

Н. В. КУРЕНКОВ, В. П. ЛУНЕВ. В. С. МАСТЕРОВ, Ю. Н. ШУБИН

Функции возбуждения реакций с образованием радионуклидов

Por TI, BOI Pb # Por Bi

(Экспериментальные и расчетные данные)

Обнинск - 1992

632-2253

MSHKO-SEPTETNERCHAR MECTETT

н.в. Куренков, В.П. Лунев, В.С. Мастеров, Ю.Н. Шубин

алнации возвятальные реакций с образованием радион-лидов 20171, 2017b и 20181. (Экспериментальные и расчетные данные)

OGENEER - 1992

VIK 535.17.012.6318 601.3.06

Н.В. Луренков", В.Л. Лунев, В.С. Мастеров, В.Н. Шубин

Зунилов вороуждения севиший с образовением радионуклидов ²⁰¹Т1, ¹⁰¹РС и ²⁰¹Б1. (Эксперирентальные и расчетине дающее).

COM-2203. 1992. - 46 c.

The results of calculations of charged particle induced reactions for the production of neutron deficient radioistopes 20 Tl, 201 Pb, 201 Bi and concomitant oneenre discussed. The excitation functions for reactions 202 Rg(p,xn), 207 Pu(a,xn), 203 ,205 [10,xn), 203 CoS₂,205 [10,xn), 203 Pb(p,fxn), 203 Pb(p,fxn), 203 Pb(p,fxn), 203 Pb(p,fxn), 204 Pb(p,fxn), 204 Pb(p,fxn), are calculated or the base of statistical model in energy range up to 50 MeV. For the most reactions producing 201 Ti the data on the calculated and practical yields under optimations are given and the main induitive levels are pointed off. The calculations were performed with AllOS code. The comparison shows that the approach used gives the satistatory results for the most reactions except (p,pnn) reaction on natural Thallium and former is tates excitates reactions of isomer states (202 me) formation. The STAPRE pode was used for the calculations of isomer is tates excitation formations.

физико-энергетический институт (ФОИ), 1992 г.

[&]quot;Институт бизфирини Минадтава Ролски, с.М. из--

BBEJIEHME

Ядерные данные в области средних внергий необходимы для широкого круга приложений. Важное значение они имеют для решения проблемы трансмутацых и выжитания радноактивных отходов, защиты ускотятелей, в космических ИССледованиях. Для выбора наиболее оптимальных способов производства медицинских радноизотопов. Ограниченность экспериментальных возможностей, в во многих случаях принципиальная невозможность получения экспериментальных деница, приволят к необходиности развития теоретических методов расчета и оценок требуемых данных. Эти методы должны тестироваться по имеющимся экспериментальным денным. В области средних энергий денные по нейтронным сечениям практически отсутствуют. Однако для заряженных частки имеется общитная Экспериментальная информация, сравнение с которой может облегчить выбор моделей расчета и их дельнейшее развитие. В денной реботе проводятся расчеты и сравнение с имеющимися експариментельными данными в области массовых чисел А~200 для более чам 30 реакций, вызванных протонами, дейтронами и альфа-частицами с энергией до 80 меВ, приводящих к обрезованию нейтронодефиинтных взотопов 20171 и сопутствущих ему рашконуклидов.

К радиоцкулидам, назадлюн в последнее деоятностие сикрокое распространение в диагностическах исследованиях в ядеряой медицинея, можно с польки основанием отнести талиан-201 (г._{//2}=73 ч). Теперь обезнаваестно, что ²⁰¹П наляется одоми из лучатах радионуюлдов в числе потенциально пригодных для внаувляется из метокердае ос сижненые коросснавающеми.

Талияй-201 правлетоя нейтронодефацитным ирдионующиом, получаемам не ускорителях зеряжених частиц в результате клерных реекций с изотопеми рутия, талий, свинце и висмуте. На сегодня исслядовеко большое количество резличных деривки реекций, приводящих к обреволамию талиян-201 ими вого радновитивных предвоственнякое- сеница-201 ($T_{1/2}$ =9,4 ч) и висмуте-201 ($T_{1/2}$ =1,8 ч). При облучении руттых ищение протонник ими дейтронным происходих примов образовавет талияных ношенева втоком на частициям происходих нариов стораннов симанали кошенева втоком не частициям происходих наризоственнякоезования, тек и через распад эго радновктивного предвественникоесвища-201. Копользование зе синциона и виснутовых имония предполятиет цвлючку посталоветательных адериах и реинец-201. 201 до талина-201 через вистустаби сремнец. В связи с этим, как и в случа- с додом-123 (11, авторам кожазалло: изгичам продожить сонстанление накоплачими Динны по сетенняя лезных реакцой, приполятик к образования таллия-201 и его радионктивных предшественныков с разультатами расчетов этих ка сечилий рожний с использованием программа АLICE-87. Дополительным питерос вызвало такка и то обстоительство, что и алесь сравнение проводилось для найтронодафицитных ядер, на расколоженных уже в области не сращох, какими наялись радкоцумицы Вод-123, кеевон-123 и цезий-123, а в области такалик дарр. Рад росчетов был выполнен и для ядерных ревкияй, приводящих к образованию таллия-199 и оспутствукцик ему радионя ранома (1).

I. PEAKLING NORVEHING TAILING-201.

Среди двух десятнов изотопов таллия, "Известных в изстоящее время, в ядерной медицине распространение получили дла - 199Tl и ²⁰¹Tl. Предложение об использовении таллия-199 было впервые сделано в 1970 г. [2], но уже в 1973 г. был предложен таллый-201 (3), который вот уже на протяжении почти 20 лет находит вирокое применение в диагностике мискерда. Этот ралионуклид, паспеленцийся путем влактронного захвате с периодом полураспада 73 часа в стабиль-Ную ртуть-201, ислускает интенсивное ректгеновское излучение в лиалазона энаргий 69-80 каВ (регистрешия которого с помоцью сшинтил-Лационной гамма-камеры Позволяет получать изображение с вксокой четкостью), а также у-излучение, наиболее интенсивные линии которого имеют знаргию 135 и 167 каВ. Сравнание лучевых нагрузси, получаемых пациентами на различные органы и все тело при проведении дивгисстических процедур на единицу активности редионуклидов теллия, показало, что дозовые нагрузки, создаваемые таллием-199, почти в IO раз меньше по сранению с аналогичными для таллия-201 [4]. Следует земетить, что период полураснаде 201 Т1 нозволяет использовать его в клюжике в течение IO суток, что безусловно удобно, одмеко, это обстоятельство препятствует его использование для новторных исследовения с динамическими нагрузками, где может находить свое применение болае короткомируния 1991 (Г., 27,4 ч). На практихе применение последнего из-за короткого периода полуващела возможно линь при наличин ускорителя заряженных честиц, установланного непосредственно в кланните или рядом с ней. Р настоящее

- 4 -

Брыя мыется указання на применение таляка-201 для других оргамов, кроме сердия. Из радионуклидиих примеся в препарате талянмов, кроме сердия. Из радионуклидиих примеся в препарате талян-201 критиески выяватся допохивущий талляй-202 ($T_{1/2}=12$ суу). Примеск других радионуклидов, в честности свикша-203 ($T_{1/2}=52,1$ ч) и талиже-200 ($T_{1/2}=26.1$ ч), менее критична, поскольку и вариоди полураспаде маньве чам у талика-201. Суммарший соъем производства талия-201 в мере соотавия 2500 коли по лаками на 1987 г. [3]. В навей страке выпуси талина-201 на пресывает 5 кири в год.

I. ITPENNE PEAKINN.

I.I. Peakung 202Hg(p.2n)201Tl.

При облучении ртути природного изотопного состава протонами или деятронами образуется смесь раднонукльдов таллия от 196 до 204. экспериментельные выходы для четырех из них, е именно: 200,201,202,204 Tl. были измерены в реботе (6). Денные из етой ра-COTH CREATERACTBURT. TO CORVERMAN CHECK MACTOROB TAXABLE HE COMгодна для использования в ядерной медицине, так как содержит слишком сольшие количества 200Tl и 202Tl. для уменьшения доли которых в препарате таллия-201 авторы рекомендуют облучать обогаденные изотолы ртути и, в частности 202 нд (7-8). Однако, если провести акализ реакций получения 201 ТІ на отдольных изотопек ртути, то поневоле приходные к выводу, что при этом практически нельзя выполнить основное требование, предъявляемое сегодня к препвретам с таллием-201, а именно: совместить высокия выход целевого радионуклида с его высокой радионуклидной чистотой. Действительно, реакция 201 Hg (p,n)201 T1 не пригодна вследствие низкого выхода при энергии протонов до 10 МаВ. Это условиа продиктовано наличием конкурируюдей реакции ²⁰¹Hg(p,2n)²⁰⁰T), энергетический корог которой равен 9,5 МэВ. Практическая реализация реакции 202Hg(p,2n)201Tl, именлая относительно высокий выход 20'Т1 (9), затруднена из-зе больдой примеси 200,202 T1, образующихся попутно в реекциях 202 Hg(p,n)202 T1 и 202Hg(p.3n)200T1 соответственно. Использовение реакции 204Hg(p. 40)²⁰¹ТІ такжа на даят таллия-201 удовлатворитального качаства изза обрезования больших количеств 202 T1 по реекции 204 Hg(p,3n). Экспериментальные функции возоуждения для реакций типа Hg(p, In) отсутствуют, но в работе (9) били измерени дифференциальные выходы 201 Tl. а также 199,200,202 Tl при облучения ртути с обогадением що 202 нд ло 93,6 \$ протонами с энергией от 10 до 28 Ман. В ремски настояло рьботи значения виходов для 201,200,202 T1, образущихся со реакциях 202 (§,р.2л.), 202 (В(р.л.) и 202 (В(р.л.) соответствению, соло соответствению, соло соответствению, соло соответствению, соло соответствению, соло соответся в реакциях в реакциях в реакциях в реакциях в реакциях в соответствению, со соответствению, со соответствение, со

Басчетные и экспериментальные знатейся функция возбухоення предотавлены на рысунка і и накодитов в разумном согласни можду собол за исклычнием бить можит реакции ²⁰² К(р.п.)²⁰² П. для ресчатна, симачных которой наслодяется сдвиг в область нижих энерга.

1.2 Poakusta 197 Au (a.2n) 199 Pl.

Как узэ) было сказико, итличенение к ядирию 2 медицине наколит и таллий-160, буликини волоужиения ремкий 1974ли (д.2) 1997) и 1974 (д. с.1) 600%; болло экспериментально измерения в работах 110,111 для дивпьюны заверения счастиц от 10 до 40 Мев. В ряботах 110,111 для дивпьюны талкон завергия счастиц от 10 до 40 Мев. В ряботах 110 боли от ределовні также опучивлятися условия получения таллика Теляна-Т99 в 6° высод, который состатии 0,96 Мби/мак ч для начальной внертии счасти так 3 солоте 61,4 мг/см². Црямесь ²⁰⁰ т к концу ослуженяя на измерала 0,56 к.

Расчет ялисямосуна сечений разлий 197 ли(а, n)²⁰⁰Гl. 197 ли(а, 2n)²⁰⁰Гl. 197 ли(а, 2n)²⁰⁹Г, и 107 ли(а, 3n)²⁰Г, от энергии «частии, произведениев по программе АББС-37, демонстрануму (см. рисунок 2) хорожее согласие с экспериментальными дышемы (11).

 НЕПРЯМЫЕ РЕАКЦИИ.
2.1. Реклими ²⁰³T1 (р.3n)²⁰¹Pb→²⁰¹T1 и ²⁰⁵T1 (р.5n)²⁰¹Pb→²⁰¹T1.

При облучении проточнии природного миталлического тайлии, в сов соотсат за двух изотолов s²⁰⁵°C (29,5%) и ²⁰⁵°C (70,5%), нарабу с сругким образуется налики 201 Ю ($^{1}_{1,1},...,,,44$), которыв сосучения облучния отдалли от митеракая милека с нелоснотия на разулитате Ленинбите раскат которото своется 201 С.

The state of the second states of the second states and the second states and the second states and the second states are states and the second states are states and the second states are state

кратно (9,12-16), но экопериментальные данные носсля несколько противореннаый хирактер. Так значения в макокмуме функция - набулления этой размани колебались от 760 (13) и 850 мборн (12) до 1940 мбарн [15], В работе [14], гле функций возбужления измерались для ряда радионуклидов свинца и таллия, образукшихся на природнии таллии под действием постонов с энергией от 6 до 45 МаБ. антори не режников разрелить канелы, велицие к образованию 20°PD до теакцием 20371 (p.3n) и 205T1 (p.5n) и поэтому привели значения функций рол**буждения в расчете на атом природного таллия.** Однако утветскоеми, что получению ими данные для 201 Ро согласуниев с анылогичными ланными из работ [12] и (15]. Еще две труппы авторов, которие также камеряли пункции возоужление пла реакции 203 T) (р. 3р)²⁰¹ F); ни природном таллим [9,16], констатируют совпадение своих экслериментальных результатов с данными работы (15). В работе (12) ноказано. что для теакции 203T1 (р.3n)201Pb на природном или обогазенном толлик-203 энергия протонов на входо в мишень должна составлять 28.6 МаВ, а на зихода 22 МаВ. При этих условиях примеси 2007; и 202 П в предарате не поевышают соответственно I % и С.2 % на момент цегеработки мяшени (оптимально через 32 часа цоле отлеления 201Pb). Выход 20'Tl пои этих условиях составляет для природного таллия 0.7 мКи/мкА.ч. Применение миненей, обогащенных по таллию-203 до 90-97 1, nosumeet puxon 201Tl B 3 pess. Baxon 201Tl no peaking 205T1(D.5R)201Fb+201T1 на мишенях на состаменного теллия-205 (>99 для диапазона энергий протонов 46-38 МаВ оценивается размым 2.0 ыКи/мсб.ч (17). При этом примери 200т1 и 202 T1 составляют 1.5 % и 1.0 % соответственно.

Росчатные значании сачаний для реакций ²⁰³т1(р.3n)²⁰¹pb.²⁰³т1 (р.4n)²⁰⁰pb.²⁰³т1(р.2n)²⁰²pb. получение с использованием програм м АLCEC. средятивляють с эксперименть-тыным данноми праготи [14]. Сравнение показывает (см. рис. 3), что расчатые данноми раготи [14]. Сравнение показывает (см. рис. 3), что расчатые данноми раготи [14]. Сравнение показывает (см. рис. 3), что расчатые данноми раготи симмах этих функция на превыяет 5. 6, одноко расчатном максисмальное значение сечения несколько болькае, чам соответствуящен заките разметольное. Эте разници для реакция ²⁰³T1(р.4n)²⁰⁰Pb составляет ²⁰³T1(р.2n)^{202m}Pb спеаниють не прастепляется поличение для реакция ²⁰³T1(р.2n)^{202m}Pb спеаниють не прастепляется поличение и то то го, что к рамках опдели АLD/E пересмомок корроктая проличение.

Проблема описания во-жерных отнозений в реакцизации и нер. и э

нескольком, частим до сих пор остается нерелянной. Существумомо систематики опреничены донамок, в основком, для одноступенчатых резиций (п.р.) (п.d.), (п.1') и области вняртий около 14 МаВ (18). В раде случаева экспериментальные дляние могут бить рассчитани теортически. Однако имеются силыные размотляески мажду теорияй и экспепечентом, особенно для малых (<0.1) значений изомерных отножений, связаещые с чеопродаленностью скам ийскратных уровная, вероятнос гой тема-порахода и споновот изологисти уровная (19).

Пленить счечения образования изомерного и отновного состояния ядря можно с помощью программы STAPRE (20). Расчети по программе STAPRE проводились с пареметреми оптических потенциалов, взятими из системитик M.Blann (21), используемых в программе ALIOE мерричащи замемые внутряялерного риклоп-ириковного взаммодайствия для расчетов праровновесных процессов вноирался таким образов, чтобщ вимад предравновесных процессов в программе STAPRE совпадал с ре сультака. АLIOE. Посклоких модали предравновесного распада, используемые в двух программах, различия, вималы предравновесных процессов совпадаят в предлагая 20 х.

Скемы дискратиях уровняя воздуждения кек основного так и изомерных состояний, и вероятности соответствуждих электромагнитими переходо взати из комплинии (22). Следует отметить, что функция воздуждения изомерного состояния, вычасленная с помощью SYAPRE, верисни то вердений стокиму уровня, а именно от их количества для основного и изомерного состояния постоствуровней и редиционных имрии для всех койкуридуждих кональзо, читвеваних в росчеть.

Переметри плотичести уровней были подобраны по деным Далта (231, извлеченаями на экспериментальных должи в модели форми-герал с обративы самеванием. Босковаку в работе Дила (23) денове омол изложения живы на вебольдого числа нуковско, на переметри интернолацию этих дилик на область нуколков с массовим переметро на от 150 до 210. Для пареметров плотности уговней в и & мопользовались интерполяционана формуля Далта (23). Интерполярование экнения паражатров вимоте с ланамии на систематися Дилат присъдены в таслиция 1. В колонке неми-ченией (*) приведены репультаты интерполяции денных Дила (23).

Talimua I.

Переметры в и & для расчетов плотности уровней

A		a		4						
	Í.		Hg (Z=80)	T1 (Z=81)	Pb (2=82)	31 (2	2=83)
I	(•)	i231	(*)	(23)	(*)	(23)	(*)	(23)	(=)	1231
193 194 195 195 198 1990 1990 1990 200 200 200 200 200 200 200 200 200	22.00 21.09 20.16 19.27 18.35 17.44 16.53 15.61 14.700 (3.79 12.87 11.96 10.14 9.22 8.31 7.40	19.56 17.99 16.26 15.92 14.86 13.00 14.68 11.26 12.09 16.21 8.94 8.53	0.79 -0.49 0.82 -0.56 0.74 0.64 0.64 0.64 0.55 0.55 0.55 0.55 0.45 0.45 0.45 0.4	-0.67 0.52 -0.62 0.81	-0.82 -0.43 -0.665 -0.064 -0.0667 -0.0667 -0.0687 -0.06887 -0.0697 -0.0697 -0.0007 -0.0	-0.50 -0.90	0.79 -0.49 0.82 -0.56 -0.64 -0.67 -0.67 -0.67 -0.62 -0.63 -0.63 0.12 0.63 0.12 0.95 0.45 0.45 0.12 0.95 0.45 0.15 0.15 0.5 0.15 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	-0.12 0.40 1.52	-0.49 -0.48 -0.48 -0.0.565 -0.0.565 -0.0.565 -0.0.58 -0.0.59 -0.0.58 -0.0.59 -0.55 -0.0.59 -0.	

На рис. З итриховыми кривыми покваны розультени ресчено фумиций возоухдения основных состояний даер ^{200,201,202, роз и изомерного для 2⁰²⁹ ро по программе STAPS для ревкций 2037 [(о.д. 1200,201,202, р)]}

Следчет отметить, что функции возбуждьныя для основних состояний в целом подобны рассчитанным по программя АLICE, одлеко имеют несколько меньзов алкенские в максилирах, в также ужбожлай к но систематический одвиг погладших в сторону высоких здергий. Расчатные знечении для изомерного состояния находится в хоровем согласия с экспериментальными для расмония с³⁰ TI(7,1²⁰²⁶m²h.

бункция возбуждения для реакции ²⁰⁵T1(р.5n)²⁰¹Pb^{_201}T1 била изморена в работах (15,17) в иоторых также били измерена функции возбудания реакция ²⁰⁵T(р.5n), ²⁰⁵T(р.4n) и ²⁰⁵T1 (р.5n). Сравнение экспериментальных и рассетник данных. Призоден ное на рисунках Ал, 40, показыват, что рестетник данных призоден или ²⁰⁵T1(р.5n)²⁰T2 корено состауются к аналистичных экспериен тольными из рассти [15] и негода о х.5м о о онее ноотобуют самирии гость авторов (171. Зетов учтальных алистичных от самирии гость авторов (171. Зетов учтальных алистичных самирия самирия сость авторов (171. Зетов учтальных алистичных самирия самирия сость авторов (171. Зетов учтальных алистичных самирия самирия сость авторов (171. Зетов учтальных самирия самирия соста татьми несчетов по программе STAPRE. Для этих реакций солласие с экспериментом несколько хума, чем для реакция ²⁰³П(р.2.1). Это указывает, по-видимому, на необходимость более тивтельного аналазе истолих деник для сеск конкургусцих каналов, учитабемых в расчетах. Для реакция ²⁰³П(р.3л)²⁰³РБ лучшую согласовенность расчатних и экспериментальных данных даят програмо STAFRE, а для реакни^{3 соб}П(р.5.1)²⁰РБ - Айток (ок. 40).

Вачестно, что в области масс ядер А-260 реждия типа (р. хл.) лючнициует над режициями типа (р. рхл.) для средому змортий возбукления, когда вероятность каноте нейтроне многохратно премвизат вороятность консуссиями протими ими цругий заряжимся чистиш колястно, високого куленовского сарьере. Это подтвердают и високариичто високого куленовского сарьере. Это подтвердают и високаристи високого куленовского сарьере заго подтвердают и високаристи високого куленовского сарьере. Это подтвердают и високаристи високого куленовского сарьере заго подтвердают с таллия. (141, Сопоствениения маки дивицах с запаютсянами расчетивам в рамета АБЛСЕ с соответствующей корректировкой на изотопное сидержение кулествение различистая. Сокстаку указимие режними имото однакие оначения сечений, то все сечения режнити, ведуще к обрасоканое таллик-яСн, предствеление в расуметь 5, маличены в 10 со. "Войстиственно, вранаци (2011) (с, рас) режеты кулетания резанията в

 боласти знергий в целом существенно меньще соответствующих риментальных. Этот же фект можно констатировать и для реакции

Этр. 2014. Одени рисчетных функций возгумдения приоблазительноим 10 Ма5 в сторону нажих анергия практически устреняет эту разницу, но для этого одени але об устреняет следует учесть также, что погредность в эксперименте при измерении сечения этих результ достиглая 40 %.

В программа Б.102-67 прадускограна, кромя изменяния параметров оптических потенциялов, постности уровней и начального числа косстоков, сокножность киспользовать насколько различащиеся прадсаку в от реометрия (GDH). В модали б.К. учитивается конечность глубин потенциальной яки и дофузиость изпераноста задее, которая приводит к уналичение дояно сволодского пробета нукова в поверхноста, к са с. для сольших орбитальних иментров. В раборе С24 R. Ч. 9.-) эндиковрана финкция вообужения различи, протосаму сластик снергой ста адгея, работ, и привода к Пертосии, сластик снергой ста адгея сработ, и привода к Бирозу, и ролок у тренция раз другая работаля с и привода к Бирозу. В раборе Сума, к адгеять работалиста с старие с и в тосатора с старит с уческие от адгено с тарие с и в тосатора с с насти.

- ----

рититлодиловия доянными деят ноголь СВН, пучичем в области онислия претизаржихи 100 МаВ. Для реакций с деятроначи и вынфа-частвнами такого одновночного вывода оделать поко мельза. Необходимся привлечание бодев широкого круга акспериментальных деяных в разных обласотях мессовых чуюго.

Функции возбуждения реакций ²⁰³П(d,m) к ²⁰⁵П(d,m), приводяжая к образования нуклидов ²⁰¹Рь, ²⁰²Пр, ²⁰⁰Рь, а также ²⁰¹Рь и ²⁰⁴Пр в области мергия дейтрсков 16-50 Мав, имерлия с налых исслядования возможности спользскания этих реакций для комемричекого производства талия-201 на цинсотронах (13). В результатея этих асслядования порог реакция ²⁰³П(d, 4n)²⁰¹Рь был установлен ранным 23 Мав, а максимальное сечение этой реакции было найдено равным 1150 Мора вля енертих цейтроно 32 Мав. Экспериментальных данных для функции возбуждения реакция ²⁰⁵П(d, 6n)²⁰¹Рь всторан, к сояклял функции возбуждения реакция ²⁰⁵П(d, 6n)²⁰¹Рь всторан, к сояклялонию, получить не даклось. Ресчетив запачения сечения для ная са и умезаналих выше реакция в ремока программи ДЫСЕ (см. рисунки 6 и 7) корост оставодится с вколериментальными данными для ная са исменно ²⁰³П(d, 3n)²⁰⁰⁷Рь, ²⁰³Г(d, 3n)²⁰¹⁷Рь встора, для костория изобнорае отношения на известны.

2.3. Feakuun Tuna Pb(p,xn)²⁰¹Bi→²⁰¹Pb→²⁰¹T1.

0 реакциях типа Pb(p,xn)²⁰¹91.²⁰¹Pb.²⁰¹

²⁹²1), а остатывые 90 переходят в свое основное, состояние, Вилад KS OT CONVICTAVENUE DESKING THES PD(D.32)²⁰⁰B1→²⁰⁰FD+²⁰⁰TL BELY-САХ К Обрасованию примеся таклия-200, может быть существенно снижен при использовании рысокорогаценных испонея из свинца и подбоосм режима их облучения. Экспериментальные функции возбуждения для укаранных реакций отсутствуют. Это, по-вилимому, связано с тем. что при облучении свинца природного изотопного состава, з он включает в себя четыре наотона: ²⁰⁴Pb (1.4 %).²⁰⁶Pb (24.1 %).²⁰⁷Pb (22,1 %) и ²⁰⁸РЬ (52,4 %), протономи с энергией в днаназоне 25-90 ИзВ оценить иззависимые ективности изотопов висмута или: свинца, образученися практически одновременно на различных изотопах свинна, невозможно, Лля этого трабуется проведение отлальных исследованый на обогатанных свинцовых митаних. Частично они были лговедены в работе (28), гле бомбардкорке протонами с начельной энстерей 100 маВ полвергали свиниовые сборки на 206 pb. 207 pb и 208 pb с обогадением 94. 89 и 97.5 % соответственно, но при этом были измерены лиць выходы 200т1. 201 T1 и 202 T1. Пля всесторовней же оценки практической пригодности этого метода получения чистого таллия-201 из обогещенных свинцовых мишеней прежде всего необходимы функции возбуждения реакций тина Fb(p.xn)²⁰¹B1, а также ряда сопутствуения ревкций, приводящих к образованию таллия-200 и таллия-202. Функция розбуждения для реакция 205Pb(p,5n)201B1 вленене была измерена почти 40 дет назад [29], когде для диапазона энергий постонов 49- 64 МаВ на мишених из обогашенного свиниа-206 (88.2 %) было получено 4 экспериментальные точки, и новых попыток ее измерить с той поры не предпринималось. Расчеты функций возоужления лля реакций 206,207,208pb(p.xn)207-x.208-x.209-xB1. TOKKO DR: KUNS 206,207,208 pb(D, DXD) 206-x,207- ,208-xPb, FAS X B 3888CMNOCTH 07 тяпа реакции прилимел значения. ; I до 9, были проделани нелавно с помощью программи Overlaid ALICE в работа (30). В их число входят и реакции, приводящие к образованию 201Ві и 201Pb, но отсутствуют данные о сэчениях реокций аналогичного типа на 204 Ро и не приводится каких-либо новых экспериментальных данных для указанных Deакций, сравнение расчетных данных для которых проводятся лишь с давно известными (26).

Расчеты функция всю ужданния для разкций. ^{204,206,207,2²⁶ рь(р. хл)²⁰¹ В1 и 2^{-3,206,207,207} всёрь (р. укл)²⁰¹ Рь, а также ряда солутствуршах разкций бола воплонена в разках программы АЛЗСК-27, и редум. тать для реклима ²⁰⁴ рь(ң. см)²⁰¹ В1, ²⁰⁰ Рь(р. см)²⁰¹ (1, ²⁰⁷ Ръ(п. 7,1)}

²⁰¹Ві и ²⁰⁰Ррб(р.8п)²⁰¹Ві представлены на рисуике В. Кык избасти ., вкладки именно этих реекций в основном определяются величина нихола талли-201, так кок в этой области змергий протово вкладки реакция тила Рб(р, илт.)²⁰¹Рі и Рб(р, одл.)²⁰¹Рі с пректической тички арклия можно прензбречь. Максимуи функции возбужнения для реакции ²⁰¹Рр(р, 4л.)²⁰¹ВІ, кек канки из рис. 9, осотальтат 1200 мобры при амертия протоков 40 мав. Максимуи кожкулирукся Гезании ²⁰⁴Рр(г, 6л.) ²⁰¹Рр с общув ективность свянца. 201 мобла сам. ²⁰¹Рр с общув ективность свянца. 201 мобла сам. ²⁰¹Рр с общув ективность свянца. 201 мобла, окадать, синтать невненительным. Выход сманца – 201, если кокланть ви дивой умили всодужним реакция ²⁰¹Рр(р, 4л.) в изпелазоне кнергий протоков 45-32 МвВ, составит не манев 44 мби/мак-ч, что в перече те на талима-201 с уческо спітикальных выдережи и инобенного облутення осотарання 4,2 Мби/мак-ч.

Реакция ²⁰⁶Pb(p,6n)²⁰¹B1 для свсяй эффиктивной рожлизении тредует начальной енергии протоков не манов 65 МеВ, тик ких, езли, верить расчатых, максами ме функции возбудкения начит в солласти 61 МеВ и ровен 600 моери. Виход свилие-201, рассчитениям путем интегрирования этой функции в пределах енергии протонов от 66 до 52 МеВ, оказанся рыями 32 ММиликАч, что в перосчета на таплия-201 деат значения 3,0 МКиликАч, что в перосчета на таплия-201 деат значения 3,0 МКиликАч, с двилика расоти (25).

Следует особо отнитить, что все расчети для реакций, ьедушля к образования 201 В1, а си кли извастно киличат с обя две мулица 2010 В1 ($\tau_{1/2}$ =59.1 кон) и 2010 В1 ($\tau_{1/2}$ =16.9 ч, проклатись в предладочния и то домянирует процесс образования 2014 В1 (26), за с чат распада которото и образуватся основное количество саница-201, пототому разделения каналов образования изомара и основного состояния и проводилось.

3. SAKITOHEHME.

В ремкех представлением работи прознализировани (дажной нобулиения былее 30 дерених режима), приновано и образования талия-201 и сопутствуящих нульдов. Для речесто изпользования программа АПСБ-57. Сранные и изменийски изстратования и попроведение для 25 речения. Для солжиниство и сруга работи? со верест 11 проведение состо образование и составлятии и соста на проведения 11 проведения составляться и составлятии и состав образования 11 проведения составлятии и ноъных примесей.

Сспоставляение рассчитанных в ранках статистической модали функций позбуждения ядерных ревкций, вызвенных протопания, дейтроными и альфа-частицами срадих знертий, с общиршыми эксперииентальные натерикаски показивает, что кспользуемый подход деят удовлетиститльные оценки для большинстве реакция. Исключение составлетиститльные оценки для большинстве реакция. Исключение составлетиститльные (р. рат) не природним таллах, в также реакция типа (d, лг) и (г, хл) с образованием изомерных состояний ^{соде}тре и ²⁰⁰етро. Для посленово программа STAPRE, приводныя к удовлетоворительному синствиие акспериментальных данных в случее реакции ²⁰³тро. ²⁰³теро.

Ужию считеть, что разультьть расчатов с использованием протремоча АLICE могут служить разумной оцинкой для (мункийя возоджат ик и выхлов соответствумих реакция, кроме реакция, приводянах к образованием изомерных состояния. Аля ресчатов сечения реакция с образованием изомерных состояния необходомо присмежать другие расчатение программ, использущий болке датальную информацию о структутицх особенностях ядер в исходенах данных. Поэтому для 7 реакция экспериментальные и расчатие результать были сопоставлены с данными расчетов по программе STAPRE.

Расчет функций возбуждения для ряда реакций, а также виходов свинца-201 и таллия-201 произведен впервые, в честности, для реакции $^{204}{\rm Pb}(z,4n)^{201}$ В1.

Экспериментвальне и рассчитенные денные по функциям незбуждения реакций, внализируемых в данжой работе, приведение в Приложении.

MATEPATYPA.

- А.Р.Довбенко, Н.В.Курэнков, В.П.Лунев, А.Г.Малинии, Р.С.Мастеров, В.Н.Шубик, функция пообумдения релиий с образованием радионуклидов ¹²³ Г.¹²³Ке и ¹²³Св. (Экспериянитальние и расчетние даниза). Преприят ФОИ-2182. Общинск, 1931, 43 с.
- Kawana M., Krizek H., Porter J., Latherrop K.A., Charleston D., Hutper P.V. Use of ¹⁹⁹71 as a Potuselum Analog in Seanning. J.Ruci. Med., 1970, v.11, M., p. 373.

- - -

- Lebowitz E., Greene N.W., Bradicy-Moore F., Atkins N., Ansart A., Richards P., Belgrave E. ²⁰¹Ti for Nedical Use. J.Nucl. Med., 1973, V.14, *M6*, p.421-472.
- Тултаев А.В., Тарасенко Ю.И., Попов В.И., Короунский В.Н. Сармакокинетические и дозиметрические характористики некоторик каотопов таллия. В об. "Методы получения редикнаютопов таллия и их применение в дереной марицаре", москве, 1989, с.174-166.
- Ruth T.J., Pate B.D., Robertson R., Porter J.K. Radionuclide Production for the Biosciences. Nucl.Med. and Biolog., 1989, v.16, M4, p.325-336.
- Динтриев П.П., Молин Г.А., Констряева Э.П., Санарин И.В. Sataru T1-200, T1-201, T1-202, T1-204 при облучении ртути протонеми и дейтронами. Атомная знертия, 1979, т.41, вып. 6, с.431-433.
- Динтриев П.П. Получение ²⁰¹Т1 для идерной медицины по режнит ²⁰²Hg(p,2n)²⁰¹Т1. В сб. Четоды получения радиоизотопов теллил и их применение в ядерной медицине . Москва, 1969. с. 16-21.
- Димтриев П.П. Возможность получения ¹²³ I и ²⁰¹ T1 для ядерной медициям в реекциях ¹²³Te(p,n)¹²³ I и ²⁰²Hg(p,2n)²⁰¹T1. Атомноя знергия, 1988, т.64, вып.2, с.118-121.
- Birratari C., Bonardi M., Salumone A. Tl-20I Production by ²⁰³Tl(p,3n)²⁰¹Pb and ²⁰²Hg(p,2n) Nuclear Reactions. in: Abstr. 4 Int.Sym.Radiopharm., Chem., 1982, KPA, Julich, p.60-62.
- Galboreanu A., Penesa O., Salagean O. The effect of gamma deexcitation competition on the (α,n) and (α,2π) reactions on gold and antimony. Nucl. Phys., 982, v.A283, M2, p.251-263.
- Bhardway R.D., Prasad R. Excitation Function for Au-197(α, m) Reactions in the 10-40 MeV Energy Range, Nucl.Instr.Neth.Phys. Res., 1996, V.A242, M2, p.286-290.
- Lebowitz E., Greene M.W., Fairchild R., Bradley-Moore P.R., Atkins H.L., Ansari A.N., Richards P., Beigrave E. Thallum-201 for Medical Use. 1. J.Nucl. Med., 1975, v.16, #12, p.151-155.
- Blue J.W., Liu C.D., Smathers J.B. Thallium-201 Production with the Idle Beam from Neutron Therapy, Med. Phys., 1978, v.5, M6, p.532-535.
- 14. Qaim S.K., Weinweich R., Ollig H. Production of ²⁰¹Ti and ²⁰³Ph via Proton Induced Nuclear Reactions on Natural Thallium, 151, J.Appl. Rad. 1801., 1979, v. 30, 36, p.85-25.

- Lagunas-Solar M.G., Jungerman J.A., Peek N.F., Theus R. Thal Itur-201 Yields and Excitation Functions for the Lead Radioac- tivities Produced by Irradiation of Thallium with 15-60 NeV Frotons. Int. J.Appl.Rad. Jsotop., 1978, v.29, MS, p.159-165.
- Куренков Н.В., Мелинин А.Б. Викоды таллия-201 по реакциям с протонима до экергки IOO МаВ.В об. Методы получения редихокзотолов таллия и их применение в ядерной медицине. Москва, 1989, с.22-25.
- Lagunas-Solar M.C., Jungerman J.A., Paulson D.W. Thallum-201 Yields and Excitation Functions for the Lead Radioactivities Produced by Irradiation of Thallum-205 with 34-60 MeV Protoms. Int. J.Appl. Rad. Laot., 1930, v.31, MG, p. 117-121.
- Kopecky J., Gruppelaar H. Systematics of Neutron induced 180meric cross-section Ratios at 14.5 MeV.Report ECN-200, 1987.
- Grudzevich D.T., Ignatyuk A.V., Kornilov N.V. Pashchenko A.B., Zelenstsky A.V., Zolotarev K.I. Evaluation of isomeric excitation functions in neutron induced reactions. Report IAEA CRP Nectine, Vienna, 1991.
- Uhl V., Strohmaier B. STAPRE-code. Preprint IRK-76/01,1976, Vienna.
- Blann N. and Vonach H.K. Global test of modified precompound decay models. Phys.Rev. v.C28, 1983, p.1475-1492.
- Table of Isotopes. Seventh edition. ed. by C.M. Lederer. Wiley Interscience, New York, 1978.
- 23. W. Dílg, W. Schantl, H. Vonach, M. Uhl. Level Density Parameters for the Back-Shifted Fermi Gas Model in the Mass Range 4044/250. Nuclear Physics, v.A:17, 1973, p 269-298.
- 24. Michel R., Peiffer P., Stuck R. Measurment and hybrid model analysis of integral excitation functions for proton induced reactions on variadium, manganese and cobalt up to 200 KeV. Nuclear Physics, 1985, v. A441, p., 617-639.
- Lagunas-Solar M.C., Little P.E., Jungerman J.A. Proton Induced Reactions on Natural Pb Targets. A Potential New Cyclotron Method for ²⁰¹Tl Production. Int.J.Appl.Red.Isot., 1981, v.32, \$1, p.817.
- Lagunas-Solar M.C., Little P.E., Waters S.L., Jungerman J.A. Cyclotron Production of Carrier-Free Thallium-201 via the Phy-207(p.7n) Reaction. J. Labell. Corpt. Radiopharm., 1981, v. 18, p. 1-7, p. 272-274.

- Заящева Н.Г., Ковалеа А.С., Кмотек О., Хылкин В.А., Агбер В.А., Кличняков А.А., Аннав А.Ф. Подучение f1-201 из самища, олученного протонеми с знарглей 65 МаВ. Преприят ОКЯИ, Рб-95-254, Лубие, 1965. Радилияния, 1987, г.29, зип.2, с.247-264.
- Заяциевь Н.Т., Кнотек О., Ким Сен Хан, Микец П., Хажкин В.А., Конов В.А., Потименскова Л.М. Определение выходов газлина-XXX, 2011, 202 пр. солучения мещенев оботещениюто сениив протонеми с экертичей ТОО МаВ. Преприят ОКИИ, Р-6-28-604, Дубие, 1985.
- Bell R.E., Skarsgard H.M. Cross sections of (p,xn) reactions in the isotopes of lead and bismuth. Can.J.Phys., 1956, v.34, M0, p.745-765.
- Zaitseva N.G., Deptula C., Knotek O., Kim Sen Khan et al. Ornes Sections for the 100 MeV Proton-Induced Noclear Reactions and Yields of some Radionuclides Used in Nuclear Medicine. Radiochimics Acts. 1991, v.54, M. p.57-72.

.

Еа, МэВ Рис. 2. Расчетные и экспериментальные функции возбуждения реакции "Аu(а,xn).

- 20 -

.

Рис. 4a. Функции возбуждения реакция ²⁰⁵П(p,xn)^{204,202,200}Рb

Рис. 5. Функции возбуждения реакции ^{вы}Tl(p,pxn).

- 23 -

Ер, МэВ Рис. 8. Расчетные и экспериментальные функции возбуждения реакций (р,хп) и (р,рхп) на свинце

- 26 -

TPUJOREHME.

Экспириментальные и расчетные данные по функциям нозбумдения реакция с образованием изотопа талляй-201 и сопутствующох нуклидов. Эмертия налетандай частицы приведень в мегазлектрон-вольтах, сечения реакций - в маллоборнах.

.

Теолица Іа.

Функции возбуждения реакции ²⁰²Нg(p, xn), рассчитанные по программе AllCE-87.

E, NoB	202 _{T1}	201Tl	200 _{T1}
9.0 10.0 12.0 14.0 16.0 28.0 24.0 28.0 30.0 34.0 36.0 38.0 36.0 38.0 38.0	6.052+01 8.152+01 6.432+01 6.432+01 8.382+01 9.172+01 9.772+01 9.772+01 9.772+01 9.772+01 9.752+01 9.752+01 9.752+01 9.572+0100+000+000+000+000+000+000+000+000+0	5.75£+01 1.79E+02 3.20E+02 5.90E+02 8.27E+02 4.96E+02 8.87E+02 3.00E+02 2.31E+02 1.99E+02 1.55E+02 1.55E+02 1.47E+02 1.47E+02 1.31E+02	2.87E+02 7.98E+02 1.9E+03 7.24E+03 8.90E+02 5.79E+02 3.93E+02 3.93E+02 3.93E+02 2.93E+02 2.44E+02 2.44E+02

таблица Іб.

Эксперимент::льные функции возбуждения реакции ²⁰²Hg(p,xn) (98,6 % обогащана;я) (91.

E, MoB	202T1	201 _{Tl}	200 _{T1}
12.8 13.0	1.30E+02	4.50E+02	5.00E+00
14.B		8.40E+02	6.00E+00
17.9	1.0012+02	1.38E+03	1.008+01
18.5	4.50E+01	1.39E+03	1,005701
20.5 20.7	4.00E-01		7.00E+01
22.2	3.70E 31	9.60E+02	5 507 -00
24.7	3,50E J1	5 205-02	5.508+02
25.0		0.301/bc	1.03E+03
27.1	3.00E 01	3.10E+02	1.29E+03
28.0	3.00/01	2.705+02	1.292+03

 Birratari C., Bonardi K., Salomone A. 11-201 Production by 20371(p. 3n)²⁰³1 and ²⁰²Ba(p.2n) Nuclear Neartions. In: Alatr. 4 Int.Sym.Railoph. n., Chem., 2002, FFA, Julich, p.40105.

- 30 -

Таблице 2а.

Функции возбуждения реекция ¹⁹⁷Ац(d.in), рассчитанные по программе ALICE-87.

E _a , NaB	2D0Tl	199 _{Tl}	198 ₁₁
14.0 16.0 18.0 20.0 22.0 24.0 26.0 32.0 34.0 34.0 38.0 38.0 40.0	3.61E-01 2.52E+00 1.40E+01 1.76E+01 1.57E+01 1.53E+01 1.55E+01 1.57E+01 1.57E+01 1.41E+01 1.41E+01 1.41E+01 1.41E+01 1.41E+01 9.63E+00 B.72E+00	2.76E+00 7.65E+01 2.88E+02 5.39E+02 8.94E+02 6.57E+02 3.73E+02 2.31E+02 2.31E+02 1.36E+02 1.36E+02 1.36E+02	4.55E+01 4.35E+02 8.47E+02 1.092+03 1.19E+03 1.01E+03 6.282+02

Таблица 2б.

Экспериментельные функции возбуждения реакции 197 Ац(а.хл).

Ea, MeB	500 ^{LJ}	19971	198 _{T1}
15.3 19.3 22.6 25.5 28.3 30.9 33.3 35.7 37.9	7.30E-02 7.18E+00 3.16E+01 1.97E+01 1.21E+01 9.27E+00 6.25E+00 6.25E+00 6.24E+00	3.97E+00 1.29E+02 4.26E+02 7.10E+02 5.86E+02 3.14E+02 1.96E+02 1.96E+02 1.42E+02	1.608+00 2.158+01 2.358+02 5.188+02 7.868+02 9.558+02

 Bhardmay H.D., Presed R. Excitation Function for Au-197(d, xn) Reactions in the 10-40 NeV Energy Range. Nucl.Instr.Neth.Phys.Res., 1985, v.A242, M2, p.286-290.

Таблаца За.

Функции возбуждения ровкции ²⁰³Tl(p,kn), рессчитанные по программе ALICE-87.

E, MaB	205 bp	²⁰¹ Pb	200 _{Pb}
14.0 16.0 20.0 24.0 25.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0 36	6.033+02 8.642+02 1.072+73 5.427402 2.562402 1.102+73 5.427402 2.562402 9.1125020 9.1125020 9.11250200	1.99E+02 8.15E+02 1.27E+03 1.37E+03 1.39E+03 1.07E+02 3.44E+02 3.44E+02 3.44E+02 3.44E+02 1.69E+02 1.38E+	4.073500 3.822502 6.765102 1.412503 3.625102 1.412503 3.6428502 2.962602 2.962602 2.962602 2.962602 1.402602 2.962602 1.402602000000000000000000000000000000000

Таблица 36.

Функции возбуждения основного и изомерного состояний свинце в ревкиции 203 Т1 (р. хг.), рессчитенице по программе STAPRE.

E, Mol	202Pb	202mpb	201Pb	200Pb
6381.775 5825332052555555555555555555555555555555	1.955.02 4.951.402 9.551.402 9.551.402 9.551.402 9.551.402 1.551.4	1,26F-01 3,22E+00 4,22E+00 5,22E+00 5,22E+00 5,22E+01 2,22E+01 2,22E+01 2,22E+01 2,22E+01 2,22E+01 1,2	5.865+00 5.855+02 5.1725-02 5.51725-02 1.1025-03 1.2225-03 1.1025-03 1.2225-03 1.1025-02 1.1025-02 1.1025-02 2.1025-02 1	3.11E-01 9.33E-00 5.575k-01 1.778k-02 7.555k-02 7.555k-02 7.555k-02 7.555k-02 7.555k-02 7.555k-02 7.555k-02 7.555k-02 8.555k-02 8.555k-02 1.555k-0

.....

Таблица Зв.

Е, МэВ	201 Pb	200Pb		
		368 keV	579 keV	
18.5 20.3 22.0 23.6 25.7 26.7 29.3 30.5 31.8 33.0 35.2	9.0F+00 1.0E+02 3.1F+02 4.9E+02 6.1E+02 6.5E+02 6.5E+02 7.0E+02 6.1E+02 4.7E+02 3.4E+02 2.6E+02	2.3E+01 7.3E+01 2.1E+02 3.3E+02 5.5E+02 9.4E+02	1.8E+01 6.75+0t 1.8E+02 3.2E+02 4.7E+02 1.0E+03	

Экспериментальные функции вобуждения реакции ²⁰³T1(p, xn) (13).

- 33 -

 Blue J.W., Liu D.C., Smathers J.B. Thallium-201 Production with the Idle Beam from Neutron Therapy. Med. Phys., 1978, v.5, W6, p.532-535.

. _____

Теолице Эг.

- 34 -Зиспериментальные функции возбуждения основного и изомерного состояния изотопов свины в реакции ²⁰³T1 (р. хп.) [15].

E, MaB	2020Pb	201 Pb	Soobp	1
11.3 15.2 15.2 16.6 16.6	1,90E+01 2,00E+01 2,7UE+01 3,30E+01 5,00E+01			
17.0 11.3 17.9 18.7 19.1	3.60E+01 4.50E+01 8.30E+01	5.502+01 5.102+01 7.902+01 4.902+01		
19.3 20.2 20.5 20.7 20.9	6.60E+01 7.90E+01 1.10E+02 9.90E+01	9.60E+01 2.50E+02 1.20E+02		
22.1 22.2 22.2 22.5 23.7	8.90E+01 1.03E+02 6.70E+01	4.10E+02 4.40E+02 6.60E+02		
23.9 23.9 23.9 24.0	6.70E+01	7.40E+02 8.30E+02 1.05E+03		
24.8 24.8 25.3 25.4	5.00E+01	7.70E+02 7.70E+02 1.06E+03		
25.5 25.7 26.8 27.0 27.1	4.005+01	1.205+03 1.22E+03 1.17E+03		
27.4 27.5 27.7 28.2 28.5		1.31E+03 1.31E+03 1.28E+03	6.10E+02	
28.7 28.7 29.0 29.9		1.09E+03 1.16E+03 1.28E+03 1.12E+03	6 500.00	
30.3 30.3 30.8 31.1 31.4		1.13E+03 1.09E+03 9.70E+02 8.60E+02	*6.85)E+02 7.40E+02	

Продолжение теблицы Эг.

E, MsB	202mPb	201 Pb	200pb
31-67 0.2.4.4.7.9.9.0.3.8.1.3.3.8.7.7 0.2.2.8.4.2.2.3.3.3.3.4.4.4.5.5.7.6.2.3.6.7.6.4.4.5.5 0.2.2.3.6.7.6.4.4.5.5.7.8.8.3.5.7.8.8.7.7.6.4.4.5.5		8.402+02 9.402+02 7.602+02 7.902+02 6.702+02 6.402+02 6.402+02 5.902+02 5.102+02 5.102+02 5.102+02	8.202402 8.402+02 9.302+02 9.302+02 9.302+02 1.022+03 1.022+03 1.022+02 1.012+02 9.502+02 1.012+02 8.502+02 8.502+02 8.502+02 8.502+02 8.502+02 1.902+

 Lagunae-Solar N.S., Jungerwan J.A., Peek N.P. and Theus R.M., Thailtum-201 Yields and Excitation Functions for Lead Radioactivities Produced by Irradiation of Natural Thailium with 15-60 Nev Protons. Int.J. Appl.Rad. Isot., 1978, v.29, MS, p.159-165.

Таблаца 4а.

. . . .

Е, МЭВ	204Pb	203 _{Pb}	202Pb	201PD	SochD
9.0 9.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12	4.00E-03 5.00B00 3.318:00 6.770B02 4.535:02 4.535:02 4.535:02 5.035:025:025:025:025:025:025:025:025:025:02	1.99E+02 7.95E+02 1.17E+03 1.25E+03 1.25E+03 4.25E+02 2.269E+02 1.46E+02 7.56E+01 5.26E+01 5.26E+01 5.26E+01 5.26E+01	4.31E+01 4.02E+02 6.94E+02 6.94E+02 6.94E+02 6.94E+02 6.94E+02 6.94E+02 7.74E+02 7.74E+02 7.74E+02 7.74E+02 7.15E+02 7.1	1.405+01 1.625+02 4.012+02 1.225+03 1.225+03 1.225+03 1.225+03 1.225+03 1.225+03 1.225+03 1.225+03 1.225+03 2.225+02 2.2629+02 2.2175+02	7,085-02 8,525401 2,76542 5,375402 9,675402 9,675402 9,735402 9,755400000000000000000000000000000000000

Функция возбуждения реакции ²⁰⁵T1(p, xn), рассчитаные по программе ALICE-97.

Таблица 40.

E, MaB	204Pb	203Pb	Sosbp	201Pb
11.879 11.879	2. df 74 c2 4. d58k-c2 6. d9k-c2 6. d9k-c2 6. d9k-c2 1. d58k-c2 1. d58k-	1.063-22 4.573-202 5.1555-203 9.5654-202 7.3534-202 7.3534-202 7.3534-202 7.3534-202 7.3534-202 7.3534-202 7.3534-202 7.3534-202 8.45554-202 7.66554-201 7.65554-201 7.65554-2	5. CC554C	2.328-00 1.774-68-01 1.74-68-01 1.74-68-01 1.74-68-02 2.336-02 2.336-02 2.336-02 2.336-02 2.336-02 2.336-02 2.336-02 2.356-0

Функции возбуждения основного состояния изотопов свинца в реакции ²⁰⁵T1 (р,хл), рассчитанные по прогремме STAPRE

- 37 -

.

Тебляца 4 в. Функция возбуждения изомеров семеца в реакции ²⁰⁵T1(р.кп). рассчитанные по программа STAPRE.

E, NeB	204mPD	202mPb	
1195589695035512196992333574243459 119557192222683933574243459 222226839323458392424345424449568385685655522 22222683932345839424345495685685685685685685685685685685685685685	1 (4450) 1 (48)(2) 1 (48)(2) 2 (34)(2) 2	2.27E-01 6.3429-01 6.3429-01 6.07E-01 1.102-02 9.7026-07 8.0728-01 6.5728-01 6.5728-01 6.5728-01 2.3428-01 2.3428-01 2.3428-01 2.3428-01 2.3428-01 2.3428-01 2.3428-01 2.3428-01 1.5288-00	-

Таолща 4г.

Е, МэВ	204mPb	203Pb	202mPb	201 Pb	Soo ^{bp}
3-1-4-9-3.9-9-40-04-55-0-1-30-67-4-82-34-4-6-80-1-1-4-9-0-34-4-82-80-55-7-9-35-55-7-9-35-55-7-9-35-55-7-9-35-55-55-7-9-35-55-55-55-55-55-55-55-55-55-55-55-55-	B. 902-01 3.502-01 3.502-01 3.502-01 1.702-02 1.702-02 1.702-02 1.702-02 1.702-02 1.702-02 1.702-02 1.702-02 1.702-02 1.702-02 1.702-02 1.702-02 1.702-02 1.702-02 1.702-02 1.702-02 1.702-02 1.702-01 2.402-01 2.402-01 1.402-01 2.402-01 1.402	5.10E+01 1.5CF/02 9.7CE+01 5.7CB+02 6.00F+02 1.02E+03 1.02E+03 1.02E+03 1.12E+03 1.12E+03 8.00F+02 5.10E+02 5.30E+02 3.50E+02 2.70E+02 2.70E+02 2.50E+02 2.50E+02	1.768+01 2.208+01 5.002+01 5.002+01 5.002+01 1.208+02 1.208+02 1.308+02 1.308+02 2.308+02 2.308+02 2.308+02 2.308+02 2.308+02 2.308+02 2.308+02 3.308+02	1. 995-02 1. 555-02 2. 605-12	

Экспериментальные функции возбуждения основного в изонерного состоящий изотолов свинца в реакция ²⁰⁵T1(p, xn) (15).

- 40 -

Продолжение таблицы 4г.

E, MaB	204mpb	503bp	202mPb	201 Pb	200Pb
37.1 38.2		2.50E+02		4.10E+02	
39.5		2.708-02 2.56E+02		6.00£+02 7.10£+02	
12.1 40.6 41.6		2.20E+02		9.602+02	
44.6		1.94E+02 1.94E+02		9.9014-02	
46.8		2.10E+02 1.77E+02		9.60K+02 9.60K+02	3.50E+02
40.0 15.1		1.85%+02		8.50E+02 9.30E+02	4.50E+02
50.0 50.1		1.68E+02 1.66E+C2		7.605+02	5.30E+02
		1.47E+02		7.1CE+02	0.40£+02 7.60£+02
23.0		1.47E+02 1.31E+02		5.90E+02	8.50E+02
54.7 55.9 57.3		1.398+02		5.502+02 4.20£+02	8,90E+02 9,70E+02
57.4 58.3 59.3		1.26B+02 1.10B+02		4.30E+02 4.10E+02	9.20E+02
59.1 59.3		9.70E+01		3.80E+02	8.40E+02

15. Lugunas-Solar H.C., Jungerman J.A., Peek N.F. and Theus R.H.. Thailum-201 Yields and Excitation Functions for Lead RadioactVIties Produced by Irradiation of Natural Thailium With 15-60 MeV Protons. Int.J. Appl.Rad. faot., 1978, v.29, AG, p.159-165.

~ 47 -

Таблица 4д.

Экспе	Экспериментальные функции реакции ²⁰⁵ Tl(p,xn) (17).					
Е, МаВ	204mPb	203PD	202mPb	Soibp	200 ⁶ 5	
34.0 25.4 35.4			2.108+02	1,40E+01	4.50F+00	
36.0	2.10E+01	2.70E+02	2.60E+02	1,402+62		
38.0 38.5	1.90E+01	2.50E+02	2.501:+02	3.2CE+02 3.102+02	4.90E+C0	
40.0	1.70E+01	2.00E+02	2.0000+02	5.00E+02	4.428+00 5.908+00	
40.6	1.602+01	2.008+02	1.80E+02 1.60E+02	5.50E+02 6.80E+02	4.605+00	
42.3			1.20E+02	7.408+02	1002.00	
43.3	1.60E+01	1,70E+02	1.20E+02	8.10E+02	8.20E+00	
44.1	1.50E+01	1.50E+02	9.702+01 1.00E+02	7.9GE+02	2.605+01	
45.6		1.508+02	7.80E+01 9.90E+01	8.70E+02 8.10E+02	6.60E+0*	
47.5			7.80E+01	8.10E+02	111000-01	
48.2	1.30E+01	1.308+02	7.10E+01	. Louise	1.60E+02	
49.7 50.3		1.10E+02	5.30E+01 5.70E+01	6.30F+02 5.70E+02	1.801.402	
52.6	1.30E+01	1.10E+02	4.50E+01	5.405+02	3.705+02	
55.4	1.30E+01	1.00E+02	3.80E+01	4.108.02	5.101402	
58.6 58.6	1.10E+01	1.102+02	3.00E+01	3.20E+02 3.00E+02	5.40E+02 5.70E+02	

 Lagunas-Solar M.C., Jungerman J.A., Paulson D.W., Thallium-201 Yields and Excitation Functions for the Lead Radioactivities Produced by Irradiation of Thallium-205 with 34-60 MeV Protons. Int. J.Appl.Rad. Eoct., 1980, v.31, MS, p.117-121.

-	42	-
---	----	---

p)	ряп)ті, рессчитанные по программе А.І.СЕ-ег.					
E, Ne	V	²⁰³ T1(p,pm)		205Tl()	p,pxn)	
1	Γ	202 _{T1}	201 TI	202 _{T1}	ZOITI	
14.00 16.00 202.00 24.00 24.00 24.00 24.00 330.00 34.00 36.00 34.00 34.00 36.00 34.00 36.00 34.00 36.000 36.00 36.000 36.000 36.000 36.000 36.00000000		.375-02 .055-01 .057-01 .2254.00 .5574.00 .5774.	7.385-03 2.075-01 1.312-020 1.012+02 3.0752-01 3.0752-01 3.0752-01 3.0752-01 5.312+01 5.312+01 5.312+01 5.312+01 5.312+01 5.352+01 5.4220-01 5.4200-000-000-0000-000-0000-000-00000-000-0000	1.192-02 2.21E-01 1.49E+00 5.03E+00 1.16E+01 2.73E+01 5.10E+01 5.10E+01 6.24E+01 6.9E+01 6.9E+01 6.21E+01 6.01E+01	4.21E-04 2.51F-02 1.80E-01 8.44E-01 3.47E+00 1.50E+01 4.06E+01 6.84E+01 6.84E+01 8.64E:01 8.64E:01 8.97E+01	

Табляца 5а. Функции возбуждения реакций ²⁰³T1(p,pxn)²⁰².201_T) и ²⁰⁵T1(p, n)^{202,201}T1, рессиятание и истоличие и историст

Таблаца 55.

Эксперимента: ные функции возбуждения ревкции $\operatorname{rat}_{T1}(p, pxn)$ 202.201 $_{T1}$ [14].

E, MoB	202T1	201Tl
11.8 12.4 14.3	2.10E+(4.40E+(6.20E+() 1.30E+()	
16.1 17.4 19.3	2.10E+C1 1.80E+01	2,10E+01
21.7 21.7 23.9	2.608+01 3.20E+(3.40E+01
25.9 26.0 27.9	3.50E+0 3.50E+01	3.40E+01
29.9 31.7 31.7	4.60E+(2.90E+01 4.50E+01
35.0 35.2 38.5	4.70E+1	3.00E+01
40.2 40.3 41.7	5.40£+⊭ 6.10E+∩1	7.40E+D1
43.3	6.90E+ II	1.502401

.

14. Qaim S.M., Weinveich R. and Oilig H.. Production of ²⁰¹71 and ²⁰³Pb via Proton Induced Nuclear Reactions on Natural Thallium., Int.J.Appl.Rad.Ic.t., 1979, v.30, M2, p.85-96.

- 43 -

Таблица ба.

Функции возбукдения реакции 203 Tl (d, m), рассчитанные по пропрамие ALICE-67.

ſ	E _{.1} .MaB	202 YD	201Pb	200Pb
	00000000000000000000000000000000000000	2.597+02 8.222+02 1.172+03 1.472+03 1.527+03 1.272+03 1.272+03 1.272+03 1.272+03 1.272+03 1.272+02 3.193+02 2.2024-02 1.342402 1.342402 1.052-02 1.342402 1.052-02 1.342402 1.052-02 1.342402 1.052-02 1.342402 1.052-02 1.342402 1.052-02 1.342402 1.052-02 1.342402 1.052-02 1.342402 1.052-02 1.342402 1.052-02 1.342402 1.342402 1.052-02 1.342402 1.052-02 1.342402 1.052-02 1.342402 1.052-02 1.342402 1.344002 1.344002 1.344002 1.344002 1.344002 1.344002 1.344002 1.344002 1.34400	4.502+01 4.321+02 9.992+02 1.322+03 1.592+03 1.592+03 1.632+03 6.862+02 4.602+02 2.312+02 2.312+02 1.892+02 1.602+02	1.613-01 3.142+01 2.422+02 5.432+02 1.252+03 1.432+03 1.432+03 1.352+03 1.102+03 1.102+03 8.2558+02

- -----

E _d ,MaB	202mPt	201 Pb	200rt	
15.8 19.6 20.6 224.0 25.9 20.1 324.2 30.1 324.2	1.102+02 1.602+02 2.60E+02 3.40E+02 3.50E+02 3.40E+02 2.40E+02 1.70E+02	1.30%+02 4.505-02 8.203+02 1.057+03 1.15F+03 1.15F+03	2.105+02	
35.2 36.1 36.1	6.00E+01	9.005+02 8.208+02 9.70E+02 1.048+03	3.60E+02 6.10E+02 7.00E+02	
37.8 39.4 41.0 42.5 44.2	5.90E+01	5.90E+02	7.30E+02 1.053+53 1.27E+03 1.54E+03 1.60E+03 1.60E+03	
47.6	4.70E+01	3.498+02	1.33E+03 1.37E+03	

.

13. Blue J.W., Liu D.C. Smathers J.B. Thallium-201 Prod stion with the Idle Beam from Neutron Therapy. Med. Phys., 1978, 5, M6, p. 532-535.

- 45 -

Таблица 66.

.

ant ²⁰³T1(d,xm) [13].

Таблица 7а.

бунации возбуждения реакции ^{≥∪S}T1(d, m), рассчитенные по программа AllCE-87.

E _d ,MoB	204Pb	203Pb	202 PD	SO1 BP
10.0 12.0 14.0 16.0 20.0 22.0 20.0 23.0 20.0 23.0 20.0 23.0 20.0 23.0 20.0 23.0 20.0 23.0 20.0 23.0 20.0 23.0 20.0 23.0 20.0 23.0 20.0 23.0 20.0 23.0 20.0 23.0 20.0 23.0 20.0 23.0 20.0 23.0 20.0 23.0 20.0 23.0 20.0 23.0 20.0 20	1.022+02 5.8428 1.222+03 1.222+03 1.222+03 1.222+03 1.222+03 1.222+03 8.312+02 2.1522+02 2.1522+02 1.3242*02 9.192+00 1.022+02 9.192+00 1.022+02 9.192+00 1.222+02 9.192+01 1.222+02 9.192+03 1.222+03 1.	2.522+00 3.1332+02 8.8825+02 1.342+02 1.552+03 1.552+03 1.552+02 3.1525+02 2.662+02 2.662+02 2.662+02 1.702+02 1.395+02 1.395+02	1.54E+00 3.82E+01 4.00E+02 8.55E+02 1.24E+03 1.41E+03 1.43E+03 1.43E+03 1.43E+03 1.43E+03 6.22E+02	1.112-02 4.6825-00 6.4225-01 2.6615-02 5.7425-02 9.7325-02 1.1425-03

Таолица 70.

Экспериментальные функции возбуждения реакции ^{2 CS}TI(d, xn) [13].

E _d ,NaB	204mPb	203Pb	505mbp
19.6 20.7 23.7 26.0 10.3 22.3 26.0 10.3 22.3 34.3 35.3 35.3 35.5 39.5 142.0 344.3 35.5 39.5 142.0 444.3 46.6	2.807+02 4.102402 3.907+02 3.102802 2.007+02 1.207402 8.802401 7.702401 6.002401	4.00E+02 7.80E+02 1.04E+03 1.202+03 1.14E+03 9.30E+02 7.50E+02 5.80E+02 5.80E+02 4.60E+02 3.80E+02 3.30E+02	8.20E+D1 1.60E+02 2.60E+02 3.40E+02 4.30E+02 4.70E+02 4.70E+02 4.70E+02 2.40E+02 2.40E+02

 Blue J.W., Liu D.C. Smathers J.B. Thallium-201 Production with the Idle Beam from Neutron Therapy. Ned. Phys., 1978, v.5, 36, p. 532-535.

бункции возбуждания роакция $2001 \times Pb(p, xn)^{201}$ в $2011 \times Pb(p, xn)^$

Ep,MaB	204Pb(p,4	n),(p,p3n)	206Pb(p,6	n),(p,p6n)
	201B1	201 Pb	²⁰¹ B1	201 Pb
32.0 34.0 36.0 38.0 42.0 42.0 42.0 42.0 42.0 52.0 52.0 52.0 54.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56	2.092+02 4.112+02 6.995+02 1.202+03 5.245+02 3.405+02 3.405+02 3.405+02 3.405+02 1.775+02 1.432+02 1.215+02 1.215+02 4.55+01 8.605+01	1.542-02 6.37E-01 4.772+02 1.56E+01 5.49E+01 8.36E+01 1.01E+02 1.00E+02 9.72E+01 9.28E+01 9.28E+01 9.28E+01 9.72E+01 8.79E+01 8.40E+01	7.928+01 2.715+02 5.128+02 6.932+02 6.988+02 6.988+02 4.525+02 2.5745+02 2.5745+02 2.182+02 2.182+02 1.798+02	2.81E-02 4.82E-01 3.00E+00 1.05E+01 4.53E+01 9.36E+01 9.36E+01 1.12E402 1.26E+02 1.32E+02
Ер,МэВ	207 Pb(p,71	n),(p,pón)	208bp(b'8	1),(p,p7n)
	201 Bi	201 PD	²⁰¹ B1	201Pb
56.0 58.0 62.0 64.0 66.0 70.0 74.0 76.0 78.0 88.0 88.0 88.0 88.0 88.0 90.0	3.898-01 1.528-02 3.258-02 4.960-02 6.038-02 5.248-02 5.248-02 5.248-02 5.248-02 5.248-02 5.248-02 5.248-02 5.248-02 3.432-02 3.0228-02 2.208-02	6.91E-03 5.12E-02 2.14E-02 7.17E-01 6.492+00 1.53E+03 3.01E+01 4.94E+00 7.11E+01 9.21E+01 1.10E+02 1.24E+02	5.192+01 1.342+02 2.4338-02 3.503+02 4.242+02 4.552+02 4.482+12 3.6629-02 3.3331-02 2.3332+02 2.3332+02 2.6729-02 2.2715+02	4.14E-02 5.002-02 3.26E-01 1.41E+00 4.39E+00 1.08E+01 3.73E+01 3.73E+01 5.68E+01 7.65E+01 9.508E+01 1.10E+02 1.21E+02

Таблица 86.

экспериментальная функция возбуждения реакции ²⁰⁶Pb(p,6n)²⁰¹B1 (26)-

E, MoB	(p,6n)
49.0	5.002+61
52.5	2.60£+02
56.3	4.00E+02
63.8	5.50E+02

26. Bell R.E., Skarsgard H.M. Gross sections of (p.xn) reactions in the isotopea of lead and bisxuth. Can.J.Phys., 1956, v.34, M8, p.745-766.

Таблица 9.

Функцик возбуждения реакций ²⁰⁴Pb(p,xn)^{205-x}B1 и ²⁰⁴Pb(p,4n) ²⁰¹Pb, рассчитальна но программе ALICE-87.

E,MaB	²⁰¹ B1	200B1	201 Pb
32.00 34.00 36.00 40.00 47.00 44.00 46.00 46.00 56.00 56.00 56.00 56.00	2.09E+02 4.117+02 8.99E+02 1.20E+03 1.112+03 6.07E+02 5.24E+02 2.35E+02 1.31E+02 1.2	1.722+02 4.885+02 7.935+02 9.215+02 8.455:102 6.702+02 4.332+02 2.662+02	1.04E-02 6.37E-01 4.77E+00 1.56E+01 3.32E+01 7.39E+01 9.66E+01 9.66E+01 1.01E+02 9.72E+01 9.72E+01 9.72E+01 8.79E+01 8.40E+01

Технической редактор И. П. Герасимова

Но цисано к нечати 27.05.1992 г. Бумата писчал № 1 Фермат 60 (90 /s. № 1 п. а. 3 № (п. (а. 2. Тираж 70 жк Испа 2 р. 52 к. Пилекс 3649 ФЭП-2253

> Отпечатано на ротабринте. 249020, 1. Общинск Калужской сбл. ФЭШ

1.00

 $\overline{C}^{(0)}$

2 р. 52 к.

Индекс 3649

Функции возбуждения реакций с образованием радионуклидов ²⁰¹П, ²⁰¹РБ и ²⁰¹Ві. (Экспериментальные и расчетные данные). ФЭИ-2253. (1992. 1-48.