
e^..-s3o^ 5 '__ /

UCRL-JC-112301
PREPRINT

Practical Authorization
in Large Heterogeneous Distributed Systems

J.G.Fletcher
D.M. Nessett

This paper was prepared for submittal to
FSRG Workshop on Network and Distributed System Security

San Diego, CA
February 11-12,1993

ThUisarxepi^tofapaper intended for pobUcationinajoiinuilorproceediagiL. Since
changes may be made before publication, tola preprint 1$ made available with the
understanding Oat it will not be cited or reproduced withoat the permisson of the
anther.

DISTHIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This document was prepared as an account of work sponsored fay an agency of the
United States Government Neither the United States Government narlhcUntvtrsKy
of California norany eflhHr employees, makes any warranty, e*press or Implied, or
iusumesanyIegalUaMityorr*i>omibflilyformeac»racy,
of any information, apparatus, product, orprocess disdosed, or represents that Its use
would not tnfringepri vatdy owned rights. Reference herein to any specific cofamrrdal
prod nets, process, or service by trade name, trademark, aiano/actorer, or otherwise,
does not necessarily coPrtitate or Imply Hsendorsement, recommendation, orfaroring
by the United States Government or th< University of California. Ike views and
opinions of authors expressed herein do not necessarily state or reflect those oTthe
UnltedStjriaGoven«iietRortlieUntv«i^ofCiuTomh^ai*dihannotbea«dfor
advertising or pi oduct endorsement purposes.

rraclical Authorization in Large Heterogeneous Distributed Systems
J.G. Fletcher and D.M. Nessett

Lawrence Livermore National Laboratory
Livermore, CA

ABSTRACT

Requirements for access control, especially authorization, in
practical computing environmenis are listed and discussed.
These are used as the basis for a critique of existing access
control mechanisms, which are found to present difficulties.
A new mechanism, free of many of these difficulties, is then
described and critiqued.

INTRODUCTION

Over the past decade and a half, system researchers have
thoroughly investigated distributed computing, analyzing its
important issues and proposing various ways of treating
them. However, the services lh;y have developed sometimes
poorly fit the problems arising in practical computing
environments. We concentrate on how this is so for
distributed access control.

Access control is implemented through two component
services : 1) authentication and 2) authorization. The
problem of authentication has received si t .leant attention
and we believe the mechanisms developed so far are
adequate in most situations. Consequently, we concentrate
here on distributed system authorization, a problem requiring
more attention.

This paper is organized as follows. First, v e analyze the
characteristics of certain practical distributed computing
environments and develop requirements for distributed
system access controL We use these requirements to critique
existing distributed system access control mechanisms,
particularly those aspects related to authorization. We
describe an authorization method that meets our criticisms,
pointing out its strengths and weaknesses and providing a
compromise containment analysis for it. We then describe a
production application that uses our authorization scheme.

ACCESS CONTROL IN PRACTICAL COMPUTING
ENVIRONMENTS

Researchers interested in distributed system security have
extensively investigated the issue of access control. For the
most part, they have concentrated on the problem of
authentication, while on the whole limiting their
investigations of authorization to the smaller sub field of
distributed operating systems. With a few exceptions,

architects of distributed systems other than distributed
operating systems have relied on the existing non-distributed
mechanisms of hosts to support authorization.

We believe that much of the previous work on distributed
system authorization rests on assumptions that only rarely
exist in practice. To support this claim, we analyze the
characteristics of a typical distributed system supporting
scientific and engineering applications and in section 3
discuss how existing distributed system access control
techniques fail to operate correctly in the presence of these
characteristics. While it would be ajjpropriate to do so, we do
not analyze systems tfiat are used primarily for business
applications, since we have little experience with them.
However, our intuition suggests that many of the
characteristics we describe arc relevant for those systems as
well.

The security environment of a distributed system
supporting science and engineering

There arc two classes of distributed application that use
security services. The first class supports system level
activity that is generally administered by system
programmers and carried out to supply infrastructure
services to distributed system customers. The second class
involves computational activity initiated by non-privileged
users, generally focused on solving some scientific,
engineering or other customer related problem. These two
classes of application possess contesting security traits.
Applications in the first class enjoy Extraordinary security
privileges, such as root access. Applications in the second
class generally are not granted special security privileges.

Distributed applications supporting scientific or engineering
work are initiated by customers rattier than by system
software or system programmers. Thus, they are an example
of the second class of distributed application. They
customarily grow from a central point and expand out into a
distributed system. As with most distributed applications,
their activity is organized around the client/server model.
However, it is rare for the servers of these applications to
exist prior to the initiation of an application run. Instead,
servers arc dynamically created when the application grows
and are terminated when the application finishes. This
pattern of behavior strongly influences which access control
mechanisms arc suitable for such applications. Generally,
there must be an unprivileged server that permancnUy runs
on hosts and that allows the creation of dynamic servers
running in the context of a distributed application user. It is

m rrn H»)
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

the permanent server that makes the appropriate distributed
system aulhorb,atioi decisions.

There is a very large investment in programs that analyze
various scientific and engineering research problems. These
programs use linear system solvers, implicit and explicit
difference equation solvers and relaxation methods to solve
partial differential and integral equations. It is far too
expensive to rewrite this software for a particular distributed
application. Instead, a distributed application must be able to
incorporate this software without modification.
Consequently, scientific and engineering distributed
applications are not at liberty to change the way these
programs do file I/O, terminal I/O or graphics I/O. While it
is possible to write driver routines that call these programs
and handle communications with other distributed
application components, the underlying system service calls
must not be disturbed.

Heterogeneity is an important characteristic of practical
distributed systems [I, 2]. We are amazed at the number of
designs that ignore this pivotal concern. Heterogeneity exists
in the physical security environment of distributed system
equipment, in the behavior of the organizations that
administer this equipment, in the protocols used within a
distributed system, in the level of vulnerability each host
operating system experiences, and in the security
mechanisms supported by hosts'.

Previous work has dealt with security heterogeneity by
organizing collections of similarly trusted hosts into pools
known variously as Domains of Trust [3,4], Authentication
Domains [5], Inter-Organization Networks [6], Realms
[7,8], and Administrative Domains [2]. Within these
domains, security mechanisms may also display a certain
amount of heterogeneity^. For example, a domain may
support the Kerberos authentication mechanism [7, 8] on
some hosts, while others may rely on the normal. UNIX
/p.tc/passwd file mechanism. Even within hosts, some
applications may support Kerberos authentication (e.g.,
rhgin, rep, rexec), while others may rely on /etc/passwd
(e.g., Telnet, FTP).

Customer initiated distributed applications face considerable
difficulties when run over resources located in multiple
security domains. They do not have special privileges and
therefore must use infrastructure security services provided
by the domains. While there are authentication facilities
available to accommodate multiple security domains [7, 8,
9], existing authorization mechanisms require either

Some may reject our thesis lhat a distributed sysiem experiences
heterogeneity in host security mechanisms, since we postulate the
pervasive use of UNIX. However, variants of UNIX do not all support
exactly the same security medi&n'tsm. For example, many v*v;:ms of
UNIX allow any user to obtain the cements of the elc/passwd file, while
others hide its contents from public view.

The work described in [w] argues against this practice. The definition of
Administrative Domain given there insists that all constituent hosts use
the same security mechanisms.

transmitting a user's password in the clear over a potentially
hostile network, or the installation of software, such as a
Kerbcrized or DASS-cnhanccd rexec daemon, that requires
root privilege. Generally, system administrators arc reluctant
to install software provided by customers that require root
access. Consequently, if systems on which the non-
privileged distributed applications execute do not support the
appropriate root privileged software, customers are forced to
use dubious security practices, such as storing their
passwords in files and passing them in the clear through
vulnerable intermediate computing and switching equipment.
A practical distributed system authorization method should
eliminate these security hazards.

Most current distributed computing is what might best be
described as network computing. Generally, hosts in the
distributed system act as independent computing agents that
retain a significant identity from an application's standpoint.
While distributed operating systems may provide a more
coherent and an ultimately superior performing base for
distributed applications, so far, tiiey have not been highly
successful in the marketplace. Our own distributed operating
system, LINCS [4,10], failed not for technical reasons, but
rather because we could not afford to support it as a unique
LLNL specific product. Nothing is currently available from
computer system vendors that provides its functionality.

Our experience with LINCS leads us to conclude lhat
network computing will remain the predominant distributed
computing model for some time to come. This means thai
distributed system support must be built on top of existing
host operating systems, which today are largely some
variation of UNIX™.

Given the ubiquity of UNIX, we are forced to consider its
security properties. Most fielded UNIX operating system
implementations contain significant security hazards.
Moreover, there are few if any mainstream UNIX operating
systems for state-of-the-art computing equipment evaluated
according to the Trusted Computer System Evaluation
Criteria [l i p . We don't have much confidence in the idea
that this situation is about to change. Consequently, we
believe any distributed system security mechanism must
operate in an environment in which the constituent hosts
have intrinsic vulnerabilities. To be more precise, we believe
that when a host compromise occurs, the security
mechanisms should be architected to minimize the number
of compromised resources and provide some kind of
compromise containment support. Along these same lines,
when system administrators discover a misbehaving user,
they should be able to quickly and efficiently revoke that
user's privileges to distributed system resources.

Even if there were, we don't have a high regard for such evaluations, since
they do not raise our confidence adequate])' to justify their cost.
Furthermore, once evaluated systems arc placed in the field, many of
their handling constraints, such as the prohibition against customer
operating system modifications, arc impractical. We have odicr criticisms
of the whole concept of evaluated systems, but this is a topic for another
paper.

Requirements for distributed system access control
mechanisms

We use the characteristics described above to develop
requirements for distributed system access control.
Specifically;

1) Access cont-ol facilities must not require existing
scientific program modules and equations solvers to be
modified, if these programs access stand-alone system
resources, such as files, terminals, graphics equipment,
etc., they must be able to do so in exactly the same way
when they are integrated into a distributed application.

2) The support of cusiomer initiated scientific distributed
applications requires that the access control mechanisms
operate without root privileges.

3) Distributed system access control must operate on
systems nmning Unix.

4) Dis'.ibulcd system access control must operate in an
environment of vulnerable hosts. When a host is
compromised, the access control software must not allow
the intrucjer to compromise the complete distribute!
system.

5) When system ?dministrators discover a misbehaving
user, the access control mechanisms must alHw them
quickly and efficiently to revoke his access to distributed
system resources.

6) Access Control facilities must not encourage users to
engage in unsound practices such as storing unencrypted
passwords in files or transmitting them in the clear over
networks.

7) Access control must operate in a heterogeneous
environment. It must work across multiple domains that
may support different underlying access controf method's.

A CRITIQUE OF EXISTING ACCESS CONTROL
MECHANISMS

We investigate some popular distributed system access
control mechanisms either in use or proposed to determine
whether they meet our requirements. While our focus is
authorization, some of our requirements are affected by the
authentication service used for access control, so we briefly
analyze several authentication schemes from this
perspective. We concentrate on Kerberos [7, 8], DASS 19]
and /elc/passwd based authentication.

Most distributed system access control schemes can
incorporate any of ihe authentication mechanisms named

above. However, /ctc/passwd based authentication requires
the transmission of a password in the dear from the client to
the server, which violates requirement 6. Both Kerberos and
DASS support authentication without transmitting cleartext
passwords, so these authentication strategics are preferable
for our applications.

Existing distributed system authorization mechanisms fall
into one of two categories : 1) access control list based, or 2)
capability based. Most distributed operating systems that
have been developed so far have used capabilities. However,
the majority of distributed system software used in practical
computing environments uses access control lists, so in this
critique we focus on that technology.

Access control list systems also fall into two categories : 1)
those that hold the access list information in a file or
database on each machine (pet- machine database
authorization), or 2) those that hold all or part of this
information on cencrarrzed servers" (cencrafYzea" database
authorization). The most common approach to distributed
authorization uses the authorization information maintained
by host operating systems, which is a. per machine database
strategy.

Systems that use a centralized database for authorization data
include Moira [8], the proxy-based ticket approach
developed for Kerberos [12] and the DCE authorization
mechanism [13]. The Moira approach, developed for Project
Athena, keeps authorisation information on a centralized
server. This information is distributed to individual servers
on a periodic basis. Servers use this data to make
authorization decisions after a user has been authenticated by
Kerberos.

The proxy-based ticket approach is based on the use of
Kerberos tickets that are passed between principals. An
authorization server, to which servers grant full access rights,
creates restricted proxy tickets for principals according to
authorization information it retains. Within the ticket may be
information that restricts its use in some way. A principal
proves lis fias obtained" tne U'cfcet m a fegi'u'maie manner 6y
carrying out a protocol with a server that uses the session
key the ticket contains. This key is passed between principals
when the ticket is passed.

Systems running DCE software from Open Systems
Foundation authenticate the user using a Kerberos protocol
exchange, the established identity being used for
authorization decisions. DCE also supports a registry service
that maintains the set of groups to which a principal belongs.
This information is sealed in a Privilege Attribute Certificate
and passed from client to server in support of authorization.
Each DCE server is configured with DCE's access control
list software that maintains full access Usts for each resource.
These lists contain entries that identify a user, a group and
other information along with permission data for these
identifiers. Since an access control list can contain multiple

entries, more fine grained control is supported than can be
achieved with standard Unix permission bits. Moreover, a
proposal to support access rights delegation is currently
being studied as an enhancement to this scheme.

Layered authorization

Independent of where the access control information is
stored, distributed system authorization services may be
implemented in one of two ways. The first approach layers
the distributed authorization mechanism over existing host
authorization services. The second assumes all distributed
system resources are managed and owned by servers, which
multiplex their use among the server's clients.

Currently, most fielded authorization systems rely on the
access list mechanisms supplied by host software. For
example, a host authenticates a user through a service such
as Kerbcros. DASS, or by use of its own /etc/passwd file and
from this obtains a local user identifier (aid). Then the
authorization mechanism changes the security context of the
executing process through the sctuid system call, using the
uid as inpuL

Layering distributed system access control over existing host
authorization services allows program components such as
existing system solvers to access stand-alone system
resources without modifying their code. Thus, a layered
approach satisfies requirement 1.

However, most layered authorization schemes require the
software supplying distributed access control services to run
as root. Thus, requirement 2 is not met by these approaches.
Below we describe a layered authorization technique that
does not use root privileges.

The layered approach meets requirement 3, since it utilizes
distributed system authorization on each machine and we
assume hosts support some variant of Unix. Its resistance to
host compromise rests principally on the resistance of the
authentication mechanism to this threat. Kerberos and DASS
authentication mechanisms are relatively robust in the face
of host compromise. Users that directly enter their Kerberos
or DASS passwords on compromised machines are
themselves compromised. The proxy-based ticket approach
has the additional vulnerability that servers on compromised
hosts possessing forwardable tickets allow them to be
compromised. However, in a large distributed system these
compromises give the intruder access to a small proportion
of the total distributed system resources. Compromise of the
Kerberos authentication and TGT servers compromises the
whole distributed system, but these are special systems that
may be strongly protected using high-grade physical and
operational protection strategies. The use of /elc/passwd
authentication is also fairly robust when a host is
compromised, since users entering their passwords for other
hosts are compromised on those hosts, but generally this

does not compromise the whole distributed system.
Consequently, requirement 4 is met by most of the popular
authentication mechanisms.

If the authentication mechanism allows the quick removal of
users from its databases, which is true for Kerberos and
DASS, then requirement 5 is met. However, if the
/etc/passwd mechanism is used, quick revocation is unlikely,
especially in a large distributed system.

As specified above, only layered authorization mechanisms
that rely on Kerberos or DASS satisfy requirement 6. Those
that rely on /etc/passwd authentication fail in this regard.

Requirement 7 generally isn't met by most layered
authorization schemes, because they do not imcroptratc wim
each other. For example, a user operating under an
/etc/passwd based scheme cannot access resources in other
domains controlled under a Kerberos based scheme. While
there is an effort underway to harmonize Kerberos and
DASS authentication, such a facility still will not
interopcrate with an /etc/passwd based facility.

Server-centric authorization

It is possible to design a distributed system authorization
mechanism that docs not rely on the authorization
mechanism of hosts. Specifically, resources on Uic
underlying machine can be owned and managed by a server,
which multiplexes them among its clients (server-centric
authorization).

Server-centric authorization doesn't meet requirement 1,
since access to distributed system resources occurs not
through system calls, but rather through server requests. This
implies that existing libraries and programs must be
modified to use resources managed by distributed system
servers.

However, server-centric authorization does satisfy
requirement 2. Servers multiplex access to stand-alone
system resources, relying on the host operating system
authorization mechanism to grant them access to the
resources they own. This does not require root access
privileges. Furthermore, this approach will operate on any
Unix operating system, so requirement 3 is satisfied.

The compromise of one host may or may not compromise
other distributed system hosts depending on how the
authorization mechanism operates. It is possible to devise a
server-centric authorization method that has good
compromise containment properties. For cample, the
LlNCS distributed operating system used the scrvcr-ccntric
approach for its Unix guest file server. Since files were
accessed through capabilities, the compromise of one host
only compromised those files with capabilities on that host.

If the server-centric authorization mechanism relics on an
appropriate authentication mechanism, such as Kerberos or
DASS, then system administrators can quickly revoke a
misbehaving user's access control rights. Consequently,
requirement 5 can be met.

This approach gives the access control architect the
flexibility to create a mechanism that does not encourage the
user to engage in unsound security practices. For example,
LDNCS guest file server capabilities can be protected against
both forgery and theft.

Finally, server-centric authorization can easily be made to
work in a heterogeneous environment, since the difference in
access control mechanisms are hidden by the server
implementation. In effect, each server acts as an access
control gateway, translating from the distributed system
access control mechanism into the access control mechanism
used by the host. Of course, if the server-centric mechanism
is to operate between domains that use different
authentication schemes, such as Kerberos or DASS, then
either the servers must be instrumented to handle all such
authentication mechanisms or there must be authentication
gateways that translate from one scheme to another. This last
approach is being taken in the effort to harmonize DASS and
Kerberos.

Critique summary

Both the layered and server-centric approaches to
authorization present difficulties when used in large practical
distributed systems. Server-centric authorization imposes
burdens on existing software, requiring it to be
reimpiemented for use in distributed applications. Most
schemes that layer distributed system authorization on Lost
authorization require servers to run at root and do not
adequately cope with heterogeneity.

In die next section a layered authorization mechanisms is
described that does not require root privileges and that
accommodates heterogeneity by supporting several different
authentication mechanisms concurrently. This is done in
such a way that it also presents good compromise
containment properties.

A PRACTICAL AUTHORIZATION SCHEME

The authorization technique described here is used by
Remoxe, a remote execution service for Unix developed and
in use at the Lawrence Livermore National Laboratory. A
Remoxe server executes as a daemon on each computer
where the service is provided. A client process on any
computer can send to a server (generally on a different
computer) a message asking that it execute some application.
The client and the application may then communicate either
through the server (in which case the application thinks that

U is dealing with a controlling terminal) or directly (using
sockets). The executing application has access to a context
chosen by the client, where a context consists of the
resources available to a particular user on the service
computer. This choice of what constitutes a context is
dictated by the nature of typical Unix systems; it could
readily be modified for systems with other forms of local
access control (such as capability-based systems). The
access to a context is authorized without a password having
to be typed.

Access lists and capabilities are frequently described as
alternative means for authorizing access to resources.
However, particularly in a distributed environment, the
techniques are often complementary and are used together.
For example, consider conventional remote access using
such facilities as telnet or ftp. Access lists on the service
(remote) computer (typically in the rather coarse-grained
form of owner, group, and world access permissions) arc
used in connection with a user name and password provided
from the client (local) computer. i*he user name and
password together effectively constitute a capability, a coded
record that establishes the client's relationship to the access
lists (by defining and verifying the owner's identity).

Rcmoxe makes use of a capability we call a xap (execution
access protector, pronounced "zap"). It is a coded record
that is originally generated by the server and sent to the
client to be stored until needed. It is sent back to the server
as a parameter in messages requesting remote execution or
other action. It identifies and authorizes access to a context
and includes the following information:

• me TCP/IP address of the Remoxe server for which the xap
is valid,

• the local user name associated with the context on the
service computer,

• permission bits,
• authentication information (e.g., a GSSAPI global name),

and
• a DES encryption key for the local password associated

with the user name.

One permission bit enables remote execution; vhe others
enable various "housekeeping" actions in regard to the xaps
themselves, such as issuing additional ones or revoking
existing ones.

A xap should be kept in a safe place, such as in & file
accessible only by the user (owner) on a client computer
that has a secure operating system. This last condition
especially is difficult to meet for all too many Unix systems.
So there may be a problem of xaps being stolen, that is,
illicitly copied. The purpose of the authentication
information is essentially tc provide a degree of protection
against the theft of a xap by limiting the effectiveness of the
xap to situations in which additional information is also
supplied, authenticating that the client has the right to use the

xap. Each sap employs one of three authentication options
(listed in order of increasing security):
a No authentication is required. So there is no protection

against theft: a purloined xap may be used by the thief (or
anyone efce) from any client computer. This option is
provided only as a last resort for situations (we hope that
there are none) where the other options arc infeasibie or
(would that it were so!) where there is no danger of theft.

• The use of die xap is limited to a particular client computer
(more precisely, a particular client IP address). The thief
cannot hide himself in a distant part of the network while
h„ ..lisuses the xap. This option is provided for use where
the necessary infrastructure for the next option is not
available.

• The use of the xap is limited to the user with a particular
global name as defined by an authentication system based
on GSSAPI (namely. Kerberos or DASS). The xap must
be accompanied by the evidence (context token) required
by that system for establishing that the user has that name,
and the degree of protection depends on how secure that
system is. This is the preferred option.

The 64-bit local passwurd encryption key appears in a xap
exclusive-or'd with a DES cryptographic digest computed
using all the other information in the xap and a master key
that is known only to die server. The xap thereby not only
conceals the- encryption key, but also is protected against
forgery. Anyone trying to generate a xap (either out of
whole cloth or by altering a few bits, such as permission bits,
in a valid xap) has only one chance in 2°^ of correctly
rendering the encryption key (effectively only one in 2 S S

because of the way DES uses keys). When a user first
establishes himself with the server, at which lime he must
supply his local user name and password for the service
computer (but not a xap) in a secure manner, the server
randomly generates an encryption key just for that user. The
key is :hen used to encrypt the user's local password. The
server r*ores die encrypted password tin association wjfft; the
loca1 user ruune) in its records with sufficient redundancy
that it can wilh high confidence recognize an improperly
decrypted password before attempting to use it. The server
remembers neither the unencrypted password nor the-
password encryption key, but it includes the latter in a xap
which it issues to the new user (Fig. 1).

Therefore the server can obtain the password only when a
client provides a valid xap. This means that compromise of
a user's password requires "breaking into" both the user's
records on a client computer and the server's records on the
service computer. It is our view that such is an obstacle
sufficient to render Rcmoxe acceptably secure.

Figure 1. Concealment of password, using xap.

There are "housekeeping" chores i dealing with xaps.
Remoxe provides for establishing a new user with the server
ani issswng * * wtoial *ap, foi issuing ?>4Aitattl -wfn *5«A
may have reduced permissions and/or differing
authentication information (in particular, allowing access
from a different client computer), for changing the password
on the service computer (both as known to Unix and as
known to the server), for revoking all the user's existing xaps
(by changing the password encryption key) and issuing a
new xap to replace them, and for deleting the user from the
server's records (which of course also effectively revokes all
existing xaps). Note that, since the content of a xap docs not
depend on what die password is, changing the password does
not affect the validity of existing xaps.

It is possible for each user to have a Remoxe server of his
own, running on a service computer with its own "well
known" TCP port (that is, a fixed port number that can be
"built into" client programs). However, the user then
assumes the burden of installing his server arid assuring that
it is always up and running. Also, there is an inefficiency in
having many separate servers on a computer, all performing
basically the same job. So the intent is that there be only a
few Remoxe servers (often just one) on each service
computer, each installed and maintained by a single user, its
sponsor. This user owns and could access the files in which
the server keeps its records. He therefore must be someone
who can be trusted by the other users not to abuse his
position and invade their privacy by either misusing the
records himself or through carelessness letting them be
accessed by others. That is, each server and its sponsor
corresponds to a community of trust. The sponsor could be
the "superuser", but we have not required this, because we
want a user to be able to install and begin using Remoxe
without waiting for an administrative bureaucracy to give its
approval and then take action. The server's records are kept
in files in a subdirertory of its sponsor's home directory; this
directory is created when the sponsor installs the Rcmoxe
server. The records are accessible only by the sponsor, who
is their owner.

When a client requests the running of an application, it sends
:he server a xap accompanied by any necessary
authentication information. The server verifies the
authentication information (e.g., by calling the appropriate
GSSAPI procedures) and also decrypts and verifies the
password in die xap (Fig. 2). It then forks a process but does
not directly "exec" the application. Instead, it "execs" the
standard privileged Unix utility su and delivers the user's
name and password to it as input. After su has converted the
forked process into a shell associated with the user's id,
additional input effects die "exec" of ihe desired application.
In this way the application runs widi the environment and
access rights of the uscrs rather than with those of the
sponsor.

Server Records

Addroio,
n am*, per tnlflni o no,
nulhcnlicaJ'an Info

*(j£r)
_ W XOR

Figure 2. Recovery of passv*ord, using xap.

This rather roundabout, complex, and no doubt inefficient
technique for establishing die proper context is necessitated
by the peculiarities of Unix. Perhaps the designers of future
operating systems will consider die following suggestions:

• The natural way f/r a program to interface to the operating
system is through a privileged procedure (system call),
rather than by forking and "exec'ing\ So there should be
a privileged procedure to which one can pass a user name
and password (or other system specific access control
information) and which will then set die user id to that of
the user. Similarly, there should be a privileged procedure
for changing a password.

• In fact, there should be a simple, direct way without
administrative intervention for any user to establish a
service and for omer users to be able to grant that service
such access to dicir resources as they choose. They should
not have to grant this access in an "all or nothing" fashion,
but should be able to adhere to the principle of least
privilege. (A capability-based system would achieve diis.)

An analyst of rcrnoxe authorization

We briefly analyze die advantages and disadvantages of the
Rcmoxc authorization mediod and then provide a crude
compromise containment analysis. Servers, such as Rcmoxe,

that uUlize our authorization technique can be brought up
immediately on any machine on which die uscr(s) have
accounts. No system administrator help or approval is
necessary. If the distributed system hosts arc configured to
accept a global password for local authentication, such as a
Kerberos or DASS password, users need only remember one.
This reduces the possibility of password compromise and the
inconvenience associated widi reissuing passwords diat die
user has forgotten. The Remoxe audiorization scheme
provides these advantages along widi security that is at least
as good, if not better, than other approaches.

One disadvantage of the Remoxe authorization scheme
stems from one of its advantages, the lack of involvement of
a system administrator when bringing up permanent servers.
Widiout root privilege or system administrator help, keeping
these servers up across system crashes is problematical.
Normally, permanent servers are brought up at reboot based
on an entry in the rc.local file. Since this file is owned by
root, this technique is not available to die unprivileged user.

We are exploring use of the "At" utility to overcome this
problem. In particular, a non-privileged server or a
"persistence daemon" can periodically call "At" to schedule
a check that the appropriate servers are still running. If the
check fails, the server can be restarted. However, this
approach requires that die activity scheduled by "At" survive
across system crashes. This may or may not be true,
depending on die particular variation of Unix on which die
server runs.

The Rerr.oxe authorization method has quite good
compromise containment properties. If an intruder gains
access to the files in which die Remoxe server master key
and encrypted passwords are stored, Uiese cannot be used,
since the intruder lacks die Xaps diat contain die keys to die
encrypted passwords. If die intruder obtains a Xap, cidicr by
reading it from an improperly protected file on a client
machine or by capturing it as it travels over a network, it
cannot be used (assuming die GSSAPI audientication option
is employed) since the intruder cannot manufacture die
necessary time-limited credentials required by die supporting
aumeniication technology.

If an intruder obtains root access on die server machine, he
has compromised all resources on it. He need not take
advantage of servers using the Rcmoxe authorization
scheme. However, if he manages to compromise a sponsor,
he gains access to die resources of all other users that have
entrusted their access rights to the server the sponsor
controls. This is a good reason for supporting several servers
on a machine, one for each community of interest diat runs
mere.

If an intruder obtains root access on a client machine, he can
wait for its users to type their global (i.e., GSSAPI-based
authentication) passwords and thereby compromise dieir
resources in the distributed system. This would be true

whether Xaps are stored on the machine or not.
Consequently, the Remoxe authorization scheme does not
introduce any new vulnerabilities for this situation. In fact,
since the intruder may not have access to all the users Xaps,
i.e., those stored on other systems, the Remoxe scheme
potentially can lessen the damage caused by a client machine
compromise.

USE OF REMOXE

The need for Rcmoxe originally arose from the following
typical situation: A user has a number of source files that he
maintains and edits on his workstation, which offers him
convenience, economy, and high interactivity. However,
many of the sources are intended to be compiled and
executed <m a supercomputer, which offers power. After
editing, thx user transports the updated sources to the
supercomputer and there compiles and executes them. He
would like to have the required updating occur automatically
in response to a single, simple typed command, such as
"make".

The standard Unix utility make, used in conjunction with
standard utilities that provide remote access, such as ftp,
telnet, and rsh, would seem to provide the required facility.
That is, make would invoke-ftp to transfer the sources to the
supercomputers and then invoke telnet or rsh to execute
remotely the compiler, other utilities, and the compiled
applications. However, there are two difficulties:

• Make makes decisions based on the exit status of the
programs that it runs, which is not available for programs
run remotely by telnet or rsh.

• Each time that make invokes a utility providing remote
access, that utility prompts and waits for the input of a
password, severely inconveniencing the user and requiring
his continued attendance at the terminal; it would be
difficult to view the activity as truly automated. Common
means of suriwro venting this psobtem, such as isSotfifyiDg
oneself as "anonymous" or "guest", making appropriate
entries in the .netrc or .rhost files, and/or using the
Network File System (NFS), open up privacy or security
loopholes that are often unacceptable. These remarks also
apply to use of the standard utility rdist.

A client utility has been provided for use with Rci.toxe that
avoids both of these problems. In regard to the first
problem, the protocol between the client and server is such
that status information is returned after each remote
execution; this status is in turn returned as the status of the
client. To effect execution on a supercomputer, make
invokes the client utility, which then (through the remote
server) invokes the remote application. Make will then
correctly interpret the returned status as that of the
application.

There is no need for passwords, because authorization is
effected using xaps appropriate to the remote servers. (In
fact, the xaps specify which remote servers — which remote
computers — are to be used.) These xaps are fetched from
files specified in the commands to th,e client. The client also
carries out any needed GSSAPl-bas^j protocol. In addition,
a file transfer utility has been provided to be run under the
control of the server. Files may be transported between this
utility and the client A sample commented makefile for
remote execution is displayed in Pig. 3. Note that make
invokes a second, remote make.

This makefile effects the remote compilation and
execution of the application " test", \yhlch tests a subroutine
package.

4t The directory "shadow" contains empty shadow files,
one for each file that is to be sent to the remote computer.
#Tbese files "stand in" for their remote counterparts when
"fixate" teste Ibftr sges. After a Site is sent, Jis shadow Is
aged by using "touch".
The client utility Is "chit" j "-rsc" specifies that the xap
Is to he found In the file "sc", and "-q dlr" specifies that
4t remote execution Is to occur in the directory "dlr". The
remote commands are "moke" and "test", the former
referring to a remote makefile that should effect the
compllatioc of the three " x " and".h" flies into the
executable File "test".

update: shadow/test.c shadow/subrs-c £hadow/subrs.h
clnt -f sc -d dlr make
clnt-fsc-ddir test

Before the remote "make" lslnvoHed, any updated ".c"
and " Ji" files are transported using the remote utility
"rmx", which Interpret "put XXXJC" as a request to have
the file "xxx-X*' sent from tbe client tt, the remote computer.

shadow/testx: test.c
clnt -f sc *d dtr rmx put teste
touch shadow/testx

sUadow/subrs.c: subrs.c
sfctf 4 x -d xJUr rna pas subr&x
touch sbadow/subrsc

shadow/subrs.h; subrs.h
clnt -f sc -d dlr rmx put subr$.h
touch sbadow/subrs.b

Figure 3. A sample simple makefile.

ACKNOWLEDGMENTS

"Work performed under the auspices of the U.S. Department
of Energy by the Lawrence Livcrmore National Laboratory
under contract number W-7405-ENG^)8."

file:///yhlch

BIBLIOGRAPHY

1 - E>. M. Nessett, "Factors affecting distributed system
security," IEEE Transactions on Software
Engineering, vol. SE-13, no. 2, Feb., 1987, pp. 233-
248.

2. D. M. Nessetl and G. M. Lee, 'Terminal services in
heterogeneous distributed systems," Computer
Networks and ISDN Systems, Vo. 19, pp. 105-128,
1990, Elsevier Science Publishers B.V.,
Amsterdam, The Netherlands.

3. I.G. Fletcher, "Software Protection of Information
Networks," Infotec State-of-lhe-An Report, Future
Network, vol. 2,1978, pp. 149-164.

4. R.w. Watson and J.G. Fletcher, "An Architecture
fry Support of Network Operating System
Services," Computer Networks, vol. 4, Feb., 1980,
Elsevier Science Publishers B.V., Amsterdam, The
Netherlands, pp. 33-49.

5. D.M. Nessett, "The Inter-Authentication Domain
(IAD) logon protocol (Preliminary specification and
implementation guide)," Lawrence Livermore Nat.
Lab. Rep. UCID-30207,1984.

6. D. Estrin, "Non-Discretionary Controls for Inter-
Organisation Networks," Proc. IEEE Symposium
on Security and Privacy, IEEE, Lus Alamitos, CA.,
April, 1985, pp. 56-61.

7. J.G. Slciner, C. Neuman and J.I. Schiller,
"Kerberos: An authentication Service for Open
Network Systems," Proc. Winter Usenix Conf.,
Usenix Association, Berkc?ey, CA., 1988, pp.191-
202.

8. S.p. Miller, B.C. Neuman, J.I. Schiller, and J.H.
Ssltzer, "Kerbecvs Auth€ttcicati<t« sad
Authorization System," section E.2.1 of Project
Athena Technical Plan, MIT, Dec. 1987.

9. J. Linn, "Practical Authentication for Distributed
Computing," Proc. IEEE Symposium on Research
in Security and Privacy, IEEE, Los Alamitos, CA.,
May, 1990, pp. 3M0.

10. J.G. Fletcher and R.W. Watson, "Service Support in
a Network Operating System," CompCon 80,
Spring, 1980.

11- "Department of Defense Trusted Compter Sytem
Evaluatic. Criteria," DOD 5200.28-STD,
Department of Defense, Washington, DC,
December, 1985.

12. B. Clifford Neuman, "Proxy-Based Authorization
and Accounting for Distributed Systems,"
University of Washington Technical Report 91-02-
01, Department of Computer Science and
Engineering, University of Washington, FR-35,
Seattle, Washington.

13. "OSF DCE 1.0 Application Development Guide;
Revision 1," Dec. 27, 1991, Open Software
Foundation, Cambridge, MA.

