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On the Stability of Shear-Alfvdn Vortices

D. JovanoviCh)and W. Horton
Institute for Fusion Studies

The University of Texas at Austin
Austin, Texas 78712

Abstract

Linear stability of shear-Alfvdn vortices is studied analytically using the Lyapunov

method. Instability is demonstrated for vortices belonging to the drift mode, which is a

generalization of the standard Hasegawa-Mima vortex to the case of large parallel phase

velocities. In the case of the convective-cell mode, short perpendicular-wavelength per-

turbations axe stable for a broad class of vortices. Eventually, instability of convective

cell vortices may occur on the perpendicular scale comparable with the vortex size, _,ut

it is followed by a simultaneous excitation of coherent structures with better localiza

tion than the original vortex.

_Permanent address: Institute of Physics, P.O. Box 57, Yu-ll001 Belgrade, Yugoslavia
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I Introduction

Reduced magnetohydrodynamic (RMHD) equations 1'2 are widely used in numerical and

analytical studies of nonlinear processes in large aspect ratio tokamaks, in cases when both

magnetic shear and curvature effects can be neglected. RMHD equations are relatively

simple, their derivation is consistent, and they offer a reliable description of a broad class of

nonlinear processes ranging from major plasma disruptions, to nonlinear kink modes, to the

destruction of flux surfaces, and other low-beta magnetohydrodynamic (MHD) processes.

Studies of the shear-Alfvdn weak turbulence in the RMHD regime reveal the possibility

of spectrum cascade towards both larger and smaller perpendicular wavenumbers 3 which

is the usual "signature" of self-organization processes leading to the formation of localized

nonlinear structures. Although the existence of such coherent structures was not explicitly

demonstrated, it was anticipated by the application of the Hamiltonian fomxa_m to the

RMHD system. 4

Due to the dominance of the convective nonlinear terms, arising from the E x B drift

and the twisting of the magnetic field lines, the reduced MHD equations belong to the class

of equations with vector product (or Poisson bracket) nonlinearities, which in many

possess coherent nonlinear stationary solutions in the form of double vortices. For shear-

Alfven perturbations vortex solutions have the form of double vortex tubes, rotating in

opposite directions, which are slightly tilted relative to the magnetic field. 5 The perpendicular

scale of such a vortex is of the order of the collisionless skin depth, which requires a two-fluid,

rather than MHD description. In the MHD limit the collisionless skin depth vortex becomes

singular, i.e. reduces to a point- or filament- vortex.

The simplest vortex equation is the Hasegawa-Mima equation describing nonline.ar drift

waves in plasmas and Rossby waves in rotating shallow fluids. Although it is not fully



integrable 6 and the drift-wave vortices may not be regarded as solitons in the mathematical

sense, many numerical r and laborator_ ° 9 studies indicate that they are remarkably robust

objects, appearing to be stable even in the case of large perturbations, such as collisions with

other vortices. Thus, relevant plasma transport coefficients in the fully developed drift-wave

turbulence can be calculated modelling the turbulent plasma state as a superposition of

coherent vortices and weakly correlated wave-like fluctuations. 1°

However, a rigorous analytic proof of the stability of Hasegawa-Mima drift-wave vortices

still remains elusive, in spite of more than a decade of efforts. Shortcomings of a number of

analytical attempts are summarized in Ref. 11. In a recent work 1_ linear stability of vortices

propagating in the electron drift direction was proven using a numerical experiment. First,

performing the expansion on an appropriate basis, ali types of perturbations which may

cause the vortex instability were identified analytically by the Lyapunov method, and then

the vortex evolution in the presence of such critical perturbations was studied numerically.

The situation with shear-Alfven vortices is far less clear. Their evolution is described by

fully three-dimensional, nonlinear equations, and due to the complexity of the problem, no

numerical results on their evolution and stability la ce been published. Some analytical con-

siderations indicated their structural instability in tLe presence of kinetic effects associated

with the electron motion along the magnetic fi,eld lines. Namely, sheax-Alfv_n vortices may

efficiently exchange energy and enstrophy with resonant electrons, is le_ding to their adia-

batic perturbation in which the vortices preserve their shape, but gradually slow down and

spread in space. On the electron bounce time scale, when the electron trapping takes place, a

new type of coherent structures becomes possible, _4 which is a hybrid of a three-dimen_ional

electron hole and a shear-Alfven vortex.

This paper presents the first attempt to study analytically the linear stability of shear-

Alfven vortices, using the Lyapunov stability analysis. There are two distinct vortex types:

one which asymptotically behaves as the ka. = 0 quasimode, and the second type as an



evanescent lineax shear-Alfvdn wavo. These are called drift- and convective-cell vortex modes,

respectively. While the first is finearly unstable, the latter is stable in the presence of a broad

spectrum of perpendicular wavenumbers of perturbations. There remains one possible "win-

dow" of instability, corresponding to large-scale perturbations with the typical wavelength

comparable to the vortex size. lt is demonstrated that their eventual instability would be fol-

lowed by a simultaneous growth of short space scale perturbations, with a better localization

than the original vortex.

The paper is organized as follows. In Sec. II we derive our basic set of equations describing

nonlinear shear-Alfvdn perturbations, and construct the drift- and convective-cell type vortex

solutions. Sec. III is devoted to the stability analysis of the shear-Alfvdn equations lineaxized

around the coherent nonlinear vortex solution. Conclusions axe given in Sec. IV.

II Basic equations

We study electromagnetic perturbations in a homogeneous plasrrm with the unpertttwbed

density no, ir,-.mersed in a homogeneous magnetic field B0e,. We assume that both ions mad

electrons are cold, with the electron pressure being much smaller than the rnagnetic pressure

2noTe me

= c2 oB2<<--m, (1)

Here me and rn, are electron and ion masses, and Te is the electron temperature. For

perturbations which are slowly varying i_ time compared to the ion gyrofl'equency f/i, mad

weakly z-dependent
0 0

n, , az (2)

with the accuracy to the first order in me/mi and in the small parameters defmed above, _

electrons are three dimensional, vile _ vj.,, while the ions can be regarded a_ strictly two-

dimensional, viii _ vii,. Thus, the ion and electron hydrodynamic velocities axe, with the



accuracy described above, given by

Vi = V_ q- V v

B

_ = v_ + _tl, • (3)

Here subscripts II,J- denote vector components parallel and perpendicular to the zero-order

magnetic field, and v_, vp are the E x B and ion polarization drift velocities, respectively

ExB

V E -_-- B2

v,=_-_i _-_+v_.V -_---. (4)

We assume small perturbations of the electron density and of the magnetic field

_n_ -- n_ - no << no

Ifinl- In-B0e, I _.n0, (5)

and neglect the compressional component of the magnetic field perturbation, 6B, -- 0, which

is justified in. the low 3 regime, Eq. (1). Then, subtracting the electron and ion continuity

equations, and making use of the quasineutrality condition, ne m ni, we readily obtain to

the leading order in the small parameters, from Eqs. (2), (4), and (5)

B

v_ .v,- _. v_ u, = 0, (6)

while the parallel electron momentum equation, with the same accuracy, takes the form

H-vsV Vile-" me B " (7)

Here e and me are the electron charge and mass, respectively.

Finally, we express the electric and magnetic fields in terms of the electrostatic potential

¢ and the z-component of the vector potential A

0A,
E= -V¢_- e. W
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B = Boe,- e, x VA, , (8)

and making use of the parallel component of Amp_re's law

Jll = -enovlle = -C_eo_r_ A, (9)

we may rewrite Eqs. (6) and (7) in the following convenient form

2 a 1 (e,x VA,).V V_A, (I0)0-_ + _oo (e, x _7¢).V %"_¢ = --ca az Bo

I a _ 1 a_
• " 2 2

_-_+ ._o (e, x V¢ (I- A,V_.) A. = - a---z"" (Ii)

Here c, = cf2,/_,p, is tile Alfvdn speed, A, = c/w_ is the collisionless skin depth, and win, wp,

are the ion arid electron plasma frequencies, respectively. Equations (10) and _i 1) constitute

our basic system describing nonlinear shear-Alfven perturbations. In the limit A, ---, 0 they

reduce to the low-3 RMHD system, Ref. 1.

The dipole vortex s, in is found as a time stationary, z-independent solution of Eqs. (10)

and (11), in the reference frame travelling with the velocity

u = uue_+u,e, , Iu. I::_lu. l, (12)

i.e. we assume that we have a two-dimensional elongated structure moving with the velocity

u_ along the y axes, and making a pitch angle uv/u _ to the z-axis. Using

0 0 0 u_ a

= -u,_y-y , az - u, au ' (13)

and the properties of the Poisson brackets, we can integrate Eqs. (10) and (11) each one

time, yielding the two-dimensional nonlinear partial differential equations

2 2

(I- A, Vz)(u,A, - Bou,x)= H (¢ - BoU,Z) (14)
2

ca H'
-_, (¢- Bo_,_)Vlu.A . - VI0 = C(O- Bou,z). (15)



where H (¢), G (¢) are arbitrary functions of their arguments, and the prime denotes the

derivative of these functions. In the standard vortex scenario, H(¢), and G(¢) are taken to

be linear functions, H(¢) = eH, G(¢) = CG, allowing for different slopes G °ut, H °u' and G_n,

H in outside and inside the vortex core, respectively. The core is taken to be a circle in the

x, y plane, with the radius R.

Obviously, a localized solution is possible only if

H°°'= I. , G_'= 0. (Z6)

Now, Eqs. (14) and (15) are decoupled to give

where the wavenumbers _1, a2 are related with H, G through

G2 2

t¢l_ 2 --" --_'s2

_ + _ = _ _ - _ +a. (is)
From Eq. (16) in the outer region r > R we have

,_" = 0

_°'_= -_ 1- u._] "
The fourth order wave equation (17) separates variables in the cylindrical frame. Every

localized solution must contain the first cylindrical harmonic due to the presence of the term

BoUvX. Thus, we can readily write the simplest localized solution in the standard form of a

double vortex

¢ = B0 uvR cos # (19)

--+ _2Kl(rp) , r > R
7"
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where r = (x 2 + y2)1/2, # = arcta.a(y/x), and Jt, K1 are Bessel functions of the first order.

For simplicity, we introduced

:(
Obviously, the continuity of the function G (¢- Bou_z) requires that at the core edge we
have

¢- BoU_XI,=,, = 0 .

Coefficients c_:, c_2, /_1, /32 are determined from the continuity of the potentials ¢, A, and

their radial derivatives at the core edge, which after a somewhat lengthy, but straightforward

algebra (for details see Ref. 13), reveals the existence of the following two distinct vortex
modes.

I. Drift-typevortex mode

Thismode (calledalsotheLarichev-Reznikmode 13)canbeidentifieda8thegeneralization

ofthevortexassociatedwith nonlineardrift-waveperturbationstothecaseoflargeparallel

phase velocitiesuz,i.e.to the regimewhen theelectronsare hydrodynamic,ratherthan)

Boltzmanndistributed.Forthismode, parameterH - 1 isconstanton thewholez,y plane,

whiletheconstantofintegrationG i"isdeterminedfrom thefollowingdispersionrelation

: + (_.,_._' J, (R,,_) - 1+ (_.,:_), .i,(R,,_') (20)I ]

and the coefficients al, a2, _, _ are given by

;,,2
2 _ a,, 1

_ _ , m = 1,2

Ro'_J, (Rai_) d + u_ l + A_ai_2

R_J, (R,,_')d + ,,_.1+ _.,,r_K, (Rp)" (2:)
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Note that vortices of this type are well localized (p2 > 0) only if they propagate faster than

2 2
the Alfv6n speed, u, > ca . The vortex is produced by nonlinearities acting within the

vortex core, while the outer solution is an evanescent linear Alfvdn wave, whose dispersion

relation is given by

k_ _._k_+ t _k, =0 (22)
CD2 "

'"... l/,<i:?...In the MHD limit A, --+ 0, the drift-vortex becomes infinitesimally thin, 1/n i

R --_A,, i.e. it reduces to a line or filament. One can easily verify that finite size MHD drift

2-in2 12"-in2 = C2A/U_- 1 < 0 andvortices are forbidden. Namely, Eqs. (18) with A,,_t << 1 yield ",_2

consequently it is impossible to have a finite solution at r = 0.

2. Convective-cell mode

This vortex type arises from the coupling between electrostatic and magnetostatic convective-

cell modes. It is characterized by the discontinuity at r = R of bc_h constants of iate_atioa

G and H. In the outer region it decays as cos0/r, and physically it is just a k± = 0 linear

quasimode. The "inside" wavenumbers are related through the following dispersion relation

<,,J,(R,<to): o. (23)

Coefficients al. a2 in Eq. (34), when different than zero, are given by

2(t+

l '""}-2 1,2,½ (1 -1 _,2,½ cA-u. (I+A.,,,,,)
I + A.ni ) + + A"n2 ) + ii= A,i (ni_2- n_i) '

m = l, 2 (24)

while the "outside" coefficients 31, B2 are given by

_q, = 1 , X_2=0. (25)
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Particularly interesting is the convective-cell vortex given by only one Bessel function inside

-2

_ = n_ J, (n_',_) ' _ = 0 (26)

which corresponds to
• jt.m

_'= --ti-
l

_o 1 (1+ _,.,,, _-t (27)

where jl.m is the m-rh zero of the Bessel function Jt. In this special case we have ¢ = uzAz,

its z-componen_ of the electric field is equal to zr . and consequently this structure can not

be Landau damped by electrons propagating along the magnetic field lines [14].

In the MHD limit A, ---, 0, the convective-cell type vortex becomes singular, i.e. reduces

to a point vortex or filament, similarly to the drift-vortex. It is obvious from Eq. (24) that

a vortex with uz # CA has an infinite amplitude if Ao _ 0. In the special case uz = ca,

solution of Eqs. (14) and (15) with a finite perpendicular scale length AlVa. -,, A_/R 2 _ 1 is

possible only if G°ut = G in = 0, H °ut = H _ = 1. However, in that case we have essentially

linear Alfv6n modes, and localized vortices axe not possible.

III Linear Stability Analysis

Now we study the stability of the vortex solution, Eq. (19) in the presence of small perturba-

tions to the vortex potentials ¢, A,. A stationary solution is considered to be linearly stable

if any infinitesimally small perturbation remains finite at t --, oo. Stability in a broader sense

may be defined allowing even infinite growth of perturbations in a finite number of isolated

singular points. In that case it is required that the perturbations are square integrable across

the singularities.

Linearizing our starting system of equations (10) and (11) around the stationary solution

¢¢0_, A_, given by Eq. (19), and using Eqs. (14) and (15) we obtain the following set of

10



equations for the perturbations

C2 0
+U,b_izv_ ¢ = . v_6¢ -0_

w.v (291
Here we used the notations

5'/2 = u,SA,

1

V= mBoezx _ (¢(°) - BoUuX) = v_ ) - evu v
2 2

w = _Boezz×v_-'_"_._"(v_ +G)(¢'°'- Bo,,,,_/= -u,_.V_.__m'°' (301
where v_ _ and 5B C°_are the leading order fluid velocity and the magnetic field perturbation,

associated with the zero-order vortex.

The linear partial differential equations (28) and (29) for the perturbations separate

Fourier components only in the w and k, domains, while the ki components are coupled

via the inhomogeneous flows V and W. Thus, any initial perturbation with a localized kz

spectrum will eventually, given enough time, spread over the entire range of perpendicular

wavenumbers k_:, k_.

A. Local stability analysis

One can easily verify that the drift-type vortex, Eqs. (19)-(21) is unstable. For perturba-

tions whose characteristic perpendicular wavelength is much shorter than the vortex radius

R

R2V]. > 1, (31)

in the vicinity of an arbitrary point in the z, y plane we may solve Eqs. (28) and (29) in the

local approximation, using V = coast., W = coast. Thus, in the outer region z 2 + y2 > R2,

11



using H °ut = 1, G°ut = 0, we obtain from Eqs. (28) and (29) the following lineax dispersion

relation

(1+ _,_k_)(_-k_. v) k,_, - k_. v
= _ , (32)

_ .v) _)k_ W _2_2(__k_.V)+_k_ W,k,ka. (k,u,, - ka. + (1 + ,_2 . ,--a.

which can be solved for the frequency w

(_, _ k_.. V + c_ k± .W 2 1 k_.W 2__.kl _+_._k__'_"-k,. v + 57_ (t+_.kl) -

7_i_ t + _.k_ _;/ .

4/u_ < 1. Thus the last _ontheFor drift type vortices we have "vV°ut # 0 and cA

right-hand side of Eq.. (33) is always negative, and aaa instabiiiw will develop in the region

of the z. V plane where the first (positive) term is small enough. Particulaxly simple is the

case of short wavelength perturbations A,2k_ _l_ 1 (which is in a good agreement with the

assumption Eq. (31) ,,oed iv the derivation of the aL,ore dispersion relation) when from

Eq. (33) we obtain the following condition for instability

k_.W
> I, (34)

k± . V - k,,u,,

or. using the definitions of the flows V, W

ka. x2k'72_gllnL_O_
_tg a

k (._:'-_) >1
Obviously, perturbations with _m arbitrary wave vector k are unstable in the sp&tied region

where the fluid velocity ansociated wi_h the vortex, calculated in the refereaee frame moving

with the vortex, is perpendicular to the wave vector

k. (v_*'-u)= 0.

For a given k, this condition may not be fulfilled for all vnlues of the perlm.ndicular wave

vector k,. However. as we have discussed above, the perpendicular w_venumber spectrum of

12



perturbations is broad, (k_,k_) E (-oo, oo) due to the presence of the inhomogeneous flows

V and W. A similar tendency of a spectrum cascade towards both smaller and larger values

of kj., arising in the weak turbulence of shear-Alfv_n waves was demonstrated in Ref. 5.

As a consequence, for an arbitrary value of the parallel wavenumber kz, the spectrum will

always contain some unstable modes, whose wave vector satisfies Eq. (34). Thus, with an

arbitrary initial perturbation, the maximum characteristic time of the vortex destruction is

determined bv the rate of the spectral cascade towards these unstable modes.

For convective-cell vortices, Eqs. (19), (23), and (24), we have W °ut = 0, and the disper-

sion relation, Eq. (33) does not indicate a short-wavelength instability in the exterior region.

Thus. their stability analysis requires a more detailed inspection of the interior (r < R)

solution, and of the perturbation with longer scale lengths, ka.R < 1.

B. Lyapunov stability analysis

We will restrict ourselves to the "one Bessel function" convective cell vortex, Eqs. (19),

,:26ii,and (27), in order to exclude the Landau damping. Then, our evolution equations (28)

and _29) for small perturbations 60, 6¢ simplify to

tj 0 2 2 2
x _°. 5 (_-_,_)_ --v v[(_+_ _)6,-(_ _.v_)6¢1 (35)U z $K m

0 (5)C A2

V_5¢ -V V (V i + _) 5¢ 5¢ (36)_V j.6¢ + ----u_Oz = " - "

Here _l is the wavenumber of the zero-order vortex, Eq. (26), whose values are x_t = 0,

_'? = Jl,_/R.

We proceed by applying the Lyapunov stability analysis to the above system. In the

construction of the Lyapunov functional we need to have at least one quadratic quantity

conserved by Eqs. (35) and (36). For that purpose we introduce the following integrals.

2 2 2V_) 5_], and integrate within theFirst, we multiply Eq. (35) by [(1 + A,_t)6¢- (1 - .),,

vortex core r = (z 2 + g2),;2 < R. Using the f_t that ¢(*)- Bouyx I,=_ = 0, and that

13



consequently the flow V is tangential to the core edge, we have

I 'ii -
c=

Similarly, multiplying Eqs. (35)and (36)respectively by (V_ + _)(6¢-_6¢) and
[(t+ _2 2

A, xl)6¢- (1 -A,V].) 6¢], and adding, we obtain alter the integration for the whole
x, y plane

_6_+_ _:vl)_1 (vl + - _

0, _6_+_X _6_ [(_+A:<:)6_-(___:v_)6_] =0. (as)
Finally, for the zero-order vortices which satisfy

.x2 2
c_ (39)

we ma), write down the sought for quadratic conserved quantity, simply multiplying EeI. (37)
bv 2 2 2 2,X.xll(1 +. A,xl) and subtracting from Eq. (38)

z '<')d_dy - _._- = o (4o)
W here

(1 + A_x_)(V_6¢)(1 A:V_.)6Xb

2 (V 26¢) (1 - A_V_) 6¢

V = _v16_ + -_ _ ,,.

The above expression is further simplified by the integration hi z, t, when after some straight-

forward algebra we obtain the conserved quantity L in the form

14



C2A /_+_:_,_/_:(__/_-_:_/_ +_/_- __:_ (_ +_/_/_ _'_
where the parameter K is defined by

,2 cA( 22),,,K=-- I+A,_ 1 -1 (43)
Uz

or, with the use of Eq. (39)

2 -in Uz CA
= , A.K = 1 < 0. (44)A./i I > 0 2 out

CA Uz

Obviously, the first three terrrm in the integrand of Eq. (42) are positive definite, and in the

case of an instability they can grow only at the expense of the last two. Thus, the sufficient

and necessary stability conditi, on is that the (possibly negative) sum of the last two terms

remains bounded from below tfor all times, and for ali possible realizations of 6@,6¢, which

satisfy the evolution equations (35) and (36). If this were fulfilled, then the above defined

integral of motion L would be the Lyapunov functional for our system.

For a detailed analysis of the functional L, Eq. (42), we will expand the potentials 8_, St/)

on the =omplete basis of orthogonal and normalized functions g, in the following way:

with an analogous expression for 6_.

Eigenfunctions g,.k (r) and g,.,(k, r) are obtained from the SchrSdinger equation describing

a particle in a two-dimensiona:[, cyfindrical potential weil, whose radius is equM to the vortex

core radius R, and whose depth is equal to s 2. The discrete spectrum g_ (r) is determined

from the following eigenvalue problem

[v',+s'/_)]'_ ' ''g_,k(,) (,) (46)= q,l,ke g,_& ,

with

{s2 , r < R,5'_(r)= 0 , r > R "
(47)

15



Solving Eq. (46), functions g.,,k(r) can be readily expressed in terms of Bessel-, and modified

Bessel functions of the order n, J.,, K., respectively

I J.(r(.,k)

J.(R_.,k) ' r < R
g.,k(_)= _.,_ (48)

K_ (rq.,k)

K. (Rq.,k) ' r> R

= - .,_. . Eigenval'aes q,,,k axe determined from the smoothness at r = R,

yielding

(,,.k J" -' (R_,,._,) K,__, (Rq,,.k) (49)
J,, (R_,,.k ) = -q"'k K,, (Rq,_._) "

Similarly, the continuous spectrum 9,,(k,r) is obtained from

[v[ + s_(.)] _'""g.(k,.)= -k'.'""g.(k,.), (50)

which yields

/ J,(r_)

J.(P4) ' "< n
g.(k,_)= _.(k) . (51)

J,,(rk)+d,,Y,,(rk)

• J.(nk) + _) ' "> n
Here ( = (s _ + k_) 1/2, and the coefficients d,, axe determined from the smoothness at r = R

_J._,(R_)J.(R_) - kJ._,(nk),I.(Rk) (52)
d,, = -_J,,_,(R_)J,,(R(,) - ,"Y,,_t(nk)Y,,(Rk) "

One can easily verify that the eigenfunctions g,,(k,r), and g,_.j,(r) are orthogonal. We will

adopt the parameters a,_.k, a,_(k) from the normalization, and consequently we have

f0 _ 6k,pdrrg,,.k(r)g,,.k,(r) =

Jo[_drrg"(k'r)g"(k" r) - 6(k - k') (53)21r

The depth of the potential well s 2 will be conveniently adopted as

(')= _ 2_:_, _ - _ ' (54)

16



which permits us to write down the following identities

e g,,,k(r) -

[qX,k(qX,k+ K°_t)- -4(K'"2- h(R-r

v_(v_+K)_'°'_.(k,,) =

where h denotes the Heaviside unit step function.

Finally, using the expansions, Eq. (45), orthogonality, Eq. (53), and the above identities,

we may rewrite the functional L in Eq. (42) in the following form

L = L (+) (t) - L (-) (t) = const. , (56)

where

_-_(_+_,_)_,(v_6_)_+T_'_(K'°_- Koo,_)6: + 6: h(R-r) -

f_,o _( c: I 6"_,_,, ]2) , (qX,l,+/t'°ut) (57)dz ]_¢,.,,k 12+ u--_ qn,J, ,
OO

and

z/,,(,,;.(,>.' - ). ,; 160.(k)I' k,(k'- K-'). (s8)
Noting that, according to Eq. (39) out zero-order vortex is prop_ating [_tet than the

2 c2, we < O, and consequently the functional L(-)(t), Eq. (58)Alfv6n speed, u, > have K °"t

is positive definite. Similarly, from

-_ 1-_ _-1 >o.
17



follows that the functional LC+)(t) will be positive definite if the following inequality is sat-

isfied

q_ K °'_t,k + < 0, (59)

or equivalently, making use of Eqs. (50) and (55)

_+1 > -1 D.,k , D.,k= • (60)
Ca CA

We will study the lowest order stationary vortex solution, Eq. (27), i.e. we adopt _ = j1,1/R

(where j,.,, denotes the m-th zero of the Bessel function J,_). The "inside" eigenvalues _,_,k

may be estimated trom the dispersion relation, Eq. (49), whose smallest solution is somewhat

below jo.x/R, but very close to it:

_.,k > _o,t _ jo,...._l (61)
-- R '

This sets the numerical value of the parameter D_,k in Eq. (60) below 1.3:

,c_n2

D,._ <__ ~ 1.2688. (62)

Inequality Eq. (60) is always satisfied with the above value of D,,,k, which implies that the

functional U+_(t)is positive definite.

Ia order to complete our stability proof, it would be necessary to show that either U+_(t),

or L'-_(t) is bounded from above (then, from Eq. (56) the other functional automatically

remains finite). Noting that LC+_(t) and U-_(t) are defined as integrals for the entire space

of some positive definite functions, their boundedness implies that their iategra_ads, and

consequently also the perturbations 6¢, 6_, remain infinitesimMly small for ali times, and in

the whole space. Possible exceptions of finite size spatial regions with finite perturbations,

and of "well behaved" (i.e. square integrable) isolated singularities of Sqt, 6¢ are not reg_ded

as instabilities in the usual sense, as defined in the beginning of this section.

It is important to note at this point that only the continuum spectrum of the pertur-

bations is contributing to the functional LC-_(t). Furthermore, it can be sh,:':_n that modes
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belonging to the high n, k end of the continuum spectrum are stable, and that consequently

their contribution to the functional L(-)(t) is bounded. Namely, if the characteristic scale

length is much shorter than the vortex size

n,_kr_kR>> 1 (63)

the Bessel functions in Eq. (51) have the following simple asymptotics

_, = _- + n axccos

and the eigenfunctions ei"°g,(kr) may be replaced by simpli_ Fourier components. In this

regime we also consider V _ const., and apply the local approximation to Eq$. (46) aJad

(47), which permits us to calculate the frequency from the corresponding linear disper_on

relation. As we have already shown, in the outer region, setting _ = 0 in Eqs. (46) and

(47) we obtain linearly stable Fourier components

(_ - k_. V)_ = (k,_, - k_. v) _t + _ _ (65)A,k.t.

Within the vortex core the linear dispersion relation, obtained from Eqs. (46) and (41) ha

the form

_-'_(_+_.kl)a a +_,_kl - (t - ¢) t + = 0, (66)
where we used the notation

- kd.. V -2 i,_ kj. •V (67)
= k,u,-kl.V ' ( ='_°_1 k,u,-kd..V "

In the short-wavelength limit

,Lkj.2_ ~ R2/c_.> 1 (68)
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the above dispersion relation becomes
2

Uz 2 2 _2-_-_,k t = I - _,
CA

and we have line_ stability, lm f_ = 0, provided ¢ < 1 or equivalently

kzuz ksuz 2

kj.. V < 1 or kt V > 1 + (A,x_') 2 = u____ (69)• ¢2 "

For a broad range of parallel wavenumbers k, these conditions are satisfied by short wave-

length perturbations, Eq. (68). A simple example are the perturbations with a small enough

value of the parallel wavenumber

_< (70)

which are unstable, according to Eq. (69), only if )_ok± < 1. However, this is outside of the

validity region of the dispersion relation Eq. (66), and the existence of the instability re-

mains uncertain. For a conclusive proof of either stability, or instability, extensive numerical

investigation is required, solving three-dimensional evolution equations in the presence of

initial perturbations belonging to the continuum spectrum g,_(k,r), whose the scale length

is comparable to the vortex size

n ~ kR ~ i. (71)

From Eqs. (56)-(58) it should be noted that an eventual instability of the continuum

modes is followed by a simultaneous growth of the discrete modes 6_,_,k(t,z ) g,,,k(r), which

are well localized in space, having a better localization than the zero-order vortex. Such

a behavior bears a close resemblance with the dual cascade in the weak shear-Alfv_a tur-

bulence 3, s towards both smaller ;,,nd larger wavenumbers. This may possibly indicate a

transition to a new nonlinear structure, different from the vortex Eqs. (19), (24), _ad (25).

IV Conclusion

In this work we studied the linear stability of drift- and convective-cell type she._-Alfv_n

vortices. Solving the linearized evolution equations, it was shown that the first type is
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destabilized by short wavelength perturbations, Eq. (34) in the spatial region where the per-

turbations are propagating (almost) perpendicularly to the vortex fluid velocity, calculated

in the reference frame moving with the vortex. Since the scattering of the perturbations on

the zero-order vortex gives rise to broadening of the perturbation spectrum, these unstable

modes would evolve, given enough time, for any arbitrary initial perturbation. Thus, the

upper limit of the drift-vortex lifetime can be estimated from the rate of spectrum cascade

towards the unstable modes.

In case of the convective-cell nonlinear mode, we restricted our study to the _one Bessel

function" vortex, Eqs. (19), (26), and (27), which is not Landau damped by resonant elec-

trons. Lyapunov stability analysis was applied after the expansion of the perturbations on

an appropriate basis. Such a procedure indicated stability for a broad range of vortex pa-

rameters, Eqs. (69) and (70), in the case when only short wavelength perturbations were

present. The remaining part of the continuum spectrum of perturbations, corresponding

to long-range, wave-like perturbations with the wavelength comparable to the vortex size

is considered to be critical for the vortex stability. In order to prove the stability, without

solving the evolution equations (35) and (36), it would be necessary to find constraints for

the amplitudes of all these critical modes. However, only a finite n'amber of conserved quan-

tities seems to be available, 13and such a general proof can not be constructed. Alternatively,

a numerical experiment of the vortex evolution under critical perturbations would provide

the information about stability, similarly to the procedure applied to the Haaegawa-Mima

equation in. 14

Although stability could not be proven decisively by the present analytical approar.h,

it was concluded from Eqs. (56)-(58) that any possible de.stabilization by the critic, al long

range perturbations, with the characteristic wavelength comparable to the vortex size, must

be accompanied by a simultaneous growth of short range perturbational, having better lo-

calization than the original vortex. Such a behavior is resembling the dual _de, towards
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both smaller and larger perpendicular wavenumbers in the weak shear-Alfv6n turbulence,

which is the characteristic "signature" of the self-organization processes leading to the cre-

ation of coherent structures. One may speculate that in our case it indicates transition to

another coherent solution. However, to prove this a detailed numerical solution is required of

the fully nonlinear, three-dimensional evolution equations describing convective-cell vortices.
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