within self-consistent Born approximation (SCBA). It can be
shown11'12'13 that both G and E are diagonal in the Landau representation and they
are independent of xo. Furthermore, for short-range scattering, E is independent of
n, i.e., a multiple of unit operator and it is determined by E = F2 ^Gn(u>), where
F2 = (2/7r)(ft2wc/r) and r is the lifetime for zero magnetic field. By a standard
technique12, one can obtain

E(W) = ? hu - (n
Single-Particle Excitations — Inserting this result in F(t) and integrating over

<2 and i] , the term linear in t has no contribution. We obtain

where 9 stands for the imaginary parts. It can be seen that the (^-integration is
dominated by a region around w ~ 0. At small w, 3[xj oc u> and static screening is
applicable. In this case, the integration over u can be carried out and we obtain

fef
where £ is the cutoff which determines the range over which 9x«(w) ~ u 1S valid. For
large t, we obtain

(18)



'The parameter K is defined as

u,

Upon using 9n»».(w) = - J / £ , de[/(e) - /(e + w)]9f[Gn(c + M W » ( « ) 1 we obtain

] (20)
U><1

where f(e) = [exp((e - p)/T) + I]"1 is the Fermi distribution function and fi is
the chemical potential to be determined selfconsistently through N = (mr/irk3)
Jdef(e)f(e). By converting the sum into a countour integral, we obtain (S = A + 17),

dlr . ,_f_ f ]
dt ( ^ ) 2 Uosh(2jr7/ftu;c) - cos(2ir(e - A)/hu>c - JT)J

where n = e/wc and use has been made of the approximation \i » A, 7. This quantity
is an oscillatory function of the inverse magnetic field. The amplitudes of oscillations
increase with increasing magnetic field and decreasing temperature, but independent
of detailed electron-defect interaction. In the low field limit, ~y/huc > 1, the quantity
inside the square bracket becomes nearly sinusoidal

2ir

In Eq.(19), eq = l+q3/q is the static dielectric function, where the screening wavenum-
ber q, = 2ire2(dN/dfi) =(27re2mr/7rh3) / de(df /de)^ which is also an oscillatory
function of 1/B.

Plasmon Excitation — We now turn to the contribution to F(t) due to magne-
toplasmon excitations. In the long wavelength limit, our calculations show that

I2 *(l-e-*«*)

where 91 stands for the real parts and u>p{q) = [(2nNe2q/m) + w^]1/2 is the plasmon
frequency. The oscillatory term e~""p' has no contribution to the t-integration. There-
fore, Fpi is independent of time. Furthermore, the term e~p^p^ can be neglected at
low temperature (note wp(g) is finite even at q = 0 due to applied magnetic field).

Therefore, Fpi as it £ u ^ . only depends on the electron-defect interaction and de-
creases with the magnetic field. Our final result for the hopping rate can be written
as

v = (JlliY-F»~£-{Tli)™-\ (22)
This result, although having the same functional form as in the bulk case, con-
tains several new features, (i) For a defect trapped at distance z from the electron



plane, the electron-defect interaction is greatly reduced by a factor exp(—kpz). As
a result, A ' < 1 and the effect due to wavefunction overlap disappears. We have
v = Jaexp(—Fpi)/{TK), which is independent of the choice of £. (ii) v is an oscillatory
function of 1/B, its mean value increases slowly with magnetic field due magnetoplas-
mon excitation. A model calculation is performed by assuming only one electron layer
and a positively charged defect at z = 50J4 from the electron layer. Generalization
to many-layer structure is quite straightforward, (iii) The temperature-dependence
of the hopping rate now depends on the filling of the Landau levels. Because the am-
plitudes of oscillation in K increase with decreasing temperature, for integer fillings
(minima in A") the rate increases faster than T~l with decreasing temperature while
for half integer fillings (maxima in A") the rate increases slower than T"1. These two
cases are shown in Fig.2.

In conclusion, we have proposed an investigation to study the hopping of local-
ized defects in low dimensional systems. New features concerning the field-dependence
and temperature-dependence of the hopping rate are predicted.
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Figure Captions

Fig.l. Plot of hopping rate as a function of magnetic field. The rate is normalized by
its zero field value, T=5K, TIT'1 = 0.015meV, R = ZA zx = 50A and z2 = 52A. The
zero field Fermi energy is chosen to be Ep = 12meV.

Fig.2. Plot of hopping rate as a function of temperature for Ep/hu>c = 10 (upper
curve) and Ep/huc = 10.5 (lower curve). The parameters Ep, T, R, ZX and z2 are
same as in Fig.l.
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