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Abstract

A perturbation theory based on the two dimensionM (2D) ballooning transform is

svstematica21y developed for ideal toroidal Alfvdn eigenmodes (TAEs). A formula, sim-

ilar to the Fermi golden rule for decaying systems in quantum mechanics, is derived for

the continuum damping rate of the TAE; the decay (daanping) rate is expressed explic-

itly in terms of the coupling of the TAE to the continuum spectrum. Numerical results

are compaxed with previous calculations. It is found that in some narrow intervals

of the parameter m_" the damping rate varies very rapidly. These regions correspond

precisely to the root missing intervals of the numerical solution by Rosenbluth et al.

[Phys. Fluids B 4, 2189 (1992)].
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I Introduction

In recent years, much effort has been devoted to the study of shear Alfvc_n waves in a

torus, in particular, to the study of toroidicity induced Alfv_n eigenmodes (TAE). 1-16 It

was contended that the TAE's, localized within the toroidicity induced gaps of the shear

Alfv_n continuum, are more likely to be driven by external energy sources, because they are

not damped by the phase mixing effect which greatly stablizes shear Alfv_n waves in the

continuum. A proper understanding of the structure and stability of the TAE modes in a

modern day tokamak is therefore of great importance, because these modes may limit the

confinement time of fusion alpha particles with serious consequences for ignit,ion in a reactor.

Similar considerations would hold for experi_ments with high power neutral beams used for

pla.sma heating or current drive.

Earlier theories, 4-6 considering the electron Landau damping through the curvature drifts

as the only damping mechanism, showed a very low stability threshold for the TAE, while

experiments performed on the TFTR r and DIII-D s suggested a much higher value. In

order to give practical estimates of the stability threshold for the TAE, one must take into

account all possible damping mechanisms present in the plasma. Recent theoretical studies

revealed that other factors such as continuum resonance, 9-12 trapped particle effects 13 and

firlite parallel electric field effects 14'x6(radiation damping) are indeed much more effective

in damping the TAE. In a recent paper, 15 it was also shown that the TAE's, instead of

being true eigenmodes, were quasimodes associated with the analytical continuation of the

dispersion function onto an unphysical sheet of its Riemann surface.

In a kinetic theory of shear Alfv_n waves, both the raAiation as well as continuum damping

are manifestations of the same physical phenomenon: the interaction of the TAE with the

kinetic Alfv_n wave (KAW). The former operates at the main defining (m number) gap of
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the mode while the latter is due to its coupling with the KAW's characterising the same n

but different m numbers. The continuum damping, which can be comparable to the intrinsic

radiation damping, is accessible only in a multiple gap theory.

In this paper, we will be concerned with the TAE continuum damping for moderate

to high mode numbers (n). The physical model is essentially the one used in Refs. 9 and

10. The motivation for doing yet another work on this problem comes from two diverse

considerations. First, it is to provide a simple, physical, and unified way of calculating the

continuum damping, a way which simultaneously reveals the quasimode nature of the TAE

in a more transparent manner. In fact, the problem is analogous to a quantum mechanical

decay or a transition problem: naturally the damping rate is nothing but the transition rate.

The second purpose is to delineate a methodology for extending the ballooning approach

for doing genuine 2D problems on a torus; this general, concise and reasonably rigorous

formulation may be useful in solving other problems as well.

The paper is organized as follows: In Sec. II, we give a general guideline of the theoretical

framework, where the continuum damping rate is derived in terms of the coupling between

the discrete and continuum modes. Detailed calculations are carried out in Secs. III and

IV. In Sec. III, the ballooning equation is solved approximately for the disctete as well

as continuum modes near the first gap. The explicit eigenfunctions and coupling matrix

elements are given in Sec. IV. In Sec. V, we give the numerical results, and compare them

with previous calculations, and Sec. VI is devoted to brief summary and conclusions.
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II Perturbation Theory for Continuum Damping of
the TAE

We consider a circular, axisymmetric, large aspect ratio tokamak with a low beta plasma.

The appropriate equation for the Alfv_n waves is9'1°'

d fi2f(z) (z-l)_] de, 1 [ f22f(z) (x-/)2)¢tdx 4 dx s2 4

_gt2( d2¢t+x d2¢t-t) =0 (1)+ --(. dx 2 + dx-----T- .

where Ct is the poloidal Fourier component obtained from the physical electrostatic potential

(with toroidal mode number n), _(x,O,() =_ ein¢-im°_;'_te-it°¢t(x), 0 (() is the poloidal

(toroidal) angle, x = n(q - qo) is the radial variable, (q is the safety factor, qo = m/n

is the safety factor corresponding to the central poloidal Fourier component), 12 = "_/-_a0

is the mode frequency normalized to the Alfv_n frequency Wao = [va/(2Rq)]q=qo, f(x) =

,,2 I 2
"A0/"a represents the radial variation of the Alfv_n speed, _ = (dlnq/dlnr)q__.q, measures

the magnetic shear, e = 5r/2R is the toroidal coupling constant, and R(r) is the major

(minor) radius.

For toroidal Alfv_n waves near the first gap, it is appropriate to consider fi2f(z) =

1 + _g(x) with g(x) -_ g + 2x,m'd+ ..., where _ = c/[Oln(q_/v_)/Olnq2]q=qo, and g is the

order unity eigenvalue measuring the frequency shift from the center of gap. Making use of

the 2D ballooning transform _r (a detailed discussion of the transform is given in Appendix

A),

= / d)_dkexp[ik(z - l) - i,kOQ(k,.k), (2)Ct(z)

and neglecting higher order effects, we obtain the mgde equation in k-.k space

[ 0 _ 1 + _g e ie O-4 4 t- {cos(k + ,_)- r(k) 2m_a,_ qo(k,)_)= 0 (3)

where _ = _v/i + s2k 2, and F(k) =- s_/(l + s2k2) 2.

4
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In Eq. (1), the ballooning symmetry, i.e., the invariance under the translation z --,

z + 1, l _ l + 1, is broken by the radial dependence of f(z). The appearance of the term

proportional to 0/0,k in Eq. (3) is a manifestation of the broken symmetry. Notice that we

have neglected higher order symmetry breaking effects [i.e. terms associated with (x/m) 2

or (I/rn) _ ". (I/m_)O2/O,k_]. This is valid only if (1/m)O/O_ is a posteriori shown to be

proportional to a small parameter intrinsic to the problem. In the case of TAE, fortunately,

it turns out to be the case: the small parameter being e. Let us define the ballooning operator

0_ e cos(k + _)- F(k), (4)t:[_]-- Ok2 +_

so that Eq. (3) can be rewritten as

1 + eg ie 0£[_]q 4 2,-_OA _(k,A)=0, (5)

and will be solved perturbatively. The Sturm-Liouville nature of £ guarentees that its

eigenfunctions form a complete set in k space. The eigenfunctions are defined by

t + @(_)X,(k, A)£:[_]X,(k,,k) = - 4 (6)

with corresponding eigenvalues _p(A). In Eq. (6) the _ dependence of various quantities is

merely parametric. We can now expand _(k, )_) in terms of the complete set Xp:

_(k, _) = _ C,(_)X,(k, _) , (7)
P

where the coefficients Cp(A) are projections of T(k,_) onto the base functions Xp(k,_).

Substituting Eq. (7) into Eq. (5), and carrying out the standard annihilation procedure

(assuming the Xp's are appropriately normalized), we get

H_, -_ g C,(_) + _., V,¢C,,()_) = 0 , (8)
pi#p

where

•d m_ _ ( 0x,\H, -_g2 + -ff_'( ) +i x, I-ST/ ' (9)

5



( az,,) fdkx*,(k,A) _ , (tO)_,, - i x, I-8-2- = i ox_,(k,_)

and Xp*is the complex conjugate of Xp.

Before proceeding further, let us comment on the physical significance of the expansion

procedure. It is well known that high-n (n is the toroidal number) modes in the toroidal

plasma have a two length-scale structure: a fast scale for the mode centered at each rational

surface, and a slow scale for the coupling between these modes through toroidicity. In the

case of a weak violation of the ballooning symmetry, the first term in Eq. (8) is dominant.

It is easy to confirm that the expansion coefficients Cp(X) in Eq. (7) describe the large scale

envelop of the mode, while the fine structure of the mode is contained in the functions Xp's.

The term with summation over p' is the coupling between modes of different frequencies.

The conventional ballooning theory, t9-22 while useful in various applications, can not accom-

modate these coupling terms. However, for the continuum damping of the TAE, it is exactly

these terms that are relevant. For large rag, it is appropriate to treat the coupling terms

as a perturbation. The lowest order equations are then decoupled, and the eigenvalues are

determined by requiring that Cp()_) be periodic in ,_:

/ 2N3p,N "- _ mE '

where N is an integer,

_"(_)= _'(_)+--m_x, I-N- , (t=)

with corresponding expansion coefficients (determining the eigenfunctions) given by

1),.s't _exp 2 dX' [gr,.N -- g(X') . (13)

Higher order corrections follow from the standard perturbation theory used in quantum

mechanics We readily find that the first order correction to the eigenvalue _tl) = 0. The. _pdv



second order correction, given by

j.,._(0)* [2"-"p',N,(2_)
Sp,N -- \_] _ _ ..(o) .,(o) ' (14)N' pl_p _Jp,N -- :tpl,N'

will be used in Sec. IV to calculate the continuum damping rate for the TAE.

III The Spectra of Ballooning Equation

In Sec. [I, we sketched the general methodology to be followed in this paper. In this section

we explicitly solve the ballooning equation [Eq. (6)] for its eigenfunctions and eigenvalues.

Because the coup!ing between the TAE and the continuum modes is strongest near the gap

edges, it will suffice to calculate solutions pertinent to the range [ _ [,-_ 1. Noticing that

the term F is localised in a region [ k [,-_ 1/s, we divide the k space into three regions.

(I): k < -1/s, (II): ] k I_< 1/s, (III): k > l/s. In regions (I) and (III) the F term can be

ignored, while in region (II), the toroidal coupling term can be ignored. The spectrum of

Eq. (6) becomes clear from a consideration of solutions in the regions (I) and (III). In these

regions, it reduces to a Matthew equation whose spectrum is known to be divided into bands

of 'stable' and 'unstable' solutions, corresponding respectively to the continuum and gaps in

the shear Alfv_n spectra. In these outer regions, for Alfv_n waves near the first gap, it is

appropriate to write ,_(k,A) aS 1'16'23

X(k,A) = X+e-'k12 + X_d k12 (15)

where the exponential parts carry the fast variation (of order unity), and X+ aJad X_ are

relatively slow varying. Substitute Eq. (15) into Eq. (6) and averaging out the fast variations,

we obtain the set

. e ~X
- iX+ + -_g + 4- 4e-i'_X_ =0 (16)

e_ e-e'_X+ =0. (17)X" + iX'_ + igX_ + 4

7



It is apparent that X_: ,-_ O(e), and the second order derivatives in Eqs. (16) and (17) can

be neglected. With this simplification, and elimination of __ from Eqs. (16) and (17) we

obtain

(4)
clearly revealing that the gap edges are defined by _ = 4-1. For I g I< 1, the solution is

'unstable,' while for Ig i> 1 the solution is 'stable.'

The behavior of ;_(k, A) is considerably more complex in region (II). In general, we can

not solve it analytically. But for moderate to large shear, the region (II) is narrow, and

for practical purposes we don't need the explicit form of X(k,A) in this region. The eigen-

modes can be approximately obtained by solving Eqs. (16) and (17) in the outer regions and

matching the solutions through region (II)..( A similar method was used in Ref. 23). And

the inner product (used to compute quantities of interest) can be conveniently calculated

from the outer regions alone,

= dk+ dk (t9)
j m_ /$

because the contribution from region (II) is of order e of the contributions from the outer

regions.

A. Matching rules

[n region (II), the F term is dominant, and the toroidal coupling term in Eq. (6) can be

neglected. Because the characteristic large scale lengths of X+ and X_, their v_riations can

not be seen by F (i.e. in the region where F is finite the variation of X± is negligible). Thus

[Eq. (15)] appears as a plane wave, and the effects of the F term can be approximately

calculated by studying the scattering of a plane wave with wavenumber k = 1/2 in the

presence of a potential F(k). Since F is symmetric, its eigenfunctions must have either

even or odd parity. In regions (I) and (III), these functions, aside from an arbitrary overall

8
I
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numerical factor, can be written in the following form:

sin(k/2 - 6t); in region (I)Xo = sin(k/2 + 61); in region (III)

cos(k/2- 62); in region (I)
= (20)

cos(k/2 + 62); in region (III)

where Xo (X_) has odd (even) parity. These eigenfunctions, and as a result the numerical

values of 61 and 6_, are easily obtained with a shooting code. Table I gives the values of 61

and 62 for various values of the shear parameter .s.

Near the edges of region (II), the slowly varying functions X+ can be replaced by con-

stants. Tile general form of the eigenfunction, with F(k) in (II) inducing a phase shift, can

be written as:

e ik/2 + Cteik/2 in region (I)X(k,A) = r(C,e -'_/2 + e'k/2) in region (III)

up to an overall arbitrary numerical factor. The matching rules relate 6', and r to Ct. By

writing g as the superposition of _¢,, and Xo, we get the following expressions for C, and r:

, (1 - DtD2)- iD2(1 + Ct)+ iO,(G- 1)
c,= (2t)

Ct(1 - DID2) + iD2(1 + Cl) + iDa(Ct - 1)

r = (1 - D1D2 + iDt + iD2)Ct + i(D2 - Dr) (22)
1 + DiD2

where DI = tan 61, D_ = tan 62.

B. Discrete mode

The discrete mode(s)(] _ ]< 1), charaterized by evanescent solutions in both regions (I) and

(III), can be represented as

-re -i_ [._-ivq _] e -°'k in region (III)
x+ = (2a)

e°,_' in region (I)



where % = e/4x/l--_. Substituting this back into Eq, (16), we obtain:

re -_,_ in region (Ill)
X_ = , (24)

and consequently

¢-I)_

c, =_i_,=-,_ _, (26)

Substituting them into the matching rule [Eq. (21)], we get the following equstion for _ as

a function of ,\'

1-D1D2_+ D_+D2..- D2 - D1 D2 - D, g = cos A . (27)

Without loss of generality, we choose the k space mode number p = 0 for the discrete mode,

and use go(A) to denote the solution to Eq. (27). Because I g0(A) [< 1, we c_a write g0(A)

a.s:

g0(A)= cos[e(,x)] (28)

which serves as the definition of e as a function of A. Apparently, we caa choose {96 [0, a'].

Using the expression for Ct [Eq. (25)] in E_I. (22), we could write

r( A) = - rae ''_ (29)

where

ra(A)= (I- DxD2) cose + (D, + D2)sin e + (n, - D_)sinA (30)
1 + DID2

with sin8 = ¢1'-go _. Thus the normalized eigenfunction for the discrete mode can be

written as:

Xo(_:,,_)= (x+_-'"/_+x__,_/_)No, (31)

10
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where X+ and X_ are given in Eqs. (23) and (24) and

No= e QI"" "'_o_/ (32)

is the normalization factor.

i

C. Continuum modes

The continuum modes (I _ ]> 1), are oscillatory for large I k I, and can be described by

_+ = e'°k + Be -i°_ in regions (I) and (III) , (33)

where c_ -- (e/4)v/_ 2 - 1, and B is an arbitrary constant. Thus the most general form of the

eigenfunction in the outer regions can be written as:

in region (I), and

_,_ =_{0-'°_+_'°')_""+[-I_+_1_-'o_+_I_-_1,'o_]}_-'_-"'_I_l
in region (III), where _3= v/_2 - 1 , a __ (e/4)/3, and r, B and B are constants independent

of k.

The matching rules again determine/3 and r in terms of B. In general, the continuum

eigenfunctions are doubly degenerate, because we have one free parameter B. For defi-

niteness, we choose/3 = B, and use the matching rules to solve B and r as functions of

A,

c_ = [- (_ + _) + B (_ - _)]e'_
l+B

[- (_ + _) + B(_ - _)1_-'_
C,- 1 + B ' (36)

11



Substituting these into Eqs. (21) and (22), we find:

B+ = 2/3 - 1, (37)3-_-Y_

where

-i(D2 - Dr) cos A • V/(1 + D1D2) 2 + (D2 - Dr)2 sin 2 Ay_:
(1 - DxD2) + i(Dt + D2) (38)

and

± (1 - DtD2 + iD_ + iD2)Ye _'_+ i(D2 - Da)
7" "--

1 + DxD:

= r_ e''x , (39)

with

r_ = (D2 - Dr)sin A d: V/(II + DxD2) 2 + (D_ - D,)2 sin2A
1 + D_ D_

The plus and minus signs give the two linearly independent solutions for the same value

of ._. Noticing that r+r 7 = -1, it is straight-forward to verify that these two functions are

orthogonal to each other (with Eq. (19) as the definition for the inner product).

Noticing that Ya_-is a unit vector in the complex plane, we can rewrite B ± as:

B ± = (3 + g)e i°i , (40)

which in turn defines the functions O±. The continuum eigenfunctions can now be written

in a more convenient way: in terms of the functions e±. The normMized eigenfunctions for

the continuum modes are:

(1/No) {[e '''k + (3 + _)e i°+-'°k} e-'k/2

+ [-(3 + ._)e '°k - ei°+-'°k] e;x+'k/' } in region (I)
x(2)(k,_)= (4119

,ok 00++,ak sk/2+t,_l, r •
Y) *ok -- zO+ +lak tk/2 region (III)+ ,- ,. . ]_. }

12



+[-(n+ )eo'- region(I)
X(--)(k,X) = (421

9

,_)e;°-+i<'l<]e,k/_+,,_
(i/No){[<-'°'+ (J+,e,e_+,o,]e-'kl'}inregion([I[)+ [-(/3+_)e-_'k-

,,'here the normalization constant Nc = q4_r(1 + r_)_(/3 + _). These eigenfunctions are 6-

function normalized with respect to the variable a = e/4v/_ 2 -'l. For the calculation of the

coupling matrix elements, we shall use a more convenient set of base functions 2(-e)"9

i = ie-ioi/2 (43)9

It's easy to see that X(-±)equals a real normalized function times a phase factor ei'V2 This

property greatly simplifies the calculations.

IV Calculations in the Second Dimension

In order to use the perturbation theory expressions in Sec. II, we need to calculate the

coupling matrix elements. For the self-coupling of the discrete mode, this is straight forward.

The discrete eigenfunction given by Eq. (31) can be put in the form

Xo(k, A) = -ie-;(o-_)/2Xo(k, A) , (44)

where _o is a real and normalized function. Thus the self-coupling for the discrete mode is

,(0o)- -7 g2 - 1 , (46)

which, when substituted into Eqs. (ll) and (t3), yields

(o) 2 (N+_)+ _ (47)O.N= m_"

13



and

,o,C_,N(,'_ ) -- + iN_ + d)t' (cos e( )--

eig,_ (o)= C_,o(_) , (48)

with

'/cos-SYg= 7-; cosOd,_. (49)

The interesting point here is that although we did the Fourier expansion assuming the TAE

mode is centered about a rational surface, the quantization rule [Eq. (47)] carries the mode

to a place in between two rational surfaces -- the place where the TAE should be located.

This is seen most clearly in the small shear limit, where the function O(A) approaches a

constant, the mode resides half way in bet_4een the two mode rational surfaces, giving the

usual single gap structure. The corresponding real space mode structure for the TAE is:

_(o)(_,0)=Je_ (°)(_)Z_-"('._)/ek_'_('-')Xo(k,_)o.N _o,_ _/t_+s2k2 (50)!

__,No/_,p(o) _,,(,+_,/ Xo(k,_) (51)- ,.,,,,.,o,N(_) _ e dke'k(r-l-N)s/1 + s_k 2I

- ,_-'N°_(°)(z - N, O) (52)-- ,. "1"0,0

Thus the significance of the quantum number N is to shift the N = 0 mode by N

rational surfaces, which is equivalent to do the mode expansion at another rational surface

with m' = m + N and take the N = 0 mode there. Of course this is a consequence of the

symmetry properties peculiar to our present model, i.e. a consequence of the linear profile

assumption for the local Alfv_n speed. One point of caution in practice is that N can not be

too large lest the mode is carried out of the region of validity of the origional assumptions.

The calculations for the continuum modes in the second dimension is a little bit more

v.(±)
complicated. Because these modes are degenerate, any ortho-normal set of functions, ,_ as

14



well as any linear combination of them can be used as the base functions. This causes some

uncertainty in the cross coupling terms. For definiteness, we need to include the coupling
f

term between ,_ and _. in the lowest order continuum equations. Thus we have

0A +''ff-(g- _) C(+)(A) = - . _ [ 0A C(_)(A) (53)

+ x; J---0-2- +i--ff-(g-_)Q_)(a)=- _ [ 0A C(+I(A) (54)

as the zeroth order equation for the continuum modes.

To get around the complexity of solving Eqs. (53) and (54) simultaneously, we look for a

=(:t:)unitary transfomations from ;(?- to a new set ¢ ) such that the cross coupling term in the

new representation is zero, i.e.

/ /_,}+_1_ c-_ _'_ = o (55)oA = _i I OA "

Without Lossof generality, we can write

~ =(+) ei(2 ~(-)g,(+) = e i(1 sin 7 x i + cos 7 Xi9

)
ei(a

--(-)
_(.+1+ e,a sin_,X_ (56).g(- = COS7 g

where 7 E [0, 7r/2], (_ - _2) - (_3 - f4) = a', 7 and f,'s are arbitrary periodic functions of A.

Substituting Eq. (56) into Eq. (55) yields

(<dz -(+) ?" -(-)
T2- X_ l oa - X; I o_

\ _+ --

_(.,-)
where z = e-'(_'-_2) ranT. Substituting _ given by Eq. (43) into the above equation, we

find that the first term is zero, the other two terms are real. Therefore, z = +i are the

15



exact solutions of Eq. (57). Without loss of generality, we choose z = i. The new set of base

functions are

V,_ _ _: (58)

In the new basis, it is straightforward to calculate the self-coupling matrix elements:

l<o,+) () I _'i i _(_) ox_ (59)OA = 2 +i xi I O_

(0,-,) ( )_,__, _ i i-(-) 0X_+}_A =_- x; I o_ ' (6o)

where

o_ = s(A)6(a- _'), (61)

V(I+DID2)2+( D _Dx)2si_i2,)g COS 2 .....

S(A) = r, (1 + r_)_ , (62)

and a - e/4ff_ 2 - 1. Substituting these into Eqs. (ll) and (13) for the zeroth order eigen-

value and eigenfunct ion, we get

2N + 1 --=)(2S'A----"g(O):t="LN = _ mg _ me
(63)

= _exp iNA _:i dA' (_(_)- S(,V) (64)

where

s(_) = _ dAS(a). (6s)

Equation (I4) can now be used to calculate the continuum damping. We need only

consider the N = 0 case. Because the spectrum is a continuum except; for the discrete mode,

the summation over p' should be replaced with an integral

o,o= _ d_ .,(o)_(o) , (66)
_o,o --9_jjv

16
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where [ _ 1> 1 and the ballooning eigenfunctions are &function normalized with respect to ft.

For the eigenfunctions given by Eq. (43), where they are &function normalized with respect

to the variable a = (e/4) _T, Eq. (66) should be changed to

d_,,*(o) }2

o,0= _c0) . (67)so,0 - Y_,N

Notice that the integrand in Eq. (67) has a first order singularity at the resonance points

g(0) .(o) The contour of the integral should be deformed as in the Landau-damping
g',N -- _0,0"

problem. If positive real frequency is adpoted, the correct contour is determined by giving

the variable ..(o)vo,o a small positive imaginary part. Thus

- , (68)[mtu°'°J = i_'_ 24 --I

_(o) ,,(o)
where gN is the root of Yj,N = _o,o.

The explicit forms of the coupling matrix elements between the discrete and continuum

modes are given in the Appendix B.

V Numerical Results

The continuum damping rates for various values of the shear parameter (s) are obtained by

numerically evaluating the right hand side of Eq. (68). Results for s - 0.5, 1.0, 1.5,2.0 are

shown in Fig. 1. In all cases, the damping rate changes rapidly with the variation of the

parameter m_, which specifies the slope of linear profile for the local Alfv4n speed. This is

because the coupling between the TAG and the continuum modes is concentrated near the

gap edges, i.e. the maximum absolute value of Vob(A ) appears at some place I g I" 1 + ¢.

When m_" is changed, it moves the TAE in and out of this region of maximum coupling,

causing the dampig rate to go higher and lower. On the other hand, when s becomes larger,

this area of concentration becomes narrower, thus the damping rate oscillates more violently

with m_'. It is readily observable that the continuum damping rate grows with larger shear.
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This increase comes from two factors: first, the radial extent of the TAE increases with

shear, causing more resonance points to come into the effective range of the TAE; second,

the maximum value of the couphng matrix element Vo5(A) also increases with shear.

Figure 2 compares our present calculations with that of Ref. 11 for the case s = 0.8. The

results are in good agreement, except in the latter there are regions in mE where _olutions

could not be found. It is clear that our approach yields the damping as a continuous function

of rnf: there are no missing intervals where the roots could not be found. The regions [in

me"] of rapid variation and turning around of the damping rate coincide with the intervals

which could not be handled by the methods of Ref. 11.

VI Summary and Conclusions

The continuum damping effects on the toroidal Alfv_n eigenmodes are calculated by using

a ballooning approach. The origional 2D eigenvalue problem is converted into an eigenvalue

problem in the usual ballooning space and a set of first order differential equations for

the global structure and eigenvalue in a second dimension. The ballooning space (k-space)

eigenfunctions are solved semi-analytically, while solutions in the second dimension (A-space)

are obtained by the standard perturbation theory. The continuum damping rate is written

as a summation of contributions from the resonance points, each term resembling the Fermi

golden rule formula. This clearly shows the quasi-mode nature of the continuum damped

TAE, and indicates that the continuum damping can be properly interpreted as a transition

process, i.e. the decaying of the TAE mode into the continuum modes. Numerical results

are obtained for various shear parameters, which is in agreement with earlier calculations.

The analysis also fills in the gaps left by earlier calculations', there are no intervals in the

parameter m_"where the roots could not be found. The damping rate is oscillatory and not

a monotonic decreasing function of m_'. Although there is an overall decrease, the oscillatory

behavior is dominant, especially for strong shear and moderate mode numbers.
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Appendix A: Comments on the Ballooning Transform

At the heart of our presen_ approach is the 2D ballooning transform Eq. (2) and the expansion

Eq. (7). The validity of the approach is based on the fact that the system approximately

obeys the so called ballooning invariance. Although the form used in the text is simpler and

more straight forward in carrying out the calculations, a better understanging can be gained

by an investigation in the real space. The equation under consideration is

de, I [# (x ()_]d"_ dx - '- Ct

eft2( d2¢t+' d2¢1-1) = 0 (A1)+ --4- -dx-'T- + dx-'-T-

which is the same as Eq. (1), except that f(x) is replaced with a constant. Eq. (A1) is

invariant under the transformation x ---, x + 1; I --, l + 1. Thus we may assume

el(x) = e-a_F(z - l) (A2)

with an arbitrary phase factor _ E [0,2_']. Substituting Eq. (A2) int,) Eq. (A1) we get

7/(k, A)X(k, A) = -g%(k,,_) (A3)

where

d2 s2

7"/(k,,_) -- dk 2 (1 + s2k2) 2 + _ cos(k + ,_) , (A4)

X(k,A) -- vfl + s2k2 f dze-'*=F(x) . (AS)

Eq. (A3) is readily solved. It's eigenfunctions Xp(k, )_)are defined by

'HXp(k, A) - -_p(A)Xp(k, A), (A6)

with corresponding eigenvalues pp(A). These eigenfunctions form a complete set in the k

space. Back substitution into Eqs. (A5) and (A2) yields the eigenvalues and eigenfunctions
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for the 2D system Eq. (A1):

• .,_(x,0)=_] e-"c°+_)/
)_p(k, A)

t dkeik(::-O v/1 + fi_2 ' (A7)

where A has been written as a subscript to indicate the fact that A is now the second good

'quantum' number of the system Eq. (A1). We can show that all the eigenfunctions of

Eq. (A1) are given by Eq. (A7), by showing that _,,._(x,8), with p labeling the complete set

)_p(k, A) and A running from 0 to 27r, is complete in the 2D space (x, 8). Thus, any function

_(x,O) can be written as a superposition of _p,_:

= _ _ d,\C,(A)_,A(x, e)(P(x, 0)
P

,l

--E,_-,,of d_] d_"(_-')-''_z, c,(,/__+)_'(_k_k._). (As)
Comparing to Eq. (2), we find that Eq. (A8) is equivalent to Eq. (7). Thus the procedures

outlined in section (I[) is nothing more than the expansion in c new set of base functions

qJp..x,which, in the case of the approximate translational invariance, is more convenient than

the usual Fourier basis.
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Appendix B" Coupling Matrix Elements

From the orthogonality properties, we have

4

Differentiating Eq. (B l) with respect to A, we get

_oI_aA-= _-go(_)

Straight forward algebra yields

,_ ,(±)

2iBo

+(r,- ru_,, Re ei(°- 2i_o _ . (B3)
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I

0,_-o,2tst .o._too
0,8 -0,19381'1.1570
1,o-o:176t.1,3of3
1.5:0:14oo.1.,i_15
2,o-o.i_52,1:5o42

Table I. Phase shifts (61 and (52)for various shear parameters a.
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Figure Captions

1. Damping. rate as a function.of m_"for various shear parameters s. (a)" s = 0.5, (b):

s = l.O, (c): s = 1.5, (d): s = 2.0.

2. Comparison of the present calculation (thin line) with the results of Ref. ll (thick

line).
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