
Submitted at the IEEE 1993 Particle Accelerator Conference
l > - 0 , 1993, Washington, DC BNL-49141

NSLS Control Monitor and its Upgrade*

Susila Ramamoorthy and J.D.Smith
National Synchrotron Light Source, Brookhaven National Laboratory

Upton, New York 11973

Abstract

The NSLS Control Monitor is a real-time operating
system designed for the microprocessor subsystems that con-
trol the machine hardware in the NSLS facility. Its major
functions are to control the hardware in response to the
commands from the host computers, monitor hardware status
and report errors to the alarm handler. The software origi-
nally developed for the Multibus micros has been upgraded
to run on the VME-based systems. The upgraded monitor
provides ethemet communication with the new system and
serial link with the old system. The dual link is the key
feature for a smooth and nondisruptive transition at all lev-
els of the control system. This paper describes the functions
of the various modules of the monitor and future plans.

h Introduction
The microprocessor subsystems controlling the

machine hardware in the National Synchrotron Light Source
facility are driven by a realtime operating system referred to
as NSLS Control Monitor. As in any control system, the
monitor performs hardware control, data acquisition and
closed loop algorithms in real-time. It provides a standard
interface to the control commands and data requests from
the high level application programs on the host computers.
The functional blocks of the upgraded monitor software, die
current status and future plans are reported.

2. Upgrade Goals
The control system designed in 1978 was upgraded to

meet the increasing demands on data acquisition rates and
CPU power and to provide better diagnostics. The original
system used Multibus-l with 8 bit Intel 8080/85 CPU single
board computers. A realtime multitasking monitor developed
in-house is used for low level equipment control. The com-
munication with host computers uses a serial link at 19.2
kbaud. The serial link, 16 bit address space, assembly
language programming and absence of floating point co-
processors were the major limitations. The architecture,
hardware and software components have been changed. The
micros and the host workstations have been connected by
ethernet in a distributed network.[Ref. 1,2]. As part of the
upgrade, the Multibus micros have been replaced by VME
based 32-bit computers with an ethernet controller. The
software has been upgraded to be compatible with the
hardware changes. A goal of the upgrade is to make the
transition smooth with no impact on machine operations.

•Woris performed under the auspices of the U.S.Dcpartmcnl of Energy.

This was realized by modifying the communication software
which provides simultaneous access to both the new and
old systems.

3. Hardware Configuration
The minimum hardware required to run the control

monitor on a microprocessor system are a VME-based
68020 CPU with ethernet controller, 1 megabyte battery
backed-up ram and the General Purpose Light Source
(GPLS) board which has timers, serial ports, bus-interrupter
module, video display generator, diagnostic LEDs and
software selectable switches. Further hardware requirements
are dependent on the equipment to be controlled. The
hardwire VO interfaces include analog and digital cards in
the VME crate, bus extenders, GPIB and RS-232A422 and
Camac interfaces.

Sjstea Tkskx and Interrupt rundfen

Fig. 1. Monitor Software Layers

4. Software Overview
The software consists of a set of system and applica-

tion tasks and interrupt handlers. It provides an easy
environment for developing application-specific modules in
the micro. The Control Monitor is organized in logical
layers as shown in Fig 1. The real-time kernel initializes the
CPU and the Ethemet hardware thereby making the moni-
tor software CPU/Ethernet hardware independent The moni-
tor system software initializes a few peripheral chips on the
CPU for its own purpose. The system tasks are responsible
for the management of the system hardware (GPLS board

MASTER
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

peripherals). This isolates the system hardware and the real-
time kernel from the micro application tasks. The applica-
tion tasks use device drivers and system services to control
and monitor the hardware. The interface between the system
and the application software has been defined in such a way
that any modification and upgrade at the system level will
not require rewriting of the micro application tasks.

In addition to the software modules, the monitor has a
device database in memory which is accessed by both the
system and micro application tasks. The software views the
various hardware signals (analog and digital) of the equip-
ment as a set of logical devices. The database is a collection
of data structures representing the logical devices. A stan-
dard device Format is used. This contains a number of fields
for various information about a device (readback, setpoint,
tolerance, limits for semoint and alarms, digital command
and states, and error status). The format also supports cali-
bration and four data arrays. The devices can be a simple
analog/digital input/output type or a composite type consist-
ing of more than one simple type. A physical device with
various types of signals can be represented by a group of
simple logical devices or by a composite logical device.
The device need not necessarily represent hardware. There
can be soft devices that may be used by control algorithms.
The device format has a configuration mask to indicate
applicable fields and commands for a tisvks. The database
also includes all the pertinent hardware information such as
its type, address etc. AH the devices are treated in a similar
fashion as far as updating or retrieving commands from the
database. The host computers refer to a logical device by a
descriptive name. The Device Data Record library (DDR)
at the host computer translates the name to a physical
address. (For serial link this is a serial line ID and device
number. For ethernet link it is node name and device
number). Thus the high level software controls and acquires
data from the machine hardware using names and a set of
standard commands without any knowledge of its location or
the internals of the hardware. The micro application
software and the device driver modules take care of all the
details.

5. Software Components.
Fig 2 illustrates the software components, their

interaction and the data flow.

5.1 Real-time Kernel

The processor runs RTUX, a real-time operating sys-
tem developed by Emerge Systems Inc. in Florida. This is a
fast, memory resident real-time kernel with the interrupt
latency time in range (10-12 psec) for 20 MHz CPU. The
task switching time is approximately 40 to 50 fisec. The
kernel supports multitask control, memory management,
interrupt handling utilities, event handling, message queuing,
intertask communications. The RTUX-eihemet clerk (Net-
work package) provides the standard socket level abstrac-
tion. Software development is carried out in a standard
Motorola UNIX development system using the C language.

The program can be downloaded into the target system and
debugged using the RTUX tool ANALYZ. The rombuild
utility generates an executable image that can be burned into
proms.

Read/Set
Requests

Monitor
System Services

Fig. 2, Software Components.

53. Monitor System software.

This module is standard for all the micros and consists
of multiple system tasks and interrupt handlers. It provides
system timing (1 millisec resolution) and uses RTUX primi-
tives to synchronize and coordinate the activities of the vari-
ous tasks. The important features of the system module are
described below:

A. Initialization module.

The monitor initializes the necessary tuning, display
and serial port hardware, sets up interrupt handlers for tim-
ing, video, console and serial 10 functions. After initially*,
tion, the application tasks are spawned.

B. Communication management

This is the most important activity of the system
tasks. It receives operator messages in a standard format for
all micros and updates the micro database fields. Since the
high level applications can use serial or ethcrnct link during
the conversion period it is imperative that the micros should
accept requests via any link.

The serial server uses interrupt handlers for message
I/O and provides handshake on every message. The message
can have up to 64 bytes and contains only one request or
reply per device.

For ethernet, the message headers and device packet
formats have been carefully designed for future enhance-
ments. UDP protocol with message size 1024 bytes per
packet is used. Multiple read requests or commands or
replies are packed in one message, resulting in low network
traffic. The communication model supports both server and
client roles. The server receives commands from host com-
puters or any micro in the network. The client software pro-

vides micro to micro communication facility. Both the
application and system tasks use the client services to
acquire data from or to control any device on a different
node. Handshake is provided for all messages. Integrity of
the messages is checked and duplicate and out of sequence
messages are identified and appropriate actions taken. Valid
messages are disassembled into individual packets and
passed to the command decoder. The decoder returns a reply
which may be the requested data or acknowledgement. All
the replies are assembled into a single message in the same
order as received and returned to Ethernet IO module.

C. Command Decoder

The device commands are divided into two types,
READ and SET. The READ requests are handled by the
monitor system task. It builds the requested reply packets
using die current values from the device database which is
updated at rates of more than 10 Hz. There are more than
20 set commands for setpoints, limits, arrays and digital
state controL Most of the set commands are handled by the
system. The monitor uses the configuration mask before
updating the Database fields. A setpoint command for an
ON/OFF type is automatically discarded. All the necessary
checks such as limits check, lock/unlock status check etc.
are carried out before updating the command field. The
application tasks are notified only for a few commands (set-
point, digital state control, device reset and new array) for
further low level control.

D. Error And Alarm Reporting

The monitor provides services for alarm check, toler-
ance check and error reporting 10 the micro application
tasks. The device error messages are sent asynchronously to
an Error processor system on the network using micro to
micro communication. Error flags are latched in the device
records to prevent error storms. A new Set or Reset or dev-
ice Error Clear command will unlatch the error. If the dev-
ice is no longer in error, an ERROR RESET message is sent
to the Error Processor. During the transition, a switch was
provided to select the error reporting either through the
serial or ethemet link. The system has the option to inhibit
error reporting on an individual device basis or on a micro
basis by selecting the error disable switch.

£. Diagnostic statistics

The monitor provides a display for the system statis-
tics such as number of devices in error, number of spurious
bus interrupts, transmission errors, message traffic and the
time the system has been up etc.

F. Display management

Cable TV compatible ASCII display is a new feature
added to the upgraded micros. There are 4 switch selectable
ha dware display pages. One hardware page can multiplex
ur to 8 software selectable pages . The display page can be
controlled either by a push-button panel connected to the
Micro or by a remote command. Both system and applica-
tion tasks generate displays for diagnostics and for continu-
ous monitoring of device parameters and status without

imposing any load on the network.

5 3 Micro Application Tasks

This software is responsible for all the control and
monitoring of the low level hardware. It sets up the
application-specific device database and initializes it either
with default parameters or from the battery backed up ram.
The device control may be as simple as setting a bit in a
bit/io card or setting a DAC or may involve control of a
group of devices synchronously or sequentially, or may
require a complicated software algorithm. The application
tasks use the appropriate device drivers to accomplish the
commands. The tasks also monitor the hardware signals at
10 Hz or more and update the database and generate
application-specific video displays. The application tasks can
use periodic timer interrupts provided by the system clock to
trigger data acquision. They use the system services for
getting interrupts from an external source or from a slave on
the VMEbus.

6. Conclusions
The initial goals of the micro upgrade have been com-

pleted. All the 70 Multibus micros have been converted' to
50 VME-based systems. New features such as video displays
and optional recovery from battery backed up ram on start-
up have been extremely useful from the operations and diag-
nostic points of view. The dual communication allowed us
to carry out the workstation and the micro upgrade activities
with practically no impact on the machine operations. Dur-
ing this period, the prime objective has been conversion to
VME micros with ethemet link. Future plans include more
device types which will support multivalued setpoint or
readback devices and automatic device configuration module
from a file image representing the device parameters and
hardware infonnation. A Device Name server to furnish
various infonnation such as the micro location, record
number, calibration constants etc. is being planned. The
monitor will provide a real time Name server to micro
application tasks to access device information. An optional
watchdog timer and a facility to save crucial parameters
when AC failures occur, have been tested for future addi-
tions. Plans to boot the software from the rom image on a
battery backed up ram is being tested.

7. Acknowledgement
The authors express their gratitude to SJKrinsky and

J.Keane for their support and encouragement during this
period. We thank S.Kramer and KFeweU for helpful sugges-
tions and W.Rambo and his group for the technical support

8. References
[1] J.Smith et al.,"NSLS Control System Upgrade
Statas"These Proceedings, 1993.

[2] YJST.Tang et al., "The High Level Programmer and User
Interface.TA&ye Proceedings. 1993.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

