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1. Imtroduction

Chiral conformal field theories living on the compactified lightcone S! provide in-
teresting examples of quantum field theories with strange statistics and unusual internal
iyw For the analysis of particle statistics and internal symmetries the methods
of ubbtnc quantum field theory offer a conceptually clear and mathematically sound
basis [DHR). However, the implementation of the algebraic method to conformal mod-
els requires the knowledge of an algebra of observables given - if possible - in terms
of generators and relations. For example the Z(N) parafermion models of Fateev and
Zamolodchikov [FZ] are conformal field theories defined by the help of operator product
expansion of pointlike fields. To our knowledge it is not known how the C*-algebra of
obuﬂlbb of this theory can be fornmlated in terms of generators and relations.

. The concept of the loop group [PS}-lies-very clase to both CFT and algebraic
QFT. It describes a conformal model in terms of bounded operators. -In this-paper we
consider the simplest possibility the central extended U(1) loop group algebra spanned
by operators W(f), f : S' — R satisfying Weyl algebra relations:.. Uulike [BMT]. we
investigate the possibility that the loop group clement e’/ represented by W(f) does
not necessarily lie in the identity cmnponmtu This leads to a quantization of the level
parameter k in the cocycle; k must be an even integer. Considering this "large” loop
group algebra as ;;1}4/dgcbrq of observables we-study their Z, type of supersclection
vc(ora,und construet Belds that create the Z, chnrge:;. The commutation relations of
these fields turn out to be of the parafermion type. The precise relation, however, of
these parafermions to those of Fateev-Zamolodchikov requires further study.

- 2. The U(1) loop group

The U(1) loop group is the abelian group of the smooth mappings from 8! into the
group U(1) with respect to the pointwise nmltiplication:

G=(®:8' —U(1) |#€C™}

$,9,(0) = $:()%:(0) 6€S’
The part of G , which is connected to the unit element, clearly forms a subgroup, G,.
Since  is abelian ¢, is a normal subgroup. The factor group ¢/, is the fundamental
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group of S!, the additive group of the integers. This means that G = G, x Z. In this
way the cosets can be labelled by the winding number: n = [ $£&(0)! £8(0). ¢,
corresponds to n = 0. ¥

2.1. Proposition: The elements of G, can be parametrized with functions in
L, =2 C™(S),R), as #(0) = /0,

(Co can be treated as the Lie algebra of G . Since it is a function space, the Lie
bracket is trivial.)

Proof: Since ® €@, it is a smooth deformation of the unit element 1, there exists
tmoothmpi.fromtbemtervnl[ﬂ linto G, such that ¥, =1€G,, & =&

Let us define f,(0) = -i j L7 (r) L ®e(r). Since fo(0 = 0) = 0 and
H(e/08,(0)) = 0, #,(0) = "8,(0)¢*# 9, Defining now (9) s f;(6), it is C=
type by construction: a smooth deformation of the function f,(#) = 0. . [

The above parametrization of G, is redundant. The elements £, and f; in £, define
the same element in G, if and only if £,(0) = £2(0) + 2xn for some n € Z. Considering
L, as an additive group, g, is isomorphic to the factor group £,/22Z.

The constant functions in £, define a U(1) subgroup in G, . Therefore

C=U(1)xNx2. (2.1)
where Q = {f € £,| £(0) = 0} is a non-compact group. (Actually a linear spm.)
3. Projective representations of G,

The map W from G, into the group of unitary operators acting on some Hilbert
space is called a projective unitary representation of G, if
W()W(g) = W(f + 9)a(/,9),
W(f +2x) = W(f); a(f +2x,9) =a(f,9+2%) = a(f,9)

for any f and g in £,. (The second line is necessary to obtain a representation of G, not

onlyof £,.)
Since the multiplication of the W operators must be associative, @ must be a 2-

(3.1)

cocycle, i.e. it must satisfy

a(f1, f2)a(fs + f2, /) = a(f1, fa + fr)a(f2, f) (32)
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frany fi€c L, i=1,23.

3.1. Lemma: If B is a real bilinear form on the linear space £,, o f,g) = e*B(/-9)
is & 2-cocycle on £,. Let us call the cocycles of the above form "quadratic” cocycles. If
furthermore

B(f +2x,9) = B(f,g) mod 2z and B(f,g+2x) =B(f,9) mod2x  (3.3)

then it defines a 2-cocycle on G, .

Proof: This follows immediately substituting « into (3.2). [ ]

3.2. Proposition: The cobhomology classes of the quadratic cocycles on G, can
be labelled with the antisymmetric real bilinear forms on £, satisfying (3.3).

Preof: We have to prove first that all the quadratic coboundaries are defined by the
updqmwnchhmm second that all the symmetric bilinear forms define
eocydathumeoboudm

m&uputfoﬂownmmedmelyﬁomthesymmetncfotmdtheeobmndny
operator on 1-cocycles:

_BSf+9)
$8U1,9) = B(Fpta)

nthebihmrformmmtbesymmetncuulf
The opposite direction is also easily obtained: If B is symmetric and bilinear then

" B(f9) = 5(BU9) + Bs. ) = 5(BU +9.1 +9) - BUS.S) - Bls,)),

#0 the corresponding a(f, g) is the coboundary of the 1-cocycle f(f) = ¢'4B(L) . o

In order for the W operators to generate the observable algebra of some conformal
field theory we make further restrictions on the cocycles: we want them to be invariant -
under the reparametrization of S!:

alf.g) =a(foD,goD), forsny D€ Diff(S") (3.4)
3.3. Proposition: The 2-varisble functional on £,

i f groro
a(f,g) me (3.5)
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defines inequivalent reparametrization invariant quadratic 2-cocycles on G, for any real
parameter k.

Proof: K(f,9) = k}'gf(O)g'(O) is an antisymmetric real bilinear form on £,
satisfying (3.3), so accor:ling to the previous proposition, it defines inequivalent 2-

-cocycleson G, .

The reparametrization invariance can be checked by direct calculation. [

As a result of this analysis we obtained a realization of the U(1) current algebra
in terms of pr;:jective representations of the U(1) loop group. Writing W(f) as (/)
with (J,f) = f £2 /(0)J(0), the relation W(f)W(g) = W(f +g)ar(f,9) with the above
choice of o is equivalent to the current algebra [J(8)), J(02)] = ik6'(8; — 62), or using
Fourier niodes, to [Jy, Jiu] = —knéuim,o0/nsm-

4. Projective representations of ¢ -

4.1. Lemma: The elements of G can be parametrized with functions in § = {f €
C(R,R) |f(0 +2x) = £(6) mod 2x) as #(0) = &*/(®,
(The winding number n = -(£(0 + 2x) — £(0)) determines the decomposition of

G as Uz[,... L, is the same as before. £, is a linear space only for n = 0.)
n€

Proof: Because of (2.1), any element of § can be written as & = $,¢i!», where &, is
an element of G, , and [, is a representative of the G, coset with the appropriate winding
number. Since !, = n# is a correct choice and using Lemma 2.1 &, can be parametrized
as @, = ¢'/+(" with f, € £,, B(0) = e'/o(+70) gives the required parametrization. ®

Similarly to the case of G, , € is ismnorphic to the factor group §/2¢Z.

In order to give the inequivalent projective representations of G we have to find the
inequivalent 2-cocycles & on G satisfying (3.3).

As it can be easily seen Lemma 3.1 and Proposition 3.2 remain true with the
modification that instead of bilinearity we require only additivity in each argument
of B. (Since § is not invariant under scalar multiplication.) So we have to determine
the real antisymmetric "biadditive” forins on ¢ . We still require reparametrization
invariance, i.e. '

&/f,5) = &foD,go0 D) (4.1)
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for any it D of some D € Diff(S") in the sense that D € £, and for the canonical
projectim p: R —S! poD=Dop.

We may require that the restriction of & to G, is a; for some k &€ R.

4.2. Proposition: A class of mutually inequivalent reparametrization invariant
quadratic 2-cocycles on G can be obtained in the following form:

it [ (son'@-s0r®)
“k(!’g =e ¢ (4.2)

where k is an even integer.

Preef: To make the original o) reparametrization invariant it is necessary to sub-
tract the second term from the original bilinear form. In order to satisfy the analogue
of (3.3) k must be an even integer. The cocycles of the above form are inequivalent
for any allowed value of k, since they are antisymmetric as it can be checked by partial

We have the further freedom to add any real antisymmetric reparametrization
invariant bilinear form that vanishes on G, . This means that it is degenerate on the
Co cosets i.e. it may depend only on the winding numbers. Since all real bilinear forms
on Z are symmetric, it corresponds to a coboundary. [

In the language of the current algebra the extension of G, to § corresponds to the
extension with a conjugate of J,: G is generated by {Ju|n € Z} and by W(l,) with the
commutation relation

JuW(ly) = Wi (Jn + kbn o).

Jo has to have integer spectrum in order for ¢'(//) tobelongto G . So W(l) cannot
change the mod k value of J,.

8. The local net structure of the observable algebra

In the following we want to consider the above constructed *-algebra

Av= (W(f), f€b,| W(W(g)=W(f+g)a(f,9)
W) = W(=fax(f,~f) fg €6)
5
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as the global observable algebra. The subalgebra of the observables localized in an
interval I C S! is given by

AD) = (W()If € (1)) (5.2)

where §(I) = {f € 0| f(R\p~*(])) € 2Z}.

It can be easily checked that this structure really satisfies the locality requirement:
the operators localized in disjoint intervals commute. Haag duality, however, is violated
because there are global central elements in A; .

8.1. Proposition: The centre of A; is generated by Y := W(3E).

Proof: The W operators are not only algebraic generators but they form a linear
basis as well, so any element of A, can be written as a finite linear combination: X =
Ilicfw(f) -

W@ XW(g)" = 3 c,W@WHW(e)" = Y cpan(a, /PW(f)
] ]

80 X is central iff for every f €G either ¢; = 0 or ay(g,f)? = 1 for any g € . The
second case can occur only if f =0 and f(0) € 2. »

The elements of the subalgebra defined by the constant elements of § play a special
role, they measure the winding number ny of the function f € G:

WEW(IW ()™ = W(f)eems.
6. Automorphisms on A;

Multiplying the W operators with the operators of a true unitary representation of
g clearly defines a *-automorphism of A, . These automorphisms are characterized by
linear maps K from ¢ into R: »

AW(g)) = W(g)e'K® (6.1)
Let us write these maps into the form
.w .
K@) = [ 52r@)(6)+ om, (62)
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by the help of r €6 , s € R. The integration is to be taken on some interval (z, z 4+ 2x).
In order for K to be well defined also on G not only on v , [ $2r(6) must be integer.
On composing morphisms both r and s are additive.

The inner sutomorphisms Ady(s) have the above form (6.1) with r = —kf’, s =
k£(0). They have two important features: r € £, and [ $£r(6) € kZ. (We do not have
to deal with the value of s: since f(0) can be chosen arbitrarily independently of f', two
morphisms that differ only in the value of s are connected by an inner automorphism
which is defined by the help of a constant function.) This means that we have two
candidates for "quantum numbers” labelling the sectors:

(I): TAe integral of r: ?gr(d) mod k. This is a Z; charge.

(I): ﬂeviadiugmmfkrofr Since this number is zero for the inner automor-
phisms, all automorphisms with different winding numbers of r are inequivalent. This
is & Z valued charge.

To see whether these numbers really correspond to transportable local charges some
further investigation is necessury. In the rest of the paper we carry out the detailed
analysis for the (I) case.

As we have seen the equivalencs classes of the morphisms of type (I) form a Z:
group with respect to the composition. The corresponding quantum number is the
integral of the r € £, function appearing in (6.2). It is measured by the elements of the
 centre, i.e. Y is the global charge operator for it:

i [ gerin
pAY)=Ye o .

Let us introduce a more compact notation by the help of functions in
= ( ”L:J.Lg) UE. & is the generalization of ¢ to &', the kfold covering space
of 8!:

Ly ={f:R—R| feC* fz+m)=fl)+mE).  (63)
Then instead of (6.1) we can write

342w

pW) = Wigewplik [ ST @0 -ikfzmg} ; fely 64



In this notation f{z,) plays the role of the earlier s and kf’ the role of r. m is the
quantum number labelling the sectors. p; is independent of the choice of z,. Extending
a;toﬁ,wecanusetheshoﬂhmdnohtion

(W (9)) = W(g)an(s, f)’, (6.5)

which shows again that p; is inner automorphism Adyy( iff f € L withm =0 mod k.
(Then ay is just the original ax on G .)

The composition law in this notation is simply p;, 0 p;, = pj,,,

6.1. Pioposition: p; is localized in an interval I C 8! (i.e. it acts trivially on
the obeervables localized in 8' \ 1) iff f € Lxp (), where

Ly()={fe Lyl fR\p (D)€ ). (69)

Proof: Let us first choose a g € L (). For all such ¢
So4im
pj(W(g)) = W(g)ezp(ik f 5‘-5 F(0)g(#)} = W(g) must hold which is equivalent to

FRAP (D) =00 FR\p (D)) = const. .
Chocsing now 5 9 € Lu(I) 1 # 0, p(W(a)) = Wigleaplik | 4£7(6)o(6) -

ikf(z,)n,}. Since this expression is independent of z,, we may choose p(z,) € S' \ I.
Then pj(W(g)) = W(g)exp{—ikn, f(z)} = W(g) iff f(z,) € 42, 30 f(R\p~}(I)) €
2z ' -

As a consequence of this result the composition of morphisms that are localized in
the same interval is a morphism localized in this interval again.

6.2. Proposition: The localized morphisms are Jocally transportable. That is for
any two morphisms p; and p;, that correspond to quantum numbers m; = m; mod k
and are localized in intervals I) and I3, respectively, there exists a sequence of localized
operators W(hy)...W(h;,) in A such that

Ph, = Adw(a,) 0 ... 0 Adwa,) 0 pj,.

In fact n can be chosen to be n < 2 and n = 2 is necessary only if I; | JI; covets
§'.



Proof: Let us first consider the case when S! \ (I; |JI;) is not empty. Then there
exists 0, € S' \ (I) U I2) for which both £,(6,) and f2(0,) are in 322,

Computing p;, op;.' one finds that it is Ady,; _;,. This is an inner antomorphism
since fy - €6. '

Since (f; — #)(0,) = 3Es, where s is an integer we can define h(0) := f,(6) -
£1(0)- 38s € J(I) . I CS! contains both I; and I, but not 6,. Since W(f, — f) and
W(h) differs only in a central element Y*, we obtain p;, = Adw) 0 pj, .

In the case when S! \ (I) |JI;) is empty, there exists a sequence of intervals
Iy...l(n41) such that Iy = I, Jnyyy) = I; and 8!\ (I; UZj+1) is not empty for any
j- This sequence of intervals defines the required sequence W(h,)...W(h,) of localized
operators in A, by the above construction. [

7. The field algebra

As it is clear from the previous discussion the ficld algebfa corresponding to the
considered type of morphisins is generated by the observable algebra and only one new
generator, the kth power of which is in A, .

The field algebra is then given by the relations

Fe=(W()T| feb TW(f) =W,

7.1
r* = W(-1,)C) D

The operator C is a central element that can be chosen at will. For later convenience
we choose it to be C = —ilk-1)1,

v is a reference morphism a -~ cxentative of the equivalence class m = 1. A
convenient choice is v = p(f = 41),.

7.1. Lemma: For f € Ly the morphism pj is induced by the unitary element
¥(f) = W(Bh - /)T™ of Fi. That is Ady sy = p;.

Proof: Calculating directly Ady ;) on some W(h) immediately gives the above
result, [

Since the ¥ operators can be parametrized with é functions one already conjectures
that their monodromy operator should be a central element, the kth power of which is
trivial. So only the morphisms and not the field operators themselves are periodic.
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7.2. Proposition: The product of local charge transporters (in the sense of
Proposition 6.2 ) that carries m wnits of Z; charge once around the circle ( that is the
monodromy of ¥(f), f € Lp) is Y™ = W(m32).

Proof: Let us take two field operators ¥(f;) and ¥(f;) creating the same charge
m and localized in disjoint intervals I; and I, respectively. ¥(f;)~1¥(f,) = W(f, -
R)ea(~fi, f2). W(fi - f2) is in As but is not localized in general. There exist two
different observables that differ from W( £ = f2) only in central elements and that are
localized in the two possible intervals containing both I; and I. Let us choose elements
3, and 7, from the two component: of S' \ (I, |JI;) in such a way that according to the
orientation of the circle 2, < I < 3, < I;. Then W(f; = fa— fi(zo)+ fa(20)) is localized
in the interval that contains I}, [ and 2, but aot z,. W(f; — f - f,(i.) + fa(3,)) is
localized in the interval that contaius 1, I; and 2,, but not 2, W(f; — fo — f;(z,) +
RGIW(fi = fr = iilz) + fa(2)7 = Wi-filz) + fi(%) + falz) - fa(%)) =
W(miE)=Y™ . * ]

7.3. Proposition: The ¥(f) operators satisfy the algebraic relations:

V() = W(=kf)e=t 5D (7.2)
(1) ) = Y R)R(F)e S i, 1) (1.3)

where f€ Ly fi € L, i=12; I(f) = }'ggi(o).

Proof: The statement follows by diorect calculation using the concrete form of
¥(f) = W(L - /)I™, the commutation relations of the W(g) operators and the
definition of the T’ gencrator. ]

Computing the commutator in the case when the localization intervals Iy and Ip
of ¥(f,) and ¥(f2) are disjoint, the result is

¥(f2)¥(f; )CHL.%B'+i(""]"")""']’("’)) if zo<li<hz<az

oot = { e
’ ? W(fz)\p(f,)e"'"‘r‘"+'("-1]|(l.)—sz(l.)) f zo<hh<hi<z,

This formula apparently deperds on the arbitrary point 2, in 8'\(/; U ;). But moving
2, in one connected component of 8! \ (1) {J ;) both fi (2,) and iz(!,,) are unchanged.
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Moving it through I; or I, the change of f;(z,) or f3(z,) is compensated by the change
of the sign of 2i®2y.

In order to obtain FrGhlich type commutation relations for the field operators, at
first we haw. to have an ordering cf the intervals. This exists only if we cut the circle
at a point z, and consider only those morphisms that are localized in S! \ {z,).

Let ¥(f;) and ¥(f2) be localized in disjoint intervals I; and I, both of them being in
$'\{2,). Both fi(z,) and fy(z,) arein 42Z, so we can define ¥, (f;) := Y & St g( ),
i=1,2. SinceY is a central element, these field operators induce the same morphisms
~ as the original ones.

7.4. Proposition: The modified field operaton obey Z,-parafermionic commu-
tation relations:

¥, (F)¥..(f2) = .. (f2)¥..(fr) 2552, (74)

The + sign holds if I, is on the left of I, in the interval (z,,2, + 27) and the — in the
comd
opposite case. The statistical parameter of the sector of charge m is then ), = '3 3",

8. Dynamics on the ficld algebra

Since we are investigating a chiral model, the ‘space’ translation and the ‘time’
evolution is described by the same automorphism, r,(W(f)) = W(T; f) where T; f(2) =
f(z—2z). We are looking for the extension of 7, to the field algebra F;. The translation
of the morphisms is uniquely determined to be P;=Te0pjOT-s, This defines the
translation of the field operators up to a central element. Since the elements of the
centre are not localized, this ambiguity is specified by the requirement that translating
a local field operator the resulting operator must be local.

8.1. Proposition: ,(¥(f)) := ¥(T.f) defines the unique extension of 7, to
Fu that preserves locality of the field operators. (This corresponds to the definition
() = W()I.)

Proof: Obviously, if ¥(f) is localized in an interval I then ¥(T( £)) is localized in
the translated interval.

The fact that it implements the translated morphism can be checked by direct
calculation. [
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