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1 Introduction

It is well known that there exists a huge but finite number of hadronic resonances
decaying via the strong interaction forces. As a rule, they have 2-body decay modes
with sufficiently high branching ratios and their typical widths are of order 50 <+ 100
MeV. For baryonic resonances the corresponding 2-particle modes are B + i (here B
stands for a baryon and g for a meson) and gy + g2 for meson resonances (where indices
indicate the meson type).

For all resonance families (with or without sirangeness, charm, etc) the number of
resonances is finite and this fact leads us to a question: whal is the physical reason
that puts a limit on the resonance spectrum?

To answer this question and to understand Lthe gross structure of the known reso-
nance spectra (we are talking about wide resonances having strong decay modes), the
quasiclassical approach was used in refs.[1, 2. This approach was based on the follow-
ing key poinis: (i) every resonance having non-negligible 13 + g decay mode can be
considered as a resonating 2-particle system of a baryon and a meson; (ii) this system
is bounded in the coordinate space, i.c. has a finite size irrespective of the particular
dynamical model like bag models. This approach was surprisingly successful and re-
stlled ir a phenomenological formula which looks like the famous Bahmer formula and
describes the gross structure of the all known resonance spectra rather well. Moreover,
it explains why the spectra are finite. It appears also that within the experimental
uncertainty all baryon resonances have the same characteristic size 7o ~ 0.86 tm which
is close (o the electromagnetic radius of the nucleon and to the confinement radins in
bag morlels. Therefore, all baryon resonances including the strange and charmed ones
can be considered as the so-called shape resonances. A special case is the A{1232)-
resonance, for which 2 resonance conditions hold simultancously: with characteristic
radii rg &2 0.86 fm and #; &~ 0.2 fim. That is why this resonance is so extraordinary in
the pion-nucleon and pion-nuclear physics.

The leading term of the suggested mass forinula was obtained for baryon resonances
irrespective of the particular dynamicai equation of motion or models. This formula
is very close in structure to analogous expressions in hag models; this fact can be
considered as a serious phenomenological argument in favour of bag models.

[uterpretation of the quantities ry and r, requires further investigations; at least
thiev are very close to the characteristic radius of the quark-quark potential or the radius
of the coe of the NN potentials (0.2 fm) and to the size of the 6-quark system (0.8
(r1) [3] respectively. We have used the asymptotic values of momenta in the resonance
condition neglecting the interaction between mesons and baryons. Nevertheless the
suggested treatment describes many aspects of the gross structurc of baryon resonances
which can be considered as a support in favour of the asymptotic freedom in quark-
quark interaction and can help to understand the origin and role of the Regge poles in
the elementary particle physics.

‘T'he aim of this article is to exiend the quasiclassical treatment Lo the gross structure
of the meson and dibaryon resonances decaying via strong interaction into two particles
and to discuss the interpretation of the parameter r in the leading term of the mass
formula.



2 Quasiclassical treatment

Let us consider the baryon resonance as a system consisting of a meson and a baryon.
The invariant mass of the baryon resonance at the resonance peak can be written
according to [1, 2}:

Mu(B) = \fmt 4 Ty fm + (BT 4 s, 1)
To To

where B refers to the baryon resonance, the indices i and b refer to the meson and
baryon observed in the 2-particle decay of the baryon resonance B — b+ respectively.
The "main” quantum number n is equal to 0, 1, 2... (1, 2, 3...) and 7 is a number
of the order 0 < 7 < 1 which depends on the boundary conditions for a given degree
of freedom and on the type of a dynamical equation for the resonating system (4]
(in (1, 2] it was assumed that y can be cqual to 0 or 1/2). The scaling parameter
o = 0.86 fm was associated in [1, 2] with the "nucleon size™ without any further model
interpretation. It is fixed in all calculations presented helow.

Formula (1) describes the gross structure of the baryon resonance spectrum with
a reasonable accuracy because the relation AM, < I' is valid in all investigated cases
of the strong decay B — b + u including strangeness and charined baryon resonance
decays. The leading term of the mass formula describes only the "center of gravity”
position of the corresponding multiplets and the gross structure of the hadron and
di-baryon resenances. Their fine structure in each multiplets is determined by the
residual interactions and corresponding quantum numbers which are not evaluated in
the quasiclassical approach {1, 2]. Thercfore the condition AM, < T’ can be considered
as ai. empirical fact.

Table 1

Spectrum of the invariant mass for meson resonances x* decaying into channcls
#° — 7+ 7 due to the strong intcraction.

n+y theory exp [§ fraction(T,/T)  IS(JTC)
T 536 q(518)  0.00119  <O015%  0F(0°F)
2 958 fo(075) 47 8% g+ (0++)
7(958)  0.198 < 2% 0+(0-+)
3 1402 Jo(1400) 150 + 400 91% 0+(0%+)
07172 31 3882 11 E 8
141/2 42 w(783) 8.4 2.2% 0-(1--)
(770) 151 ~ 100% 1+(1--)
241/2 179 f(1270) 185 85% 0+ (2++)
5(1235) 155 <15% 1+(1+-)
341/2 1628 p(1700) 235 seen 1+0--)
ps(1690) 215 2% 1+(3-)
H(710) 146 seen 0+(0*+)

We wonld like to analyze the spectrum of the neson resonances .ucating them
as a meson plus meson resonances and using formula (1). Some of the results are
piven in Tables 1-3. All masses and widths are given in MeV, If the relerence to the



experimental data is not indicated. this means that they are taken from the “Review
of Particle Properties” {Phys. Rev. 15, 11 (1992)).

Table 2

Spectrum of the invariant mass for meson resonances u* decaying into channels
j° — 7+ p due to the strong interaction.

n+y  theory exp r fraction(T,/T)  I°(JFC)

] 1072 m(1170) 360 secn 0 (17)
#(1020) 1.4 13% 0-(i77)

2 1376 w(1390) 229 dominant 0= (177}

3 1735 w(1600) 100 seen 0=(177)
L wiyt 1670) 166 seen - (3°7)

04172 959 3/(958) 0198 < 4% 0%(0-")

14172 1215 w(1300) 200 -+ 600 scen 1=(07%)
a(1260) = 400 dominant 1= (1+)
az(1320) 110 70% 1=(2*+)

241/2 1550  wy(1670) 250 31% 17(27%)

34172 1928

Table 3
Spectrum of the invariant mass for meson resonances p* decaying into channels
o =+ w4+ W*(892) due to the strong interaction.

"n¥y  theory exp I'  fraction(I;/T)  T¢(JF)

T 1189 A, (1270) 90 16% 17200%)
2 1183 A,(1400) 174 94% 1/2(1%)

K,y(1430) 99 25% 1/2(2+)

3 1829  K3(1980) 300 scen 1/2(2%)

T041/2 1080
141/2 1327 K*(1410) 227 > 0% 1/2(17)

241/2 1651 K*(1630) 323 30% 1/2(1-)
K,(1770) 136 seen 1/2(27)
K3(1780) 164 27% 1/2(37)

34172 2015

The same results were obtained for all other meson resonances decaying into two
meson channels via the strong interactions.

The calculations were also performed for dibaryon resonances. Despite the fact
that there is disagrecement between the results of different experimental groups. we
have decided to use the experimental data coming from the Dubna collaboration [6, 7]
{for details of discussions on the interpretation of existing experimental data see, for
example, [6, 8, 9] and reviews [10, 11] of the situation in dibaryon problems ) which are
available for us. Onc can see very exciting correlations betwcen the calculated results
and experimental data.



Table 4
Spectrum of the invariant mass and widths for the diproton resonances. Here the
experimental widths are the "visible” ones, i.e. not corrected for the mass resolution
of the apparatus.
n+y 1/2 1 1+1/2 2 2+1/2 3 3+1/2
M theory 1890 1932 1998 2088 2198 2326 2468
exp  1886[6] 1937[6] 1999(6] 2087[6] 2172[6]
I' theory 4 9 12 17 22
exp 441 7+2 944 1247 743

Table 5
Specirum of the invariant mass and widths for the neutron+proton resonances.

n+y 172 1 1+1/2 2 241/2 3 3+1/2
M theory 1892 1933 2000 2089 2200 2327 2469

exp 1998[7] 2084[7)
I' theory 2 4 6 8 10
exp 144+4 11%5

The existence of the new resonance Sy, with the mass mpe125) = 1115 — 1135
MeV, width T' < 100 MeV and the quantum numbers I(J¥) = 1(37) was predicted
in [2]. This prediction is consistent with the well-known fact that the transition with
AT = 3/2 in the decay of A(1115)-hyperon is hindered in comparison with Lhe transi-
tion A(7T" = 1/2). Indeed, the branching ratio for A — n~+p and A — 7%+ n is equal
to 2, which is typical for the decay of particles having T = 1/2. Therefore it is natural
to consider the decay of t:e A-hyperon in analogy with the hindered a-decay and vector
meson dominance phenomena. The A-hyperon remains to be a strange particle until
the constituent s-quark does nol decay to the d- or u-quark due to the weak interaction.
As a result of the weak interaction, tiie enhancement of the state with T' = 1/2 can be
interpreted as the display of the N(1125)-resonance created as a product of the decay
of the A-hyperon. Further this N*-resonance decays into channels 7~p and 7%:. So
the dynamical origin of the famous A7=1/2 rule is related with the strong final state
interaction between decayed particles resulting to the N°(1125) resonance.

The invarianl mass spectrum for the proton+N*(1125) resonances is given in Table
6. Note that the cross section of the pionic double charge exchange on * Fe exhibits
a pronounced resonance behaviour at low energies {12] which was interpreted as an
indication of a resonance in the * NN subsystem with J* = 0=, T=0 and invariant
mass 2065 MeV. The predicted low energy N + N*(1125) resonance has the same
guantum numbers and can be considered as a candidate for the one observed in {12].

Table 6

Spectrum of the invariant mass for the proton+N*(1125) resonances.

Ty 172 T 171/2 2 2712 3 3+1)2
theory 2076 2114 2175 2259 2362 2481 2616
exp  2065[12)

We look for possible resonances for the proton+A{1212) and x + A(1232) systens.




There is an experimental evidenee [13] that the lowest proton+A(1232) resonance
might have the invariant mass 2164 McV. It is worthwhile to note that the authors of
{11] come to the conclusion that "Sccondary final-state interaction of m%-meson and
the A+ isobar is assumed to be responsible for observed resonance production™. This
conclusion is consistent with our interpretation of resonances of that type and could
be an analog of the Migdal-Watson effect.

Table 7

Spectrum of the invariant mass for the proton+A(1232) resonances.,

n+y 1/2 1 1+1/2 2 2+41/2 3 3+1)2
theory 2183 2219 2278 2358 2458 2574 2704
exp  2161[13]
Table 3
Spectrum of the invariant mass for the =+ + A(1232) resonances.

nty )2 I 1$1/2 2 2¢1j2 3 a+1/2
theory 1117 1521 1650 1763 1948 2112 2284
exp LI3S|15) 1522{15] 189415
1193[14]  1586[14] 1680(14]

Finally, usual quantum-mechanical estimations [16] of the widths of the A(1232)-
isobar, the N{1440) (Table 9}, diproton (Table 1} and neutron+proton (Table 5} res-
onances were performed in the similar calculation scheme as in the a-decay case.

Table 9

Widths of the A(1232)-isobar and N(1410) resonances.

w4y | 1+1/2
AT theory 1234 1370
oxp 1232 140
I theory 1400 1601

exp 115+ 125 250 =450

(a)These widths are evaluated in the framework of the Kadmeusky quanturs- me-
chanical integral formulae [16] by using the quasiclassical approximation (see details
and references in the review paper [16]).

We would like to make the following remark concerning the relation (1) which is
similar to the Balmer formula.

In the derivation of formula (1) we have used only the relativistic kinematics and
main ideas of quantum theory:

ijthe Lui de Broglie relation for the wavelength of a microsystem having the mo-

mentum 1’
I
=7 (2)
ii)the classical condition for the existence of stationary waves in the hollow resonator
(resonances in quasistationary wave systems) with the effective size {0



I
—}(1 = Pro=(n+17), (3)

where n=0,1,2,... (1,2,3...) and 0 < 7 < 1 is a number whick depends on the boundary
conditions for a given degree of frcedom and on the type of a dynamical equation for
the resonating system [4].

iii)the consistency of formulae (2} and (3} with the Heisenberg uncertainty relation

Pro> % (4)

and the simplified version of the Bohr-Sommerfeld quantization condition
Prg =n. (5)

The fundamentality of assumptions used in obtaining formula (1} alfows us to con-
sider it as a model-independent relation. Therefore, il is necessary Lo give an additional
interpretation on the basis of a certain model representation {for exan:ple, in the frame-
work of quark models, the Regge poles, etc)

3 Pion-nucleon scattering and correspondence prin-
ciple

Up to this point we did not use any detailed model of rcsonances to evaluate resonance
spectra. But to estimate widths of resonances or to get an interpretation of the param-
eter rp we need a modei. Let us consider the p-wave pion-nucleon scattering to discuss
the latter question. The leading long-range attractive interaction in the channel Py
for the @ *p-scattering corresponds to the cvossing Born diagram (see details in [5]) and
the corresponding amplitude can be calculated in the first Born approximation. We
can introduce an effective potential U:,'}’ and easily determine the long-range part of
the N interaclion using the correspondence principle

V) = Sy i B
elf NN mme my, s or !

(6)

where " 2 2
A3 (s, m? m?)

a=2mE By = /P2 +m} P = N

M,y 2) = 22 + y* + 28 ~ 22y — Iyz — 22z, (7

liere m (m,) is the nucleon (pion} mass, £, (£,) is the pion momentum (energy) in
the center mass system, s is the squared invariant mass of the resonance and fyny is
the coupling constant of the # NN interaction.

If we use the second Newton law

03 aU:N
i ®



the Bohr orbital condition of quantization
myur = |, 9

and take into account the relativistic corrections (my — E, in (8)), then we obtain the
final equation
m+m, m P? —ar
P = fiun 7 ,_n—"l—;fro(1 + arg)e™™™ = F*(s,rg) (10)

It is well-known that the A-resonance is the p-wave resonance, i.e. { = 1. We can
fix r, = 0.86 fm according to {1, 2} and obtain at the resonance peak (/s = Ma = 1232
MeV)

F(M3,ro=086)=097T=1=1 (11)
For the Roper resonance N*(1440) (i.e. Py, I=1 and My.=1440 MeV) we have again:
F(Mfoai0p70=086) =091 =1 =1~ (12)

It should be stressed that the A(1232)-isobar and the Roper resonances ({ = 1) have
almost the same value of the parameter rp = (0.8 + 0.9) fm.

Let us return to equation (106) and consider it for an arbitrary p-wave 7 N-resonance
{{ = 1). The solution of this equation gives us rg as a function of the invariant mass of
the corresponding resonance (see Table 10 and Fig.1). One can see that for the A(1232)
and N*-resonances the "radial” (3) and the "orbital” (10) resonance conditions give
us almost coinciding values of the "sizes” ry and the difference between ro(radial) and
ro{urbital) increases with increasing resonance mass. It is interesting to note that
equation (10) has the second solution at sinaller values of r < 0.2 fm (for discussions
about it see below).

Table 10

"Sizes" rg for the p-wave n N resonances (I = 1).

resonances A(1232) N*(1440) A(1600) N*(1710) A(1920)
ry (fm) 0.83 0.80 0.73 0.70 0.62

The quantization condition (10) contains four fundamental constants: fonn, m, m,
and the parameter ro. One of them, for example, rq can be eliminated fixing its value
as a solution of equation (10). So the mass formula (1) contains only three constants:
m, m, and frnn. Therefore these three fundamental constants completely determines
the gross structure of hadron resonances.

We can now interpret the parameter rq in eqs. (1) and (10) as the radius of the 1-st
Bohr orbital for the hadron resonances decaying into two-body channels due to strong
interaction. Therefore the gross structure of the hadron resonance spectrum can be
described as the resonances of the baryon and meson system (for the baryon resonances)
or as the resonances of the meson and meson system (for the meson resonances) or as
the resonance of the baryon and baryon system (for the dibaryon resonances) confined
in the space within a region with the "size” rq.

Finally, the interplay between the rq and fyna is shown in Fig.2. One can see that
ro o In(fenn) a8 is cxpected from (10). This character of the analytical dependence
ro = ro{ fxnn) allows a new look on the simple use of perturbation theory for strong
interactions.




4 Further discussions of the parameters 7 and r,

Let us return to hydrogen atams. The Buhr quantization condition gives us the lo]
lowing expression for the energy cigenvalues
met 1%

mh? T 2ayn?’

Ey= {13)
where a, is the radins for the first Bohr orbital. The radius for the n-st Borh orbital
is cqual to
a,,:nzm‘ (14)

It means that a, increases by increasing n and the first Bohr orbital has the smallest
radius.

If we neglect the last termin (1) and subtract my + tny, then we obtain ( nnder the
conditions m} > (%’1)2 and m2 > (%’1)2)

I n+4y
M 1o

I = My—my~mg = \/mf + (n—i_—l)“+\/m§ + (El)2—7l)| -y &
o o

where myp = myma/(my + ma). This equation can be obtained immediately from (3)
using the nonrelativistic relation £, = P2/2m ;.

For s-wave bound states of nonsingular power-law potentials of the form V(r) x r*
the reduced radial Schroedinger equation can he integrated [17) thus resulting in

E, « (n —~ 1 /)@ (16)

therefore the power-law potentials cannot give the encrgy cigenvalues like (15). On the
other hand, one can see that the expression (15) coincides with the energy eigenvalues
for an infinite rectangular well or resonance energics for the potential of the type
Ygd(r —ry) (under the condition Vg — 00). This observation indicates that the eflective
potential for resonances must have the 6(r — ry)-like functional behaviour as r — ry.

Therefore we can interpret the parameter 1 as the confinement radius for the

ecousidered resonances.

In rel.{1, 2] we concluded that all baryon resonances can be considered as shape res-
onances. The special case is the A(1232)-resonance, for which two resonance conditions
hold simultancously: with characteristic radii rp 20.86 fin and r, =0.2 fm. The esti-
mated value of r, for the highest A-isobars lies in the region 0.1 < 7, < 0.3 fm. From
this and the Heisenberg uncertainty relation we can estimate that for a 2-hody case
the decay momentum P in the rest frame of the decaying resonance must satisfy the
condition P’ € 1000 McV/c. Indeed, one can easily check using the above-mentioned
“"Review of Particle Properties” that this condition is satisfied for all resonances. The
highest. value of P is equal to 1126 MeV/c for N(2600) — N7 which corresponds Lo
the distance 0.17 fm. It means that the dynamics which deternnnes the phenomenon of
hadronic resonances is going in the region 0.2 < 0.9 fm, if we consider "usual™ hadrons
(without charm and beauty). We use 1he asymptotic values of momenta in the reso-
nance condition (1) and the mass formula (10) neglecting the interaction between two
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particles in the resonance. This is possible only if the interaction potential between
the twu particles is in the form close - the §(r — rg)-tike function. A}l these observa-
tions tell us that the resonance two particle decay phenomisnon displays inany features
common to those of the a- decay successfully described by the nuclear cluster model

(18).

5 Conclusion

The results obtained for the baryonic r=-~z...ces [1, 2] with the use of the guasiclassical
resonance condition can be easily gencralized to all types of hadronic and dibaryouic
resonances.

The paramecter rq in the mass formula (1) and quantization cquation (10) has been
interpreted as the radius of the 1-st Bohr orbital or as the confinement radiv. which
is ncarly the same for all hadron and dibaryon resonances within the experimental
accuracy.

Despite the fact that the quantization cquation (10) was obtained from the Bohr
quantization rule by using the correspondence principle in the evaluation of the N N¥-
cffective interaction and that only one main diagram [rom all possible cues was taken
into account, the accuracy of equations (1) and (10} is surprisingly high. It means
that equation (1) could be useful for prediction and estimation of the invariant masses
of unknown resonances. This observation requires further systematic investigations.
We can oniy say that the cotrespondence principle between old classical and quantum
theories played an outstanding role in the interpretation of the resnits of new theories
and this "correspondence” allows one to go even into fine details. In this way one can
gel surprisingly good estimations of the resonance widths using well-known quantum-
mechanical prescriptions, as we have demonstrated.

Finally, all arguments given in this paper and refs.[1, 2} Lring us 1o the conclusion
that the gross structure of the hadronic resonance spectra can be understood in a full
analogy with the Bolir atomic model.

We would like to thank R.Abegg, T.Ericson, W.Weise, S.Plend], F.Oset, W.Cassing,
U.Mosel, I.Clement, M.Schepkin, Yu.Gaponov, A.Govorkov, S.Gerasimov. Yu. Troyan
and V.Neudackin for useful and stimulating discussions.
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