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ABSTRACT 

The propagation characteristics of ion-acoustic negative solitons, 

in a multi-component plasma with negative ions, are investigated 

considering a kinetic model which taker into account electron reflection 

and positive ion trapping in the negative potential well of the soliton. 

The Poisson equation is solved consistently using the Cagdeev potential 

formalism. It is verified that the kinetic effects associated with 

trapping of positive ions and reflection of electrons modify the results 

predicted by the simple Korteweg-de Vries fluid model in such a way that 

the Mach number is reduced as the ion temperature and the population of 

reflected electrons increase. Comparison with experimental observations 

shows that the measured values of the Mach number can be reproduced by 

this kinetic model under proper selection of the ion temperature and 

the shape of the reflected electron distribution function, with a 

dependence on the negative ion concentration. 



1. INTRODUCTION 

The ion-acoustic negative solitons, also referred to in the 

literature as rarefactive solitons, correspond to a propagating 

localized depression in the plasma potential resulting from a 

compression of negative ions in a multi-componert plasma, whereas the 

ion-acoustic positive solitons are propagating positive potential pulses 

due to a compression of positive ions. The ion-acoustic positive 

solitons have been extensively investigated, using a fluid model, 

leading to the Korteweg-de Vries equation (e.g. Washiml and Taniuti, 

1966; Ikezi et al., 1970; Sakanaka, 1972; Tran, 1979) and using a 

kinetic model, which included trapping of electrons in the soliton 

potential (e.g. Schamel, 1972; Schamel, 1973; Schanel, 1979). The ion-

acoustic negative solitons have also been theoretical investigated using 

fluid models (e.g. Das and Tagare, 1975; Tagare, 1975). 

The first experimental observations of ion-acoustic negative solitons 

were made in a double plasma machine (Ludwig et al., 1984) using a gas 

mixture of Ar and SFg. Further experimental investigations were also 

made by Nakamura and Tsukabayashi (1984), and Nakamura et al. (1985a), 

using Ar and SFg. The experimental results for the Mach number obtained 

by Nakamura at al. (1985a), agreed teasonably well with theoretical 

predictions of a fluid model, whereas those of Ludwig et al. (1984), 

using a smaller double-plasma device, indicated Mach numbers much larger 

than those predicted by « fluid model. These high Mach number values 

could not be explained on the basis of simple fluid models with 

isothermal electrons using the Korteweg-de Vries equation (Ludwig etal., 

1984), or using the Sagdeev potential formalism (Nakamura et al., 1985b). 
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Also, inclusion of the finite ion teaperature effect (pressure gradient 

terá) in the fluid model did not alter significantly the Mach nuaber 

values (Nakaaura et al., 1985a). It seeas, therefore, that kinetic 

effects, such as trapping of positive ions and reflection of electrons 

by the soliton negative potential well, aay be iaportant in the 

formulation of a theoretical aodel for ion-acoustic negative solitons. 

In this paper the role played by kinetic effects on the propagation 

characteristics of ion-acoustic negative solitons is Investigated. The 

kinetic aodel described here includes electron reflection and positive 

ion trapping in the negative potential well of the soliton, and uses 

the Sagdeev potential formallsa (Sagdeev, 1966). This method can account 

for large amplitude solitons, whose experimental observation have 

already been reported (Nakamura et al., 1985b), whereas the Korteweg-de 

Vries equation method applies only to small amplitude solitons. 

2. THEORETICAL MODEL 

A multi-component plasma composed of hot electrons (maqs m , charge 

-e), hot positive ions (mass m,, charge e) and cold negative Ions (mass 

m_, charge -a) is considered. Position coordinates in the reference 

framas of th» laboratory (x) and of the soliton (x') are related by 

x' - x - ut, where u denotes the soliton speed in the laboratory frame. 

The soliton negative potential t(x') satisfies the one-dimensional 

Poisson equation 

d2»(x') 1 / fx /M 

-dixV"" r0
 p(x) ' (,) 
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«here e„ is the free space electric permittivity and the total electric 

charge density p(x') includes the contributions fro* electrons, p (x'), 

positive ions, P+(x') and negative ions, p(x'), 

P(x') - P#(x') + p+(x') + p(x') . (2) 

The electric charge densities for the electrons and for the positive 

ions can be expressed in tens of their distribution functions f (x* ,v) 

and f.(x',v), respectively, 

4» 

P aU') - «», { fa(x',v)d
3v , 

4» 

(3) 

with a » e, +, where f (x',v) satisfies the time-independent Vlasov 
0 

equation, 

v 0 . (4) 
3x' m dx' 3v 

a 

For the cold negative ions, p_(x') - -en_(x*), where the negative ion 

number density n_(x') is given by 

n° 
n (x') - - -7- , (5) 

obtained considering conservation of particle flux and of energy, 

n_(x')u_(x') - n V , (6) 
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j mji'U') - eT(x') - \ •_(«!>* » (7) 

respectively. In these expressions u_(x*) denotes the negative ion 

macroscopic velocity, and n® and u® are the negative ion number density 

and macroscopic velocity at infinity, respectively (u^ * -u). It is 

assumed here that m_u2/2 > e|+0|, where +0 is the soliton amplitude, so 

that there are no reflection of negative ions. The effects due to 

reflection of negative ions, when a finite temperature is considered for 

them, is expected to be small compared to the effects of reflected 

electrons, since m /m_ << 1. 

In order to solve Eq. (1), a method similar to that described by 

Schamel (1972) will be used, in which the distribution functions 

f (x',v) and f+(x*,v) are prescribed and the potential 4(x') is 

calculated consistently using the Sagdeev potential formalism (Sagdeev, 

1966). In this formalism, Eq. (1) is written in terms of the Sagdeev 

potential V(4) as 

d(x')2 c0
 P U ' " d+ ' w 

in analogy with the classical dynamics equation of motion for 

conservative systems, md2x/dt2 - -dV/dx. From (8), the Sagdeev potential 

can be expressed as 

V U ) - V(0) + -*- p(x')d*' . (9) 
E0 I 
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This function mist satisfy the conditions V(+) - 0 and d*(x')/dx' - 0, 

when + « 0 (x' -*• ±~), which assure soliton type solutions (same behaviour 

of V(+) at x' * ±m). Substituting the appropriate expressions for the 

particle charge densities in Eq. (9), yields an integral expression for 

V(*). 

The free particle distribution functions for both electrons and 

positive ions are considered to be shifted Haxwellians in the absence of 

reflected electrons and trapped positive ions. It is convenient to 

introduce at this point the following dimensionless variables: 

* - -e*/kBTe. (*>0), 6 - n>e/m+, U - u/C+ where C + - (kBTe/m+)
l/2, 

9+ - T+/T , u - m_/«>+ and r • n^/n?, yhere T is the electron 

temperature, T. is the positive ion temperature, k_ is Boltzmann's 

constant, n® and n° are the positive ion density and electron density 

at infinity, respectively. For the free electrons it is assumed 

i,ll/2 

exp £[U ± /va - 2(«0 - lO/ó]' (10) 

1/2 
where the (+) sign is used when v > [2(*0 - $)/&] and the (-) sign 

1/2 
when v < -[2(ip0 " • ) / * ] • F o r the f r e e positive ions, 

f+f(x%v) - n j ( ^ ) 
1/2 

exp 
1 - ^ - i u ± /v2 - 2i>y (11) 

1/2 
where the (+) sign applies when v > (2*) ' and the (-) sign when 

v < -(2t[r)l/2. 

The distribution functions for the reflected electrons and for the 

trapped positive ions are considered to be Maxwellian functions given, 

respectively, by 
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<„<»••«> -°:(Á)'"-4f ) - ( - [¥ -«.-«]} ' (12) 

for |v| f 12(*0 - *)/6]l,2
t and 

f
+t<*'•*> - ní(27g;)1/2«p(- ^ j « p [ - i f ^ 2 - 2*>] • (13) 

,1/2 for |v| s (2<r) , where the parameters a and B are used to adjust the 

form of the distribution functions of the reflected electrons and the 

trapped positive ions, respectively, and are allowed to be negative as 

well, corresponding to a depression in the corresponding distribution 

functions. Note that the distribution functions f and f. are continuous 

e + 

at the points v - ±[2(*0 - t)/6)1'2 and v - ±(2<r)! , respectively. 

Fig. 1 illustrates qualitatively the form of the distribution functions 

for the electrons and for the positive ions, and the role played by the 

parameters a and 0 on the particle densities. Note that for o - 1 the 

electron distribution function reduces to a Maxwellian, except in the 

velocity interval -lU2 + 2(*„ - *)/6] l / 2 $ v $ -[2(*0 - *)/6j
l/2. 

Using these expressions for the distribution functions in the charge 

density equation (3), and introducing polar coordinates (r,8) the 

integral in r can be performed analytically. After some mathematical 

manipulations, following the method used by Schamel (1972), the particle 

charge densities can be expressed as 
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Pe(x') - -e( l - r)nj 

and 

«*v t , c ( / i?+ *{*£ • •.) 

i-r"1 
exp(a* )erf (""*•") 

0 0 

-2 -F /M 
/ ; 

•J 

- i 

exp(* -* )er fc ( / f~= l ) + 
0 0 

«(*?.•.-•) • w - ' " 

exp[a(«0-t)]erf(/a(»0-#)j] 

|— F [ / | a | ( * - *)] 
l/i ° 

a*0 

a<0 
(14) 

P+(x') - enj exp|- jg-j exp (^(^••ft-i 

+ |3 
-1/2 

exp(i 

-2-F 

ÉM/Ç) ] 
/kk 

> > . 

0 * 0 

s < o 

(15) 

For the negative ions, from Eq. (5), 

erni 
P (x1) - -

(1 - 2*/ MU
2) l / 2 ' 

(16) 

In these expressions the quantities n° and n^ have been eliminated using the 

macroscopic charge neutrality condition at x' •> • «i • 0), 
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lim Ep (x') - 0 . (17) 
*+0 a a 

The integral K(a,b) is defined as 

*/2 

K(a »b) - 2 / l d6 cosO exp(a cos26 - b tg26)erf(/a cos8) *, (18) 

the function f(x) is the Dawson integral 

x 
,21 F(x) - exp(-x2) j exp(t2)dt , (19) 

0 

erf(x) is the error function 

x 

rf(x) - — f exp(-t2)dt , 

• s 
(20) 

and erfc(x) is the complementary error function erfc(x) - 1 - erf(x). 

These integrals must be solved numerically. 

Poisson equation (8) in normalized form becomes 

A 
e 

2 d2*(ç) dv(*) 
, (21) 

dC2 d* 

where Ç * x'/lt with I a scale length associated with spatial gradients 

and A is the Debye length 

A2 . l££± . (22) 
' e2(l - r)n° 
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The norealized Sagdeev potential i s therefore given by ' 

V(*) -Ti} [pe(»') + p+(*') + pjrndr , (23) 

with the charge densities given by Eqs. (14), (15) and (16). 

In order to obtain a relationship between the soliton amplitude • 

and its velocity U(t ), the equation V(t ) • 0 is considered next. After 

0 0 

SOBW a a t h e u t i c a l Manipulations i t i s obtained froa (23) (for d e t a i l s 

refer to Roberto, 1986), 

v ( V exp (Verfc(/iT) + K ( ^ , *J + 

•M 
- 1 / 2 

exp(a* ) e r f ( / a * ) 
0 0 

/a F(/"M V 

- i 

exp(*o)erfc(/ÍT) + i ^ - 1 + H ( ^ . » . • , ) + 

+ M -1 /2 
exp(a* )erf(/a<f ) / a * -

0 0 / ; 0 

£ F(/M7) - j: /R7 
/ir u rw * 
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TTTTT I1 " / ' " $) ~ TTTTT exP (" Wj 

^ H ^ / ^ H ^ - » - * ) 

+ M •1/2 
e x p ^ e r f 

r, J \ rJ \ 

a, 3*0 

0 (24) 

a,B<0 

where 

H(a,b,c) - I K(a,x)dx . 

b 

(25) 

3. LIMIT OF SMALL AMPLITUDES 

In the limit of small amplitudes (when <> + 0) Eq. (24) yields an 

expression for the normalized ion-acoustic velocity S - ^I/C.. 

Expanding Eq. (24) in powers of • , for small ty , and neglecting the 

inertia of electrons ( 6 - 0 ) , it is obtained 

V(*„) - Y |~A(U) + 2<|/J/2B(U) + ^ *0C(U) - 0 , (26) 

where 

A(U) - -1 + 
(1 - r)MU* •-rhy fe - f /^ ' ( /5P3 ] • <"' 
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B(U) - - — (a - 1) ? 
5/Í 15^(1 - r) 

exp 
28. 0 3/2 

B-1+ — , (28) 

and 

C(U) - 1 + 3r -U-2Í + 
(1 - r í u V d - r) I 8j 26j 

•+K 2e+ ' ^ 2 e J e i J 
(29) 

In the limit • + 0 ( i . e . U - S) E<fc (26) leads to A(S) - 0, which 

gives the following expression 

-1 + 
(1 - r)uSJ 

1 I" 1 2_ FW_ 

(1 - r) |_9+ e+ / 28+ 28. 
0 . (30) 

When 8. + 0 this equation must yield an expression for S identical to 

that obtained from the fluid model. Using an asymptotic expansion for 

the Dawson integral, when 0. + 0, it is obtained accordingly, 

1 + r/y U/2 

1 - r 
(31) 

For arbitrary values of G , Eq. (30) must be solved numerically. 

The Mach number M - U/S can also be expanded in terms of powers of 

• , in the small amplitude limit, so that it can be written 
0 

approximately as 

M = 1 + bi|> ̂ 2 + c* , 
0 0 

(32) 
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vhers b and c are constants. As r increases (r*0.10), 0 .• band a- 1, b 

becomes negligible (Roberto, 1986) and Eq. (32) reduces to 

M = 1 + c* . (33) 
0 

4. RESULTS AND DISCUSSION 

Numerical values for the normalized ion-acoustic velocity S, and for 

the soliton velocity U, can be obtained from Eqs. (30) and (24), 

respectively. Solutions with U > S must be considered since the solitons 

can propagate only with velocities above the ion-acoustic velocity. 

Using this approach, numerical values can be determined for the Mach 

number N - U/S as a function of • , for given values of r, u, 0., o and 

0 + 

0. For purposes of comparison with the experimental observations of 

Ludwig et al. (1984) and Nakamura et al. (1985a) it is considered here 

specifically a plasma composed of Ar and F . 

Initially, in order to investigate the kinetic effect due to the 

trapping of positive ions on the soliton velocity, Eqs. (24J and (30) 

are considered in the limit when 6 m 0 and o • 1 (neglecting for the 

moment the effect due to reflection of electrons). A plot of the 

coefficient -c - -(M - l)/ty versus concentration r, for various values 

0 

of 6 and with P " 1» is shown in Fig. 2, for purposes of comparison 

with Fig, 1 of Ludwig et al. (1984) and Fig. 6 of Nakamura et al. 

(1985a). The principal effect associated with the finite temperature, 

and trapping, of the Ar ions is a reduction in the soliton velocity as 

0. increases, for a given amplitude and concentration r. As the positive 

ion temperature Increases, the corresponding distribution function 
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becomes broader, so that more ions are available with sufficiently low 

energy to become trapped in the soliton potential well. The numerical 

results also show that small changes In the parameter 8 have little 

effect on the soliton velocity, for a given temperature 8 . This result 

is in contrast to that obtained by Nakamura et al. (1985a) (the dashed 

curve of their Fig. 6) using a fluid model, who concluded that the 

soliton velocity increases as the positive ion temperature increases, a 

result analogous to that obtained by Sakanaka (1972) for positive 

solitons. This difference in behaviour nay be due to the inclusion, in 

the kinetic model, of positive ion trapping in the soliton potential 

well, which causes a decrease in the soliton velocity. Similar behaviour 

was obtained by Schamel (1979), analyzing the effect of electron 

trapping in * positive sollton, who concluded that, as the population 

of trapped electrons increases, the soliton velocity decreases. From 

the curves in Fig. 2 the minimum critical concentration r necessary to 

have negative soliton solutions can be estimated, noting that as 8. 

increases, a larger amount of F is required. 

In order to show the effect due to reflection of electrons by the 

soliton potential well, it is presented in Figs. 3, 4, 5 and 6 plots of 

the Macb number M - U/S as function of the soliton amplitude • , for 

r - 0,15, 0,26, 0.35 and 0.62, respectively, considering various values 

of o and for 6,-0 (neglecting for the moment the effect of positive 

ion trapping). The experimental values obtained in a double-plasma 

machine by Ferreira (1986) are also shown, for purposes of comparison. 

It is seen the population of reflected electrons, represented by the 

parameter a, has a large effect on the soliton velocity. For a given 
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amplitude, as a decreases (representing a decrease in the amount of 

reflected electrons)» the soliton. velocity increases, so that for a 

given concentration r thei* is a value of a which best fits the 

experimental values. Note also that, for a given • and a, the 
0 

dependence of M on r reaches a maximum at a given concentration. This 

behaviour is also evident in the experimental data of Ferreira (1986) 

and Ludwig (1984). 

Fig. 7 shows M versus • for various values of 9., considering 0*1» 

r - 0.26 and a - 0.20, to illustrate the kinetic effect of positive ion 

trapping, relative to that of electron reflection. It is seen that for 

a given o and r, M decreases as 8. increases. For o • 1 and 8+ - 0 the 

results reproduce those predicted by the fluid model. 

The effects of ion trapping and electron reflection on the soliton 

amplitude can be physically understood by looking at the negative 

sollton spatial charge distribution shown in Fig. 8. Reflected 

electrons of high energy spend more time close to the soliton center 

enhancing the negative charge at the potential well, while low energy 

electrons reduce the positive charge density at the wing; of the 

structure. Therefore, depending on the value of o, reflected electrons 

can increase or decrease the soliton amplitude. On the otuer hand, the 

positive trapped ions will reduce the negative space charge in the 

potential well, decreasing the soliton amplitude. 

The results presented indicate that the experimental values obtained 

for H can be reproduced by proper selection of the parameters o and 8+, 

which may vary for different concentrations. For r • 0.35 (Fig. 5), for 

example, negative values of o are required to explain the relatively 

large experimental values of M, which suggest the existence of a 
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depression in the distribution function for the reflected electrons. 

Yoshlzawa et al. (1979) have investigated theoretically the for* of the 

electron distribution function in a plasma of SFfi, showing that there 

are energy ranges in which electrons are removed from the plasma due to 

electron attachment to form the negative ions. In the low energy range 

($leV), corresponding to that in which electron reflection occurs, the 

cross sections for capture of electrons to form SF5 and SFg are large 

[Fig. 1 of Yoshizawa et al. (1979)], suggesting the existence of a 

depression in the electron distribution function in this energy range. 

These considerations are consistent with the numerical results presented 

here, which show that as r increjses (increasing the amount of SFg in 

the chamber), a smaller amount of reflected electrons (a) is required 

to fit the experimental data, up to a certain value of r. However, 

above a given value of r, M starts to decrease, as can be seen from 

Fig. 6 for r - 0.62. As r increases, less electrons are available in 

the plasma, and as r •*• 1 (limiting case in which the plasma neutrality 

is due to F~ only) the theoretical as well as experimental values found 

for M must tend to the same value as predicted by the fluid" model. 

However, it is found here that for large r (r * 0.50), the experimental 

values approach this limiting value faster than the theoretical ones. 

This means that Increasingly larger o values are necessary to explain 

the experimental data as r increases (r * 0.50). Although this result 

apparently contradicts the previous argument used to explain the 

depression in the distribution function of reflected electrons for small 

values of r (a must decrease as r Increases, when r i 0.50),, it may be 

related to a reduction in the r lative concentration of SF5 and SF6 , 
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since as r increases, the F ion concentration becomes dominant, as 

suggested by Ludwig et al. (1984). 

5. SUMMARY AND CONCLUSIONS 

The role played by positive ion trapping and electron reflection on 

the propagation characteristics of negative solitons, has been 

investigated using a kinetic model, considering specifically a plasma 

produced from a mixture of Ar and SF6, The particle distribution 

functions have been prescribed and the soliton electric potential 

determined consistently using the Sagdeev potential formalism. The 

numerical results obtained are compared with experimental data measured 

in the multicomponent plasma produced in a double plasma machine. It is 

found that the experimental data for the soliton propagation velocity 

can be reproduced by proper selection of the particle distribution 

functions, for given plasma parameters. The population of reflected 

electrons and trapped positive ions play an important role on the 

soliton propagation velocity, and the results show that the, soliton 

velocity decreases as the population of reflected electrons and trapped 

positive ions increases, for a given concentration and soliton 

amplitude. Adjusting properly the parameters o and B+, for a given 

concentration, the experimental values for H can be satisfactorily 

reproduced. Measurements of the particle distribution functions seem 

therefore to be very Important for understanding the kinetic effects on 

the propagation characteristics of negative solitons auu for the 

development of a kinetic model. 
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/ 

FIGURE CAPTIONS 

1 - Form of the distribution fucntions for electrons and ions 

indicating the effect of the parameters o and 0 on the densities 

of the reflected electrons and trapped positive ions. 

2 - Dependence of -(M - l)/f on the concentration ratio r«n°/n£, 
0 ~ "•" 

illustrating the kinetic effect due trapping of positive ions» 

for 0 - 1 and e+ - 0, 1/15, 1/10, 1/8, 1/5. 

3 - Dependence of the Mach numer M on the amplitude • , for 
0 

r • 0.15, 8 , - 0 and various values of o, showing the effect 

of the reflected electrons. 

4 - Same as in Fig. 3, but for r - 0.26. 

5 - Same as in Fig. 3, but for r - 0.35. 

6 - Same as in Fig. 3, but for r - 0.62. 

7 - Dependence of the Mach number M on the amplitude *tf> , for 

r - 0.26, o - 0.20 and various values of 8+, showing the 

effects due to electron reflection and positive ion trapping. 

8 - Space charge distribution in a negative soliton. 
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