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1 Introduction

During last few years of the Yang-Baxter (YB) equation investigation
the idea of transition from vertex models to face models, proposed in (1],
appears to be rather fruitful. In vertex models the fluctuation variables are
placed on the edges of two dimensional lattice. In case of dual objects (face
models), variables lives on the faces, and Boltzmann weight is attached to
a configuration round site. There js a regular method to obtain the face
models from the vertex ones using properties of 3- and 6-j symbols [2] and
the structure of vertex trigonometric R matrices [3].

The face models for classical infinite series are obtained in [4]. Note, that
elliptic parametrization of Boltzmann weights is possible iff g is a root of unity,
that is connected with the choise of affine Lie algebra level in corresponding
Wess-Zumino-Witten-Novikov model (see references in [4]). These models
are called Restricted Solid On Solid (RSOS) models.

In the present paper we deal with Ej exceptional Lie algebra. Spectral
decomposition for simplest 248{+1) dimensional module is not diagonal, so
it is too difficult t calculate spectral functions. The space of states for cor-
responding face model under the re;triction on level=2 is three dimensional,
so the structure of YB equation itself is rather simple.

Here we present some arguments for our choise of admissibility matrix
and Boltzmann weights for the face model. Uniqueness of W weights allows
us to hope that our solution of YB equation corresponds to the Ej level=2
RSOS model.

2 Deformed Affine Lie Algebrae

Let § be an affine Lie algebra of type X1, G be its siraple part. {a} =11
be a [undamental root system of G and {a} = II - a fundamental root system
of G, and

Asg = (a0, %) (2.3)
be Cartan matrix for § (or G). Half of the sum of positive roots of G we
denote as p: L L

p=zra p=sya (22)
2450 2450
We also adopt the convention so that [long root|? = 2.
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Considering G as the tring of Laurent polynomia.]s in £ with coefficients,
belonging to the §, one can write Cevalley basis of G in the following form:

{éa =ea, fa=fo ha=h, o€lf
& =Efo, fo=&Tes, ho=—hy
where @ is the maximal root of G and £ is the spectral parameter.
Denote the lattice of dominant weights of algebra G as P, = {1}, and the
irreducible module of G with higest weight X as (). In order to distinguish
funda.mental weigiits of G shall us call the fundamental module(i) of lowest
jon as vector module(i), and other as tensor moduli.
As is implied by uotations (2.3) r(}) is finite dimensional module of G:

rA)=#}), reP, (2.4)

(23)

Quantum deformation uq(g’) can be described by deformation of Chevalley
basis: . .
B = nr(h)E‘
[h: FuJ = (R)Fu
[Ea, Fo) —5aﬁ[£T/]51

"L (T) | s o

("’) S (26)

n), [A!m = ]!

u;‘

(2.5)

where a, 8 belong to the fundamental root system of §. Hereafter we adopt
the notation:

=28 1)

Finite dimensional moduli ofu,(g) for general g can be recieved by quan-
tization of classical moduli. As for simple part ¢ and Uy(G), () = ro(})
for any A, and matrix elements of E, and F, are described by well known
formulae for representations of U,(A,) [5]. For bq(é) it appears that for fun-
damental weights {1} #(A) = () if and only if (},8) = 1 (vector and spinor
moduli, except for A, setia).

For example, consider adjoint module. Startmg Erom the h.lgest weight
vector V5 one can ohtain representations of one d I root subsp
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V, and n = rank(G) dimensional zero weight Cartan subspace, created by
natural basis {f,}, o €Il

(o, B)
Ho Ha) =1, (Ha Ha)=- , 2.8
Vo B =1 (HoBo)=-7S0m a#f (8
The next step is to construct a vector
Hy= ‘/—'FGVG
with properties, following from (2.5):
F.Hy =EoHg =0, (a,8)=0
FoHy = 0Veap (06,6) =1 (2.9)
(He, Hg) =1
Relations (2.9) determines Ky uniquelly
¢ 4 oW (2.10)

[21
where H,, is dual the vector to H,, ard zero weight vector W does not belong
to the Cartan subspace. Parameter a is to be determined by the last relation
of (2.9). The existence of vector W in a module of deformed affine Lie algebra
(except for An) means that

7(8) = r4(6) © r4(0) (211}
It is easy to see that for general case of fundamental weight A :  (},8) > 1
To(A) = 1(X) @ 7 (X) (2.12)

where ) belongs to the Weil group orbit of A — §.

3 Trigonometric R matrices and IRF
models

Trigonometric R matrix in algebraic approach appears as intertwining
operator for co-multiplication [3]:

Ruy(2) &g (§) = Dy(C)Rufz) 3.1
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22 = £1f€s; £1,£3 are the spectral p ters from definition (2.3).
We use the following form of co-multiplication:

Afh) =h@1+18k

,(E) —Ea,aq"’/’+q°/’@E (3.2)
Qb)) =F @0+l QF,
acll

Relation {3.1) is impYied to be taken in representations 1 and 2 of LQ(C;)
Some part of (3.2}, cotresponding to the semisimple part, is the Hopf algebra
homomorphism, that allows one to build the theory of representations. ln
case of general moduli 7¢{y) and #,(v) one can write down the solution of
(3.1) in the form
Ru(z)=% T AEERENEER0) 0y
42 N ()

where o(), o'(1) mean irreducible components of #,(x), and
Posi(A) =

9333
= E < o1, my;02, m2|A, My >ayp< A, mylol, my;og, M > (3.4)

Here [A,my >; and |A\,m; >,;, are orthonormal vectors of module r,(/\),
constructed with the help of A (G) and £,,() co-multiplications. Ft
£2i%3(z, A) ate to be found hy treating equation (3.1) for affine generators,

By this method trigonometric R matrices for all simple ((),8) = 1) mod-
uli of all algebrae (except for Eg) have built (3,6]. R matrices for combined
affine moduli (2.12) can be obtained by a fusion procedure. As for Es alge-
bra, that has no vector module, equations for g2i73(z, ) for adjoint®adjoint
represeatation appear to be too complicated to be writtea out.

Solvable models with face interaction (Interactiou Round Face) can be
obtained from trigonometric R matrices using properties of quanturn Clebsh-
Gordon coefficients.

For the sake of simplicity introduce some graphical notations. Denote




< j1,my; Ja, mali, m >=

where auxiliary shaded lines carry index 7; and separate areas of ; and 5;.
my my

(Rp)ims = (36)

'
'my ™y

where weights mzy, m} belong to the 7, (v} and m;, mj — to the fy(v).
Using formulae, described in the Appendix, one can find

e /o”z
- a -
o1 D t.ooa
d =5 47 b (3.7)
72 1 e
o3 T
< \0'1
where
a %
ab
b w3 e)
o € “’"1
= ;(—1)("‘”"“")1322(:, M) (3.8)



A o o) A
*\/xm{”‘ Z’ 4 }\/xm{ . Z’ b}

<

is the IRF Boltzmann weight. Here

a b ¢

sy A
is a quantum 6~j symbol with the same symmetry properties as the classical
one, and the character

lta+2a))
=0 5= 3.9
P L ) @)
Total Boltzmann weight is
. ab _ oo [ & b
(i) gl ew

Carrying the line of three Clebsh-Gordon coefficients through right and
left hand sides of YB equation one obtains the face version of YB equation
for Wi

Lattice variables of such models belong to the infinite lattice of dominant
weights. Tiese models are called Solid On Solid models. Boltzmann weights
exist not for every configuration of states, bnt for such a,b,¢,d that

dEa®o,c€d®o,bEa®ol,cEbB o, (3.11)
It is convenient to describe all admissible pairs of neighbouring states by
matrix of admissibility
o 1, ifb€a®o(p) for some o;
s _ L ;
Na= {0, otherwise. (312)
Taking g as the root of unity {g**' = —1, h-dual Coxeter number, /-an

arbitrary integer number), one obtaines Restricted SOS model, connected
with coset construction for Wess-Zumino-Witten—Novikov model of confor-
mal field theory for algebra G and level {. Admissibility matrix in this case
coincides with the matrix of conformal fusior rules:

Na — Na (3.13)

Note, that the restriction allows ome to generalize tridonometric expressions
for W, to elliptic ones.



4 Fj level=2 RSOS model

Cartan matrix for Ey algebra describes by following Dynkin diagram:
o

a 0y lag @ ag a; ag

where wy = § and w; have level=2, and other weights have higer levels. Since
the simplest module of By is adjoint module, so we deal with the combined
module of #,(G):

Folws) = ro{ws) @ ro(wo), (4.1)

,(wo) is the trivial module.
The admissibility matrix is the sum of unity and fusion rules for level=2
(see Appendix):

+

0
-1 10
Nag=0[1 11 (4.2)
+10 1 1

where '~' stands for wyp, '0’—for wy, "+'- for w;.

Due to complexity of trigonometrical solution of YB equation it is easier
to solve the face version of YB equation for the given N,. YB equation
and unitarity condition appears to have oaly two solutions, corresponding
to a symmetric and antysymmetric face projector decompositions. Relation
(3.8) forbids antysummetric projectors, so there arises the unique solution of
YB equation. Weights W appear to be symmetric with respect to horisonta!
and vertical reflections of states (see (3.8)), and with respect tc simultaneous
changing of "signes”. So there are only eleven independed weights:

o+ _ h(2A -3 +u)
w(i D19 ="

+ 0 __ |A(4X) h(u)h(2) ~ u)
w ( + o+ ’") = “J RN TR(ARGEA)
+ 0\ AZA-uh(3r—u)
w (0 + '“) = T R(ZA)R(EN)




+ h(A 4+ u)h(32 + u)
wi(i o1 “) = TTRONREN)

+ 0\ [50) awre +u)
w(l ol =e 3] K(VAE)
+ 0 _RA+ujh(3h —u)
W(o 0 |“) T TEN)

0 + _ BB+ u)h{ar +u)
w (+ 0 ’“) = T REMR(EN

00 | R(2A) h(u)h(4) 4 u)
wii o ‘“)“‘JW) PG

0 0, \  h(3A—uh(dr+u)  A)h(A+u)
w (o 0 '") =T RENREY T ROYE@ER)

w(° E Iu)_h(u)h(u_,\)

- = TROYR@EY
+ 0\ A+ u)h(2)+u)
w (0 - l") = T TAMAEN

where A = 1/8 and
= N
h() = 03 (u, 7) = 2 3 (~1)"e"4 sin((2n + 1))
az0
or, using Baxter's notations,

A h{u) = H(u)O(u)

=2
=%

(4.3)

(4.4a)

(4.4b)

Using Inversion Transfer Matrix method {8}, we found free energy of model

for physical regime u € [-A,0]:

k(A — w)h(2) + u)
R(VE(EN)

) = Jim 2% = 2(-2 - u) =

(4.5)
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Appendix A
Table of properties of 3- and 6-j symbols [2].
< By My vy M o=

X
Xv

=< i, =M ¥, =My [A, =y >y (1) =

=< = A maliy my g (<1l

=< ¥y my Ml my Sy (<170 (41)
Definition of 6—j symbols

<Jn,gifslizs), Iiadalian), da, J >=

= (1 Urtinkistde) —‘{jl. j2 i }
(-1) Xy Ty (A2)
The used property of 6-j symbol:
B . <
.- B
C
A a = A—e—dia a

C;‘.' ¢ b

where



b4 }

B. .
...... - = (=1)C+Bretbs) [ €
A a (-1) 4 XAXu{C B a

Appendix B
The easiest way to calculate Jevel = ! fusion rule

a@p= Y NAb (B.1)
P

is to use Walton's formula [7)

NY = ;; e(w(y, b)) IVE (B.2)

vivhya=h

Where “bar” denotes a simple part of affine weight, w(y,b) is the element of
affine Weil group of level ! and € means the sign of Weil transformation.
The classical table of products for Fg is

Wi Quwo =wy
wpQuwg = wyDwgQuwy Pwr B 2wy (8.3)
QW =wy @ wl®uwr®uw; ® (W +wsg)

Under restriction on level 2 the first relation does not chaage: in the second
one w; dies out for it has boundary level = 3; and 2w, cancels wg. In the
third relation w; and w; die out and w; + wy cancels w;. So level=2 fusion
rules are

wp @wy =uws

wp@uws =wpBuwy (B.4)

g @uw =uwy
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