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1. Introduction 

Chiral conformal field theories living on the compactified lightcone S 1 provide in-
tsiesling example* of quantum field theories with strange statistics and unusual internal 
symmetries. For the analysis of particle statistics and internal symmetries the methods 
of algebraic quantum field theory offer a conceptually dear and mathematically sound 
bask (DHR). However, the implementation of the algebraic method to conformal mod­
est requires the knowledge of an algebra of observabW» given - if possible - in terms 
of generators and relatione. For example the Z(N) parafermkm models of Fateev and 
Zanwlodchikov [FZJ are conforms! field theories defined by the help of operator product 
expansion of pointlike fields. To our knowledge it is not known how the C*-algebra of 
observables of this theory can be formulated in terms of generators and relations. 

>The concept of the loop group [PS^liw very close- to both CFT and algebraic 
QFT. It describes a conforiiia) model in terms of bounded operators. -In this • paper we 
consider the simplest possibilityjtbe central extended U(l) loop group algebra spanned 
by operators W{f)> / : S' —> R satisfying Weyl algebra nlntionsi Uulikc [BMTJ we 
investigate the possibility that the loop group elnnent t%t represented by W(f) does 
not necessarily lie in the identity ctanponent* .Tim leads to a quantization of the level 
parameter к in the cocycle; Jfc must be an even integer. Considering this "large" loop 
group algebra as our algebra of observable* we-study, their Z* type of supersclection 
s^brs; and construe! fields that create the Z* charges. Tlie commutation relations of 
these fields turn out to be ftf the parafennkm type. The precise relation, however, of 
these parafennions to those of Fateev-ZomobMlchikov requires further study. 

2. The U( l ) loop group 

The 17(1) loop group is the abcliau group of the smooth mappings from S' into the 
group V{\) with respect to the pointwise multiplication: 

( ? = { Ф : 8 ' - » 1 / ( 1 ) | Ф € С ~ } 

* i * a ( * ) « * i ( W ) * € S ' 
The part of Q, which is connected to the unit element, clearly forms a subgroup, Q0. 

Since Q is abelian Q0 is a normal subgroup. The factor group {?/£„ is the fundamental 
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group of S 1 , the additive group of the integers. This means that Q = Q0 x Z. In this 
way the cosets can be labelled by the winding number: n = J j j * ^ ) - 1 £*(*)• Q, 
corresponds to n = 0. 

2.1. Proposition: The elements of Q0 can be parametrised with functions in 
£ . • C-fSMl), as Ц0) = 4M. 

(£ # can be treated as the Lie algebra of Q . Since it is a function space, the Lie 
bracket is trivial.) 

Proof: Since * €0. it is a smooth deformation of the unit element 1, there exists 
a smooth map «(from the interval [0,1] into Q0 such that * . == 1 6 ft, *i = • . 

Let us define f,{9) = _ i / g S ^ O O Í * « ^ ) - Since f,(0 = 0) = 0 and 

^(e-íAW*^)) = o, *t($) ш *,(0>""1. Defining now f($) as /,(*), it is C 0 0 

type by construction: a smooth deformation of the function f0($) = 0. • 
The above parametrization of Q0 is redundant. The elements f\ and /3 in C0 define 

the same element in Q0 if and only if S\ifl)= /з(^) + 2irn for some n € Z. Considering 
£ # at an additive group, Q0 is isomorphic to the factor group C0/2*Z. 

The constant functions in C0 define a U(l) subgroup in Q0 . Therefore 

(? = l / ( l )x f lxZ . (2.1) 

where ft = {/ 6 £«| /(0) = 0} is a non-compact group. (Actually a linear space.) 

3. Projective representations of Go 

The map W from & into the group of unitary operators acting on some Hubert 
space is called a projective unitary representation of Q0 if 

WUW(g) = W(f + 9)«(f,9)f 

W(f+2n) = W(f); а ( / + 2 * , л ) « а ( / , 0 + 2ж) = а(/,а) 
for any / and g in C0. (The second line is necessary to obtain a representation of Q0 not 
only of Ca.) 

Since the multiplication of the W operators must be associative, a must be a 2-
cocycle, i.e. it must satisfy 

a(/i,/a)o(/i + /2 , /3 ) *e ( / i , / j+ /» )« ( /2 , /s ) (3.2) 
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for шоу fi ^ С i = l,2,3. 
3.1. Lemma: If В is a real bilinear form on the linear space £ # , л(/,е) = e'*('**) 

ii a 2-cocyde on £.. Let us call the cocyeles of the above form "quadratic" cocydes. If 

B(J + 2n,g) = B(f$9)mod2w and B(f,g + 2») = B(/,e) modln (3.3) 

than it defines a 2-cocy cle on Q9 . 
Лев£ This follows immediately substituting or into (3.2). • 
%Л. РгороаШош The cohomology dasses of the quadratic cocycles on Q9 can 

be labeDsd with the antisymmetric real bilinear forms on £« satisfying (3.3). 
Рт—f: We have to prove first that all the quadratic coboundaries are defined by the 

help of symmetric bilinear forms, second that all the symmetric bilinear forms define 
cocycle» that are cobouqdartes. 

The first part follows immediately from the symmetric form of the (»boundary 
operator on 1-cocycles: 

so the bilinear form must be symmetric itself. 
The opposite direction is also easily obtained: If В is symmetric and bilinear then 

Bif,9)»l(B(f,g) + B(gjj) « | ( * ( / + * / + í r t - B ( / J ) - * ( * , * ) ) , 

so the corresponding a(f, g) is the coboundary of the 1-cocycle ß(f) = е*ЪвМ'Я . • 
In order for the W operators to generate the observable algebra of some conforms! 

field theory we make further restrictions on the cocycles: we want them to be invariant 
under the reparametrization of S 1: 

<*(f,9) = <*(f°D,9oD), forany DtDifftS1) (3.4) 

3.3, Propositions The 2-variable functional on C, 

i * 

«*(/,*) «e • (3.6) 
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defines inequivalent reparametrizatkm invariant quadratic 2-cocycles on Qm for any teal 
parameter k. 

Proof: K(f,g) в к J £/{9]д'(9) is an antisymmetric real bilinear form on C. 
satisfying (3.3), so according to the previous proposition, it defines inequivalent 2-
cocycles on C» -

The reparametrization invariance can be checked by direct calculation. • 
As a result of this analysis we obtained a realization of the U(l) current algebra 

in terms of projective representations of the U(l) loop group. Writing W(f) as e'W* 

with (JJ) ш J%№J{9), the relation W(f)W(g) = И'Г/+«)«*(/,«) with the above 
о 

choice of <*k is equivalent to the current algebra [J(0t), Jih)] — ikS'fa - #j), or using 

Fourier modes, to [JH,Jm] я -kn6n+mt0J*+m-

4. Projective representations of Q ф 

4Л» Lemma: The elements of Q can be parametrized with functions in ö = {/ € 
C~(R, R) \f(9 + 2») = f{9) mod 2*} as Щ9) = «*'<•>. 

(The winding number » = з^(/(0 + 2ж) - f{9)) determines the decomposition of 
ő as (J £„• £o » the same as before. £„ is a linear space only for n = 0.) 

»ez 
Proof: Because of (2.1), any element of Q can be written а» Ф = Ф„е''", where Ф„ is 

an element of Go , and /„ is a representative of the Q0 coset with the appropriate winding 
number. Since / n = nö is a correct choice and using Lemma 2.1 Ф» can be parametrized 
as Ф, • eiM§) with fc € £., Ф(0) - e<<'»<#,+n#> give» the required parametrization. • 

Similarly to the case of Q0 , Q is isomorphic to the factor group {//2*Z. 
In order to give the inequivalent projective representations of Q we have to find the 

inequivalent 2-cocycles t» on Q satisfying (3.3). 
As it can be easily seen Lemma 3.1 and Proposition 3.2 remain true with the 

modification that instead of bilinearity we require only additivity in each argument 
of B. (Since ф is not invariant ander scalar multiplication.) So we have to determine 
the real antisymmetric "biadditive" forms on Q . We still require reparametrization 
invariance, i.e. 

&U,S) = 6(foi>,go£)) (4.1) 
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for any НИ D of some D € Diff(Sl) in the sense that fle£, and for the canonical 
projection p: R—»S 1 poD = Dop. 

We may require that the restriction of о to (?# is a* for some * é R. 
4.2. Proposition: A class of mutually inequivalent reparametrization invariant 

quadratic 2-cocycles on Q can be obtained in the following form: 

j » 

«*(/,*) = e • (4.2) 

where к is an even integer. 
Pr*0f: To make the original or* reparametrization invariant it is necessary to sub­

tract the second term from the original bilinear form. In order to satisfy the analogue 
of (3.3) к must be an even integer. The cocyclcs of the above form are inequrvalent 
for any allowed value of k, since they are antisymmetric as it can be checked by partial 
integration. 

We have the further freedom to add any real antisymmetric reparametrization 
invariant bilinear form that vanishes on Q0 . This means that it is degenerate on the 
Qm coasts i.e. it may depend only on the winding numbers. Since all real bilinear forms 
on Z are symmetric, it corresponds to a coboundary. • 

ш the language of the current algebra the extension of & to £ corresponds to the 
extension with a conjugate of Jp: Q is generated by {Jn\n € Z) and by W(l\) with the 
commutation relation 

/ w H r ( / i ) = Wr(/i)(^» + W»,o). 

/ # has to have integer spectrum in order for е'МЛ to belong to Q . So W(l\) cannot 
change the mod к value of J0. 

5. The local net structure of the observable algebra 

In the following we want to consider the above constructed '"-algebra 

AH = m л / € A i m/wis)=mf+#м/. *) ( б 1 } 
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as the global observable algebra. The subalgebra of the observables localized in an 
interval JT С S 1 is given by 

M*)-mme<Kv) (5.2) 
where$(J) = { / € $ | /(R\jr>(J)) €2»Z). 

It can be easily checked that this structure really satisfies the locality requirement: 
the operators localized in disjoint intervals commute. Haag duality, however, is violated 
because there are global central elements in Ли . 

5Л. Proposition: The centre of .4» is generated by Y :« W(*£). 
Proof: The W operators are not only algebraic generators but they form a linear 

basis as well, so any element of Ak can be written as a finite linear combination: X — 

so X is central iff for every / €0 either c/ = 0 or (*k(g,f)2 — 1 for any g €0 . The 
second case can occur only if / ' = 0 and /(0) € f̂ Z. • 

The elements of the sttbalgebra defined by the constant elements of й play a special 
role, they measure the winding number ?»/ of the function / 6 Q'. 

W(c)W(f)W(c)-1 = W(f)eiken'. 

6. Automorphisms on Ak 

Multiplying the W operators with the operators of a true unitary representation of 
Q clearly defines a '-automorphism of Ak • These automorphisms are characterized by 
linear maps К from Q into R: 

№{$))-*{&*<* (6.1) 

Let us write these maps into the form 

K(g) = J£r(0)g(9) + m, (6.2) 
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by the help of r 60 ,» 6 R~ The integration is to be taken on some interval (z, г +2*). 
In order for if to be well defined also on Q not only on у , / *£r(0) m u s t be integet. 
On composing morphisms both r and s are additive. 

The inner automorphisms Adw(/) have the above form (6.1) with r = -kf, s = 
*/(0). They have two important features: r 6 £ . and / £r(tf) € kZ. (We do not have 
to deal with the value of«: since /(0) can be chosen arbitrarily independently of /' , two 
morpmsms that differ only in the value of * are connected by an inner automorphism 
which is denned by the help of a constant function.) This means that we have two 
candidate» for "quantum numbers" labelling the sectors: 

2* 
(I): The integre! of r: J fjr(0) mod k. This is a Z» charge. 

о 
(П): The winding number of r. Since this number is zero for the inner automor­

phisms, all automorphisms with different winding numbers of r are inequivalent. This 
is a Z valued charge. 

To see whether these numbers really correspond to transportable local charges some 
further investigation is necessary. In the rest of the paper we carry out the detailed 
analysis for the (I) case. 

As we have seen the equivalence classes of the morphisms of type (I) form a Z* 
group with respect to the composition. The corresponding quantum number is the 
integral of the r € C0 function appearing in (6.2). It is measured by the elements of the 
centre, i.e. У is the global charge operator for it: 

p(Y) = Ye • 

Let us introduce a more compact notation by the help of functions in 
Q ;ж ( Q Cf J (j£. ф is the generalization of £ to S 1, the Jfc-fold covering space 

ofS 1 : m" 
Cf :« { / : В — R| / € C", f(x + 2w) « /(«) + тЦ). (6.3) 

Then instead of (6.1) we can write 
*.+2» 

Pf(W(g)) = W(g)exp{ik J £?(9)д(9) - ikf(z0)n,} ; / € Cf (6.4) 
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In this notation f(z.) plays the role of the earlier s and kf' the role of r. m is the 
quantum number labelling the sectors, pj is independent of the choice of z,. Extending 
or* to $, we can use the shorthand notation 

й£Щ9)) = Щ9Ы9,/)2, (65) 

which shows again that pj is inner automorphism Adw.u iff/€ £f with m « 0 mad k. 
(Then a* is just the original a* on й -) 

The composition law in this notation is simply pi о pi e p» l +» 
6.1. Ptoposiiion: pj is localized in an interval / С S 1 (i.e. it acts trivially on 

the observables localized in S1 \ I) iff / € £ f (/), where 

CfH) := {/ 6 £ * | / (R\p- ' ( / ) ) € у Z). (6.6) 

Pnro/; Let us first choose a g € £*(/)• For all such 9 
»•+2* 

/»/(Wfo)) = W(g)czp{ik J g/'(%(*)} = W(g) must hold which is equivalent to 

/'(R \ р-1(П) « 0 so /(R \V»(/) ) = сопЛ. 
Choosing now a g € £ . ( / ) n ф О, ^(И^)) = W(*)ftrp{i*''}" $?ШВ) -

ikj{z9)n9). Since this expression is independent of z e, we may choose p(z0) € S 1 \ / . 
Then pj{W{g)) = W(g)txp{-ikn,f(z0)) = W(g) iff /(*.) € fcZ, so / ( R \ *->(*)) 6 
?Z. -

As a consequence of this result the composition of moronisms that are localized in 
the same interval is a morphism localized in this interval again. 

6.2. Proposition: The localized morphisnts are locally transportable. That is for 
any two moronisms pi and pi that correspond to quantum numbers mj = mj mod к 
and are localized in intervab /1 and / 2 , respectively, there exists a sequence of localized 
operators W(h\)...W(h„) in A% such that 

PJt

 s Mv(M о... о Adw{ht) 0 Pft • 

In fact n can be chosen to be n < 2 and n-2is necessary only if I\ \JIj covets 
S». 
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Proof: Let us first consider the case when S 1 \ (Jj (J/2) is not empty. Then there 
exists Ф. € S 1 \ (J, [)I7) for which both /,(<?„) and / 2 (0 . ) are in *f Z. 

Computing йк°р1% one findstnat ** *8 ̂ "Vi/ - / , ) • ^ n * s *s *" * n n e r automorphism 
•mee /1 - Л € ft 

Since (/1 - fi)(0») = ^f«, where я is an integer we can define h(0) :— f\{9) -
/,(#) -фае у (I) . / С S 1 contains both / , and / , but not 90. Since W{fx - / 2 ) and 
W{h) differs only in a central element Y*, wc obtain py = •A îv(k) ° P/, • 

In the case when S 1 \ (/} [Jh) >» empty, there exists a sequence of intervals 
J(i).../(w+i) such that Íj,) = /1 , /(N^i) = h mid S 1 \ (/> U^>+i) >s n o t «mpty for any 
j . This sequence of intervals defines the required sequence W(h\)...W{hn) of localized 
operators in Ak by the above construction. • 

7. The field algebra 

As it is clear from the previous discussion the hVld algcbfti corresponding to the 
considered type of morphisins is generated by the observable algebra and only one new 
generator, the Jkth power of which is in Ли . 

The field algebra is then given by the relations 

Ты = m i l Г | / С Ö TW(f) = t(W(f))T, 
(7.1) 

Г* = ИЧ-/,)С) 

The operator С is a central element that can be chosen at will. For later convenience 
we choose it to be С = - í * * - , , l . 

7 is a reference morphism a "»-Tsentative of the equivalence class m = 1. A 
convenient choice is 7 a p(f = j-ц,. 

7.1. Lemma: For / € С у the morphisin p: is induced by the unitary element 
# ( / ) . Wtfh - !)Tm of fk. That is Adn/) = Pf. 

Proof: Calculating directly А<1*ф on some W(h) immediately gives the above 
result. • 

Since the Ф operators can be parametrized with Q functions one already conjectures 
that their monodromy operator should be a central element, the fcth power of which is 
trivial. So only the morphisms and not the field operators themselves are periodic. 
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T.2. Proposition: The product of local charge transporters (in the sense of 
Proposition 6.2 ) that carries m «nits of Z* charge once arotmd the circle ( that is the 
monodromy of * ( / ) , / 6 Cf) is Ym = W(m*?). 

Proof: Let us take two field operators * ( / i ) and *(A) creating the same charge 
m and localized in disjoint intervals U and I2, respectively. Щй)~гЩ}г) = W(fi -

mm + mm — * 

/aVM-Zt,/*). W(f\ - /a) is in Ak but is not localized in general. There exist two 
different observables that differ from W(f\ - / 2 ) only in central elements and that are 
localized in the two poesible interval» containing both I\ and /2. Let us choose elements 
* # and z9 from the two component:« of S' \ (I, (J/2) in such a way that according to the 
orientation of the circle гл < It < z„ < 1г. Then W(J\ - / 2 - / i foJ+Ai**) ) is localised 
in the interval that contains f|, f2 and £„, but not гв. W(f\ - f% — / i (* e ) + fa(*»)} « 
localised in the interval that contains / ] , /2 and г0, but not z0. W{f\ — ft — /1(2») + 

hMWih - A - A(«.) + A(*o))-* = ич-Дад + /,(f„) + Л ы - /,(i.)) = 
7.3. Proposition: The Ф(/) ojMTutors satisfy the algebraic relations: 

* ( / )* = IVt-Jt/V-'H 1^*/» (7.2) 

*(/i)*(A) = nhmh^^'MJu'hf- (7.3) 

where/6 r ? /i€>C-i,i=l,2; / ( / ) = / £ / ( * ) . 
0 

Froo/; The statement follows by direct calculation using the concrete form of 
• ( / ) = W{*$1\ - f)Tm, the commutation relation» of the W{g) operators and the 
definition of the Г generator. • 

Computing the commutator in the caw» when the localization intervals I\ and /2 
of ¥( / t ) and Ф(/г) are disjoint, the result i« 

• - (^J2)Wfi)e+i^"+i(m>I'i>'>-mti>i''ti if * , < / , <I3<z0 

\ * ( A ) * ( / , ) e - < 2 , r U , r + < ( " , l / , ( * * , - w ' ; ' ( , » ) ) И z0<h<I\<z0 

This formula apparently depends on the arbitrary point z„ in S 1 \ ( / i \Jh)- But moving 
ШФ in one connected component of S 1 \ (/| \JI2) both /i(*») and h{z„) are unchanged. 

10 



Moving it through ii or 1% the change of /i(z #) or A(z*) is compensated by the change 
of the «go of « f * T . 

m order to obtain Fröhlich type commutation relations for the field operators, at 
first we havr. to have an ordering of the intervals. This exists only if we cut the circle 
at a point x9 and consider only those morphtsms that are localised in S 1 \ {*»}. 

Let *(/i) and ¥(/>) be localised in disjoint intervals I\ and 1% both of them being in 
S , \ { s # ) . Both /i(*#) and A(z,) are in $ Z , so we can define *,.(/«) := у£*<*->»(/;), 
t ш 1,2. Since К is a central element, these field operators induce the same moronisms 
as the original ones. 

7.4. Proposition: The modified field operators obey Z*-parafertmonic commu­
tation relations: 

*..(/i)*,.(Л) = *..(A)*,.(/i) e*'*^'. (7.4) 

The + sign holds if I\ is on the left of / 2 in the interval (z„ z, + 2n) and the - in the 
opposite case. The statistical parameter of the sector of charge m is then Xm = e'T" . 

в. Dynamics on the field algebra 

Since we are investigating a chiral model, the 'space* translation and the 'time' 
evolution is described by the same automorphism, rt{W(f)) = W(Tsf) where Tzf(z) = 
/(*—x). We are looking for the extension of rt to the field algebra Tu- The translation 
of the morphisms is uniquely determined to be p"? e rt о pj о r_Z f c This defines the 
translation of the field operators up to a central element. Since the elements of the 
centre are not localized, this ambiguity is specified by the requirement that translating 
a local field operator the resulting operator must be local. 

8.1. Proposition: г,(Ф(/)) := Ф(ТХ'/)'defines the unique extension of r* to 
Tk thai preserves locality of the field operators. (This corresponds to the definition 
r*(T) « W(l JT.) 

Proof: Obviously, if Ф(/) is localized in an interval / then Ф(Г*(/)) is localized in 
the translated interval. 

The fact that it implements the translated morphism can be checked by direct 
calculation. • 
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