Cel - 93045~

UCRL-JC-112301
PREPRINT

Practical Autherization
in Large Heterogeneous Distributed Systems

J.G.Hetcher
D.M. Nessett

This paper was prepared for submittal to
PSRG Workshop on Network and Distributed System Security
San Diego, CA
February 11-12, 1993

November 1992

Thisisa prepaintofa papert ded forpublication inaj lorp disga Since
+ changes may be made befare publication, this int is made available with the
understanding that it will not be cited oz reproduced without the permission of the
auther.

DISTRIBUTION OF THIS DOCUMENT 1S UNLIMITED

DISCLAIMER

This document was prepared as an accound of work sponsored by an agency of the
United States Government. Neither the United States Government nar the Und versity
of California nor any o ther employees, makes sny warranty, express or implied, or
assumesanylegalliabiity ov re ponsibilityfor th A ful
olany information, spparates, prodict, orpracess disdosed, or vop ;

Rat I

Spe

prodocts, process, or service by trade name, trademark, maulacturer, or otherwise,

doesnot necessarily coastitate or imply dati favoring

by the Uniled Siates G t or the Us y of Californis. The views and

apinions of ruthors expressed herein do not necessarily state or reflect those of the

Utlted Staies Govermanent or the Untrenity of Californla, snd chall not be xsed for
dvertbsing or product

e IR i -

Practical Authorization in Large Heterogeneous Distributed Systems
).G. Fletcher and D.M. Nessett

Lawrence Livermore Mational Laboratory

ABSTRACT

Requirements for access control, especially authorization, in
practical computing environments are listed and discussed.
These are used as the basis for a critique of existing access
control mechanisms, which are found to present difficulties.
A new mechanism, free of many of these difficulties, is then
described and critiqued.

INTRODUCTION

Over the past decade and a half, system researchers have
thoroughly investigated distributed computing, analyzing its
important issues and proposing various ways of treating
them. However, the services ™2y have developed sometimes
poorly fit the problems arising in practical computing
cnvironments. We concentrate on how this is so for
distributed access conwol.

Access control is implemented through two component
services : 1) authentication and 2) authorization, The
problem of anthertication has received sig. -Jcant atiention
and we believe the mechanisms developed so far are
adequate in most situations. Consequently, we concentrate
ficre on distributed system authorization, a problem requiting
morc attention.

This paper is organized as follows. First, v ¢ analyze the
characteristics of certain practical distributed computing
environments and develop requirements for distributed
system access control, We use these requirements to critigue
existing distributed system access control mechanisms,
particularly those aspects related to anthorization. We
describe an authorization method that meets our criticisms,
pointing out its strengths and weaknesses and providing a
compromise containment analysis for it. We then describe a
production application that uses our authorization scheme.

ACCESS CONTROL IN PRACTICAL COMPUTING
ENVIRONMENTS

Researchers interested in distributed system securily have
extensively investigated the issue of access control. For the
most part, they have concentrated on the problem of
authentication, while on the whole limiting their
investigations of authorization to the smaller sub field of
distributed aperating systems. With a few exceptions,

Livermore, CA

architects of distributed systems other than distributed
operating systems have relied on the existing non-distributed
mechanisms of hosts to support authorization,

We believe that much of the previous work on distributcd
system authorization rests on assumptions that only rarely
exist in practice. To support this claim, we analyze the
characteristics of a typical distributed system supporting
scientific and engineering applications and in section 3
discuss how existing distributed system access control
techniques fail to operate correctly in the presence of these
characteristics. While it would be appropriate to do sa, we do
not analyze systems that arc used primarily for business
applications, since we have litle experience with ther.
However, our intuition suggests that many of the
characteristics we describe are relevant for those systems as
well.

The security environment of a distributed system
supporting science and engineering

There arc two classes of distributed application that usc
security services. The first class supports system level
activity that is generally adminjstered by system
programmers and carried out to supply infrastructure
services to distributed system customers. The second class
involves computational activity initialed by non-privileged
users, generally focused on solving some scicntific,
engineering or other customer related problem. These two
classes of application possess conlrasting security traits.
Applications in the first class enjoy Gxtraordinary security
privileges, such as root access. Applications in the second
class generally are not granted special security privileges.

Distributed applications supporting scientific or engincering
work are initiated by customers rather than by system
software or system programmers. Thus, they are an example
of the second class of distributed application. They
cnstomarily grow from a central point and expand out into a
diswributed system. As with most distributed applications,
their aclivity is organized around the clien/server model.
However, it is rare for the servers of these applications to
exist prior to the initiation of an application run. Instead,
servers are dynamically created when the application grows
and are terminated when the application finishes. This
pattern of behavior strongly influences which access controt
mechanisms are suitable for such applications. Generally,
there must be an unprivileged server that permancntly runs
on hosts and that allows the creation of dynamic servers
running in the contet of a distributed application uscr. It is

DISTRIBUTION OF THIS DOCUMENT 1S UNLIMITED

-pa/

the permancnt server that makes the appropriate distributed
sysiem authorizatio:- Jecisions.

There is a very large investment iz programs that analyze
various scientific and engineering research problems. These
programs use linear system solvers, implicit and explicit
difference equation solvers and relaxation methods to solve
partial differential and integral equations. It is far too
expensive to rewrite this software for a particular distributed
application. Instead, a distributed application must be able to
incorporate this software without modification.
Conscquently, scientific and engineering distributed
applications are not at libcrty to change the way these
programs do file 1/O, terminal I/O or graphics I/0. While it
is possible to write driver routines that cal! these prograias
and handle communications with other distributed
application components, the underlying system service calls
must not be disturbed.

Heterogencity is an imporiant characterislic of practical
distributed systems [1, 2]. We are amazed at the number of
designs that ignore this pivotal concern, Heterogencity exists
in the physical sccurity environment of distributed system
cquipment, in the behavior of the organizations that
administer this cquipment, in the protocols used within a
distributed system, in the level of vulnerability each host
operating sysiem cxpericnces, and in the securiiy
mechanisms supported by hosts?,

Previous work has dealt with security heterogeneity by
organizing collections of similarly trusted hosis into pools
known variously as Domains of Trust {3, 4], Authentication
Domains [5], Inter-Organization Networks [6), Realms
[7.8]), and Administrative Domains [2). Within these
domains, security mechanisms may also display a certain
amount of hclcrogcncilyz. For example, 2 domain may
support the Kerberos authentication mechanism (7, 8] on
some hosts, while others may rely on the normal UNIX
feic/passwd file mechanism. Even within hosts, some
applications may support Kerberos authentication (e.g.,
rlogin, rcp, rexec), while others may rely on /fetc/passwd
(e.g., Teinet, FTP).

]

Customer initiated distributed applications face ¢
difficulties when run over resources located in multiple
sccurity domains. They do not have special privileges and
therefore must use infrastructure security services provided
by the domains. While there are authentication facilities
available to accommodate multiple security domains {7, 8,
9], existing authorjzation mechanisms require either

! Some may reject our thesis that a distributed system expericnces
heterogeneity in host sceurity mechanisms, since we postulate the
pervasive use of UNIX. However, variants of UNIX do not all support
exactly the same security mechanism. For example, many verzions of
UNIX allow any user 10 obtain the coments of the etc/pagswd file, while
others hide its contents from public view.

2 The work described in [w] orgues againsi this practice. The definition of
Administrative Domain given there insists that all constituent hosts use
the same seeurity mechanisms.

transmitting a uscs's password in the clear over a potentially
hostile network, or the installation of software, such as a
Kerberized or DASS-¢nhanced rexec dacmon, that requires
oot privilege. Generally, system administrators are rcluctant
to instalt software provided by customers that requirc root
access. Cansequently, if systems on which the non-
privileged distributed applications execute do not support the
appropriale root privileged software, customers are forced to
use dubious security practices, such as storing their
passwords in files and passing them in the clear through
vulnerable intermediate computing and switching equipment.
A practical distributed system authorization method should
climinate these security hazards.

Most current distributed computing is what might best be
described as network computing. Generally, hosts in the
distributed system act as independent computing agents that
retain a significant identity from an application’s standpoint.
While distributed operating systems may provide a more
coherent and an ultimately superior performing basc for
distributed applications, so far, they have not been highly
successful in the marketplace. Our own distributed opcrating
system, LINCS [4, 10], failed not for technical reasons, but
rather because we could not afford to support it as a unique
LLNL specific product. Nothing is currenily available from
computer system vendors that provides its funclionality.

Our experience with LINCS Jeads us to conclude that
network computing will remain the predominant distributed
computing model for some time to come. This means that
distributed system support must be built on top of cxisting
host operating systems, which today arc largely somc
variation of UNIX™,

Given the ubiquity of UNIX, we arc forced to consider its
security properties. Most ficlded UNIX operating system
implementations contain significant security hazards.
Moreover, there are few if any mainsiream UNIX operating
systems for state-of-the-art computing equipment evaluated
according to the Trusted Computer System Evalualion
Criteria [11]3. We don’t have much confidence in the idea
that this situation is about to change. Canscquently, we
believe any distributed system sccurity mechanism must
operate in an environment in which the constituent hosts
have intrinsic vulncrabilitics, To be more precise, we believe
that when a host compromisc occurs, the security
mechanisms should be architecied 10 minimize the number
of compromised resources and provide some kind of
compromise containment support. Along these same lines,
when sysiem administrators discover a misbehaving user,
they should be able to quickly and efficicntly revoke that
user’s privileges 1o distributed system resources.

3 Even if there were, we don't have a high regard for such evaluations, sinee
they do nat raisc our cvafidence adcquatcly so justify their cost.
Furthermore, once cveluated sysiems are placed in the ficld, many of
their hnndlmg constraints, such as lh: pmhlbxuon against customer

We have other critici:

of the wholc mnccp(of evn]uar.:d systems, but this is a opic for enother
paper.

Requirements for distributed system access control
mechanisms

We use the characteristics described above to develop
requirements for distributed system access control.
Specifically ;

1) Access cont:ol facilities must not require existing
scientific program modules and equations solvers to be
madified, If these programs access smnd-alone system

above. However, /etc/passwd based authentication requires
the transmission of 2 password in the clear from the client to
the server, which violates requirement &, Both Kerberos and
DASS support authentication without transmitting cleartext
passwords, so these authentication strategics arc preferable
for our applications.

Existing distributed system authorization mechanisms fall
into one of two cutegories : 1) access control list based, or 2)
capability based. Most distributed operating systems that
have been developed so far have used capabilities. However,
the majority of distributed system software used in praciical

resources, such as files, ter !
etc., they must be able to do so in exacl.ly lhe same way
when they are integrated into a distributed application.

2) The support of customer initiated scientific distributed
applications requires that the access control mechanisms
operate without root privileges.

3) Distributed system access control must operaie on
systems rynning Unix.

4) Dist.ibuled system access control must operate in an
enviconment of vulnerable hosis. When a host is
compromised, the aceess control software must not allow
the intruder to compromise the complete distributesd
system.

5) When system administrators discover a misbchaving
user, the access control mechanisms must allnw them
quickly and efficiently to revoke his access to distributed
Sysicm resources.

6) Access control facilities must not encourage users to
engage in unsound practices such as storing unencrypted
passwords in files or transmiiting them in the clear over
networks.

7) Access control must operate in a heterogeneous
environment. It must work across multiple domains that
may suppart different underlying access control metfiods.

A CRITIQUE OF EXISTING ACCESS CONTROL
MECHANISMS

We investigate some popular distributed system access
cortrol mechanisms either in use or proposed o deu:rmme
whether they meet our requirements. While our focus is
authorization, some of our requirements are affected by the
aulhenucauon service used for access control, so we bricfly
analyze several authentication schemes from this
perspective. We concentrate on Kerberos [7, 8), DASS [9]
and fctc/passwd based authentication.

Most distributed system access control schemes can
incorporaic any of the authentication mechanisms named

computing envisc uses access control lists, so in this
eritique we focus on that technology.

Access control list systems also fall into two categorics : 1)
those that hold the access list information in a file or
database on each machine (per machine database
authorization), or 2) those that hold all or part of this
infonmacion on cenoralized servers (cencralized database
authorization). The most common approach to distributed
authorization uses the authorization information maintained
by host cperating systems, which is a per machine databzse
strategy.

Systems that use a centralized database for authorization data
include Moira [B), the proxy-based ticket approach
developed for Kerberos [12] and the DCE authorization
mechanism {13]. The Moira approach, developed for Project
Athena, keeps authorization information on a centralized
server. This information is distributed 1o individuat servers
on a periodic basis. Servers usc (his data to make
authorization decisions after a user has been authenticated by
Kerberos.

The proxy-based ticket approach is based on the use of
Kerberos tickets that are passed betwecn principals. An
authorization server, 1o which scrvers grant fuli access rights,
creates restricted proxy tickets for principals according to
authorization information it retains. Within the ticket may be
information that restricts its use in some way. A principal
proves its has obtained the Ucke! in a fegitimate manner by
carrying out a protocol with a server that uses the session
key the ticket contains. This key is passed between principals
when the ticket is passed.

Systems running DCE software from Open Systerns
Foundation authenticate the user using a Kerberos protocol
exchange, the cstablished identity being used for
authorization decisions. DCE also supporis a registry service
that maintains the set of groups o which a principal belongs.
This information is sealed in a Privilege Attribute Certificate
and passed from clicnt to server in support of authorization.
Each DCE server is configured with DCE's access conlrol
list software that maintains full access lists for cach resource.
These lists contain entrics that identify g user, a group and
other information along with permission data for these
identificrs. Since an access control list can contain multiple

entrics, more fine grained control is supported than can be
achieved with standard Unix permission bits. Moreover, a
proposal to support access rights delegation is currently
being studjed as an enh to this sch

Layered authorization

Indeperndent of where the access control information is
stored, distributed system authorization services may be
implemented in one of two ways. The first approach layers
the distributed authorization mechanism over existing host
authorization services. The second assumes all distributed
system resources arc managed and owned by servers, which
multiplex their use among the server’s clients.

Currenly, most ficlded authorization sysicms rely on the
access list mechanisms supplied by host software. For
example, a host authenticates a user through a service such
as Kerberos, DASS, or by use of its own fetc/passwd file and
from this obtains a local user identifier (uid). Then the
authorization mechanism changes the security context of the
exccuting process through the sctuid system call, using the
uid as inpur.

Layering distributed system access control over existing host
authorization scrvices allows program components such as
existing system solvers to access stand-alone system
resources without modifying their code. Thus, a layered
approach sausfies requirement 1.

However, most layered authorization schemes require the
software supplying distributed access control services to run
as root. Thus, requirement 2 is not met by these approaches.
Below we describe a layered aulhorization techaique that
does not use root privileges.

The layercd approach meets requirement 3, since it utilizes
distributed system authorization on each machine and we
assume hosts support some variant of Unix. Its resistance to
host compromise rests principally on the sesistance of the
authentication mechanism to this threat. Kerberos and DASS
authentication mechanisms are relatively robust in the face
of host compromise. Users that directly enter their Kerberos
or DASS passwords on compromised machines are
themselves compromised. The proxy-based ticket approach
has the additional vulnerability that servers on compromised
hosts possessing forwardable tickets aflow them to be
compromised. However, in a large distributed system these
compromises give the intruder access to a small proportion
of the total distributed system resources. Compromisc of the
Kerberos authentication and TGT scrvers compromises the
whole distributed sysiem, but these are special systems that
may be sirongly protecied using high-grade physical and
operational protection sirategies. The use of fetc/passwd
authentication is also fairly robust when a host is
compromised, since users entering their passwords for other
hasts are compromised on those hosts, but generally this

does not compromisc the whole distributed system.
Consequently, requirement 4 is mct by most of the popular
authentication mechanisms.

If the authentication mechanism allows the quick removal of
users from its databases, which is true for Kerberos and
DASS, then requirement 5 is met. However, if the
[etc/passwd mechanism is used, quick revocation is unlikely,
especially in a large distributed system.

As specified above, only layered authorization mechanisms
that rely on Kerberos or DASS satisfy requirement 6. Those
that rely on fetc/passwd authentication fail in this regard.

Requirement 7 generally isn't mct by most layered
authorization schemes, because they do not interoperate with
each other. For example, a user operating under an
fetc/passwd based scheme cannot access resources in other
domains controlled under a Kerberos based scheme. While
there is an effort underway to harmonize Kerberos and
DASS authentication, such a facility still will not
intcroperate with an /fetc/passwd based facility.

Server-centric authorization

It is possible to design a distributed system authorization
mechanism that does not rely on the authorization
mechanism of hosts. Specifically, resources on the
underlying machine can be owned and managed by a server,
which multiplexes them among its clients (server-centric
authorization).

Server-centric authorization doesn't meet requircment 1,
since access 1o distributed system resources occurs not
through system calls, but rather through server requests. This
implics that cxisting libraries and programs must be
modified to use resources managed by distributed system
servers.

However, server-centric authorizalion docs satisfy
requirement 2. Servers multiplex access to stand-alone
system resources, relying on the host operating system
authorization mechanism to grani them access to the
resources they own, This does not require root access
privileges. Furthermore, this approach will operate on any
Unix operating system, so requirement 3 is satisfied,

The compromise of one host may or may not compromisc
ather distributed system hosts depending on how the
authorization mechanism operates. It is possible to devise a
server-centric authorization method that has good
compromise caontainment propertics. For c.:mple, the
LINCS distributed operating system used the server-centric
approach for its Unix puest file server. Since files were
accessed through capabilities, the compromise of one host
only compromised those files with capabilitics on that host.

If the server-centric authorization mechanism relics on an
appropriate authentication mechanism, such as Kerberos or
DASS, then system administrators can quickly revoke a
misbchaving user’s access control rights. Consequently,
requirement 5 can be met.

This approach gives the access cantrol architect the
flexibility 1o create a mechanism that does not encourage the
user to engage in unsound security practices. For example,
LINCS guest file server capabilities can be protected against
both forgery and theft.

Finally, server-centric authorization can easily be made to
work in a heterogeneous environment, since the difference in
access control mechanisms are hidden by the server
implementation. In effect, each server acts as an access
control gateway, Uanslating from the distributed system
access control mechanism into the access control mechanism
used by the host. Of course, if the server-centric mechanism
is 10 operale between domains that use different
authentication schemes, such as Kerberos or DASS, then
either the scrvers must be instrumented o handle all such
authentication mechanisms or there must be authentication
gateways that manslate from onc scheme to another. This last
approach is being taken in the effort to harmionize DASS and
Kerberos.

Critique summary

Both the layered and server-centric approaches to
authorization present difficulties when used in large practical
distributed systems. Server-centric authorization imposes
burdens on existing software, requiring it to be
reimplemented for use in distributed applications. Most
schemes that Iayer distributed system authorization on f:ost
authorization require servers to run at root and do not
adequately cope with heterogeneity.

In the next seclion a layered authorization mechanisms is
described that does not require root privileges and that
accommodates heterogencity by supporting several different
aathentication mechanisms concurrently, This is done in
such a way that it also presents good compromise
containment propertics.

A PRACTICAL AUTHORIZATION SCHEME

The authorization technijue described here is used by
Remoxe, a remole execution service for Unix developed and
in ase at the Lawrence Livermore National Laboratory. A
Remoxe server executes as a daemon on each computer
where the service is provided. A client process on any
computer can send to a server {(generally on a different
compuler) a message asking that it execute some applicauon.
The client and the applicaionr may then commanicate cither
through the server (in which case the application thinks that

it is dealing with a controlling terminal) or directly (using
sockets), The executing application has access to a context
chosen by the client, where a context consists of the
resources available to a particular user on the service
compuier, This choice of what constitutes a context is
dictated by the nature of typical Unix systems; it could
readily be modified for systems with other forms of locat
access control (such as capability-based systems). The
access to a context is authorized without a password having

to be typed.

Access lists and capabilities are {requently described as
alternative means for authorizing access to resources.
However, particularly in a disaibuted environment, the
techniques are often complementary and are used together.
For example, consider conventional remote access using
such facilities as telnet or fip. Access lists an the scrvice
(remote) computer (typically in the rather coarse-grained
form of owner, group, and world access permissions) arc
used in connection with a user name and password provided
from the client (local) computer. she user nrame and
password together cffectively constitote a capability, a coded
record that establishes the clicnt's relationship to the access
lists (by defining and verifying the owner's identity).

Remoxc makes use of a capability we call a xap (exccution
access protector, pronounced "zap"). It is a coded record
that is originally generated by the server and sent to the
clicnt w be stored until needed. Tt is sent back to the server
as a parameter in messages requesting remole exccution or
other action. It identifies and authorizes access Lo a context
and includes the following information:

+ the TCP/IP address of the Remoxe server for which the xap
is valid,

« the focal user name associated with the context on the
service computer,

« permission bits,

» authentication information (c.g., a GSSAPI global name),
and

» a DES encryption key for the local password associated
with the user name.

One permission bit enables remote execution; she others
enable various "housckeeping” actions in regard to the xaps
themselves, such as issuing additional ones or revoking
existing ones.

A xap should be kept in a safe place, such as in & file
accessible only by the user (owner) on a client computer
that has a secure operating system. This last condilion
especially is difficalt to meet for all tra many Unix systems,
So there may be a problem of xaps being stolen, that is,
illicitly copied. The purpose cf the authentication
information is cssentially tc provide a degree of protection
against the theft of a xap by limiting the effectiveness of the
xap to situations in which additional information is also
supplicd, authenticating that the client has the right to use the

xap. Each xap employs onc of three authentication options
(listed in order of increasing security):

« No authentication is required. So there is no protection
against thest: a purloined xap may be used by the thief (or
anyone elre) from any client computer. This option is
provided only as a last resort for situations (we hope that
there are none) where the other options are infeasible or
(would that it were so!) where there is no danger of theft.

» The usc of the xap is limited to a particolar client computer
(more precisely, a particular client IP address). The thief
cannot hide himself in a distant part of the netwoik while
h. ..isuses the xap. This option is provided for use where
the necessary infrastructure for the next option is not
available.

« The use of the xap is limited 10 the user with a particular
global name as defined by an authentication system based
on GSSAPI (namely, Kerberos or DASS). The xap must
be accompanicd by the evidence (context ioken) required
by that system for establishing that the user has that name,
and the degree of protection depends on how secure that
system is. This is the preferred option.

The 64-bit local passwuid encryplion key appears in a xap
exclusive-or'd with a DES cryptographic digest computed
using all the other information in the xap and a master key
that 1s known only to the server. The xap thercby not only
conceals the encryption key, but also is protected against
forgery. Anyouc rying to generate a xap (either out of
wholc clath ot by alicring a few bits, such as permission bits,
in a valid xap) has only one chance in 264 of correctly
fendering the encryption key (effectively only one in 255
because of the way DES nses keys). When a user first
establishes himsclf with the server, at which time he mugt
supply his local user name and password for the service
compuler (bul not a xap) in a securc manncr, the server
randomly generates an encryplion key just for that user. The
key is :hen vsed to encrypt the user's local password. The
server ~ores e CHerypred password {im assotiation with: de
loca' user name) in 1is records with sufficient redundancy
that it can with high confidence recognize an improperly
decrypled password before attempling to use it. The server

remembers neither the unencrypted password nor the.

password cncryption key, but it includes the Iatter in a xap
which it issu¢s to the new user (Fig. 1).

Therefore the server can obtain the password only when 2
client provides a valid xap. This means that compromise of
a user's password requires "breaking into" both the user's
records on a client computer and the server's records on the
service computer. It is our view that such is an obstacle
sufficient to render Remoxe acceptably secure.

Server Recordg

Encrypled
Master Koy Paseword
Addross, XORed
wame, permisel we
el iation ofy| Passmord Koy

G (s

Ttandom
EE E=
¢

Figure 1. Concealment of password, using xap.

There are "housekeeping” chores j dealing with xaps.
Remoxe provides for establishing a new user with the scrver
ardh Bsving We iriial 2ep, Tor rening additional xaps that
may have reduced permissions and/or differing
authentication information (in particular, allowing access
from a different client computer), for ¢hanging the password
on the service computer (both as kaown to Unix and as
known 10 the server), for revoking all the user's existing xaps
(by changing the password encryption key) and issuing a
new xap to replace them, and for deleting the user from the
server's records (which of course also #ffectively revokes all
existing xaps). Note that, since the content. of 2 xap docs not
depend on what the password is, changing the password does
not affect the validity of existing xaps.

It is possiblc for each user to have a Remoxe server of his
own, running on a service computer with its own "well
known” TCP port (that is, a fixed port number that can be
"built into" client piograms). However, the user then
assumes the burden of installing his server and assuring that
it is always up and running. Also, these is an inefficiency in
having many separate servers on a computer, all performing
basically the same job. So the intent is that there be only a
few Remoxe servers (often just one) on each service
computer, each nstalled and maimained by a single user, iis
sponsor. This user owns and could access the files in which
the server keeps its records. He therefore must be someone
who can be trusted by the other uscrs not to abuse kis
position and invade their privacy by cither misusing the
records himself or through carelessness letting them be
accessed by others. That is, cach server and its sponsor
corresponds to a commuity of trust. The sponsor could be
the "superuser”, but we have not required this, because we
want a user to be able 10 install and begin using Remoxc
without waiting for an administrative bureaucracy to give its
approval and then take action, The scrver's records are kept
in files in a subdirertory of its sponsor's home directory; this
dircctory is created when the sponsor installs the Remoxe
server. The records are accessible only by the sponsor, who
is their owner.

i
§
€

When a client requests the running of an application, it sends
:he server a xap accompanied by any necessary
authentication information. The server verifies the
authentication information (e.g., by calling the appropriate
GSSAPI procedurss) and also decrypts and verifies the
password in the xap (Fig. 2). It then forks a process but does
not directly "exec” the application. Instead, it "execs" the
standard privileged Unix utility s« and delivers the uvser's
name and password to it as input. Afier s has converted the
forked process into a shell associated with thie user's id,
additional input effects the "exec” of whe desired application.
In this way the application runs with the eavironment and
access rights of the uscr, rather than with those of the
Sponsor.

Server Records
Epoyplod

Mester Key| P ord

Addrozs,
XORod
neme, peroisdons,
Suinooiicar'an fufy| Trsword Koy
——>
DRS

Pu-wurd

Figure 2. Recovery of password, using xap.

This rather roundabout, complex, and no doubt inefficient
techrique for establishing the proper context is necessitated
by the peculiarities of Unix. Perhaps the designers of future
operating systems will consider the following suggestions:

+ The natural way f~r a program to interface to the operating
system is through a privileged procedurc (system call),
rather than by forking and "exec'ing”. So there should be
a privileged procedure 10 which one can pass a user name
and password (or other system specific access control
information) and which will then st the user id to that of
the user. Similarly, there should be a privileged procedure
for changing a password.

In fact, there should be a simple, direct way without
administrative intervention for any user to establish a
sesvice and for other users to be able to grant that service
such access to their resources as they choose. They should
not have to grant this access in an "all or nothing” fashion,
but should be able to adhere to the principle of least
privifege. (A capability-based system wou!d achicve this.)

An analysis of remoxe authorization

We briefly analyze the advantages and disadvaniages of the
Remoxe authorization method and then provide a crude
compromise containment analysis. Servers, such as Remoxe,

that utilize our authorization technique can be brought up
immediately on any machine on which the user(s) have
accounts. No system administrator help or approval is
necessary. If the distributed system hosts are configured to
accept a global password for local authentication, such as a
Kerberos or DASS password, users need only remember one.
Tlus reduces the possnblhty of password compromise and the
incol d wil i g passwords that the
user has forgotten. The Remoxe authorization scheme
provides these advantages alony with security that is at least
as good, if not better, than other approaches.

One disadvantage of the Remoxe authorization scheme
stems from one of its advantages, the lack of involvcment of
a system administrator when bringing up permanent servers.
Without root privilege or system administrator help, keeping
these servers up across system crashss is problematical.
Normally, permanent servers are brought up at reboot based
on an entry in the rc.local file. Since this file is owned by
1001, this technique is not available to the unprivileged nser.

We are exploring use of the “At” utilicy to overcome this
problem. In particular, a non-privileged server or a
“persistence dacmon™ can periodically call “At” o schedule
a check that the appropriate servers are still running. If the
check fails, the server can be restaried. However, this
approach requires that the activity schedu'ed by “At” survive
across system crashes, This may or may not be true,
depending on the particular variation of Unix on which the
SCrvey runs,

The Remoxe authorization mcthod has quite good
compromise containment propertics. If an intruder gains
access to the files in which the Remoxe server master key
and encrypted passwords are stored, these cannot be used,
since the intruder lacks the Xaps that coniain the keys to the
encrypted passwords. If the intruder obtains a Xap, cithcr by
reading it from an improperly protecied file on a clicnt
machine or by capturing it as it travels over a neiwork, it
cannot be used (assuming the GSSAPI authentication option
is employed) since the intruder cannot manufacture the
necessary time-limited credentials required by the supporting
authentication technology.

If an intruder obtains root access on the scrver machine, he
has compromised all resources on it, He nced not 1ake
advantage of servers using the Remoxc authorization
scheme, However, if he manages to compromisc a sponsor,
he gains access Lo the rcsources of all other users that have
entrusted their access rights 1o the server the sponsor
controls. This is a good reason for supporting scveral scrvers
on a machine, one for eact. community of interest that cuns
there.

If an intruder obtains root access on a clicat machine, he can
wail for ils usecrs 10 type their global {i.e., GSSAPI-based
authcntication) passwords and thereby compromisc their
rcsources in the distributed system. This would be true

whether Xaps are stored on the machine or not.
Consequently, the Remoxe authorization scheme does not
introduce any new vulnerabilities for this situation. In fact,
since the intruder may not have access to all the users Xaps,
i.c., those stored on other systems, the Remoxe scheme
potenially can lessen the damage caused by a client machine
compromise,

USE OF REMOXE

The need for Remoxe originally arose from the following
typical situation: A user has a number of saurce files that he
maintains and edits on his workstation, which offers him
convenience, cconomy, and high interactivity, However,
many of the sources are intended to be compiled and
executed an a supercomputer, which offers power. After
editing, the user transports the updated sources to the
supercomputer and there compiles and executes them. He
would like 10 have the required updating occur automatically
in riSPonSe to a single, simple typed command, such as
“make’

The standard Unix utility make, used in conjunction with
standard utilities that provide remote access, such as fip,
telnet, and rsk, would seem 10 provide the required facility.
That is, make would invoke fip to transfer the sources to the
supercomputers and then invoke telnet or rsh to execute
remotely the compiler, other utilities, and the compiled
applications, However, there are two difficulties:

» Make makes decisions based on the exit status of the
programs that it runs, which is not available for programs
tun remotely by telner or rsh.

Each time that make invokes a utility providing remote
access, that utility prompts and waits for the input of a
password, severely inconveniencing the user and requiring
his continued attendance at the terminal; it would be
difficult to view the activity as truly automated. Common
means of cam)mve.nung his mhle.w such as identifying
oneself as "anonymous” or "guest”, making appropriate
entries in the .netrc or .host files, and/or using the
Network File System (NFS), open up privacy or security
Ioopholes that are often unacceplable. Thest remarks also
apply t0 use of the standard utility rdist.

A clicnt utility has been provided for use with Reinoxe that
avoids both of these problems. In regard 1o the first
problem, the protocol between the client and server is such
that status information is returned after cach remote
exccution; this status is in turn returned as the status of the
clicnt. To effect execution on a supercomputer, make
invokes the client utility, which then (through the remote
server) invokes the remote application, Make will then
correctly interpret the returned status as that of the
application.

There is no need for passwords, because authorization is
effected using xaps appropriate 10 the remote servers. (In
fact, the xaps specify which remote servers — which remote
computers ~— are (0 be used.) These xaps are fetched from
files specified in the commands o the client. The clicnt alsa
carries out any needed GSSAPI-based protocol. In addition,
a file transfer ulility has been provided to be run under the
control of the server, Filcs may be transported between this
utility and the client. A sample comme:ated makefile for
rerole execution is displayed in Fig, 3. Note that make
invokes a second, remote make.

This makeflle effects the remote compllation and
execution of the applicatlon "test”, which tests a subroutine
package.

The directory "shadow" contains empty shadow files,
ane for each file that ks to be sent to the remote computer.
These flles "stand in™ for thelr remote counterports when
&, " tests shelr ages. Afler » file s sens, Jis shodow Is
aged by using "touch”,

The client utility Is "cInt"; "-F 5¢" specifles that the xap
is to he found n the file "sc", and " -4 dir" speclfies that
remote executlon is to occur in the dlrectory "dir". The
remote vommands are "moake” and “test”, the former

referring to a remote makefle that should effect the

compilatior of the three "<" and ".h" f[les into the

executahle flle "test”.

h, P’

/subrs.h

d " Ntest.c .
cint -f sc -d dlr make

cInt -f sc -d dir test

Before the remote "make" Is Invoked, ony updated *.c*
#ond ".b" files are transported using the remote utility

"rmx", which [aterprci: "put xxxx" gs a request to have

the file "oxx" sent from the client tg the remote computer.

shadow/test.c: test.c
clnt -f sc «d dir rmx put test.o
touch shadow/test.c

shadow/subrs.c: subrs.c
£lot f 5¢ -2 Sl Fm¥ put subrx o
touch shadow/suhrs.c

shadow/subrs.h: subrs.h

clat -f ¢ -d dir rmx put subrg b
touch shadow/subrs.h

Figure 3. A sample simple makefile.

ACKNOWLEDGMENTS

“Work performed under the auspices of the U,S. Department
of Encrgy by the Lawrence Livermore National Laboratory
under contract number W-7405-ENG48."

file:///yhlch

10.

SIBLIOGRAPHY

D. M. Nessett, “Factors affecting distributed system
security,” IEEE Transactions on Software
Engineering, vol. SE-13, no. 2, Feb., 1987, pp. 233-
248.

D. M. Nessett and G. M. Lee, “Terminal scrvices in
heterogeneous distributed systems,” Computer
Networks and ISDN Systems, Vo. 19, pp, 105-128,
1990, Elsevier Science Publishers B.V.,
Amsterdam, The Netherlands.

J.G. Fletcher, “Software Protection of Information
Networks,” Infolec Siate-of-the-An Report, Future
Network, vol. 2, 1978, pp. 149-164.

R.W. Watson and J.G. Fletcher, “An Architecture
for Seppor: of Newwork Operating System
Scrvices,” Computer Networks, vol. 4, Feb., 1980,
Elsevier Scicnce Publishers B.V., Amsterdam, The
Netherlands, pp. 33-49.

D M. Nessctt, “The Inter-Authentication Domain
(1AD) logon protoco! (Preliminary specification and
implementation guide),” Lawrence Livermore Nat.
Lab. Rep. UCID-30207, 1984.

D, Estrin, “Non-Discretionary Controls for Inter-
Organization Networks,” Proc. IEEE Symposium
on Security and Privacy, IEEE, Lus Alamitos, CA.,
April, 1985, pp. 56-61.

J.G. Sieiner, C. Newuman and J.I. Schiller,

“Kerberos: An authenticalion Service for Open

Network Systems,” Proc. Winter Usenix Conf.,

ggcnix Association, Berkcley, CA., 1988, pp.191-
2

S.P. Miller, B.C. Neuman, J.1. Schillcr, and J H.
Satezer, “Kerberos Authentication aad
Authorization System,” scction E.2.1 of Project
Athena Technical Plan, MIT, Dec. 1987,

1. Linn, “Practical Authentication for Distributed
Compuling,” Proc. IEEE Symposium on Research
in Security and Privacy, IEEE, Los Alamitos, CA.,
May, 1990, pp. 31-40.

1.G. Fletcher and R, W. Watson, “Service Support in
a Network Operating System,” CompCon 80,
Spring, 1980.

“Depariment of Defense Trusted Compler System
Evaluatic Criteria,” DOD 5200.28-STD,
Department of Defense, Washington, DC,
December, 1985.

13.

B. Clifford Neuman, “Praxy-Based Authorization
and Accounting for Distributed Systems,”
University of Washington Technical Report 91-02-
01, Depariment of Computer Science and
Engineering, University of Washingion, FR-35,
Scatile, Washington.

“OSF DCE 1.0 Application Development Cuide;
Revision 1,” Dec. 27, 1991, Open Software
Foundation, Cambridge, MA,

