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KINETIC EFFECTS ON THE PROPAGATION CHARACTERISTICS OF

10K—-ACOUSTIC NEGATIVE SOLITONS

H. Roberto, G.0. Ludwig and J.A. Bittencourt
Ingtituto de Pesquisas Espaciais - INPE
Ministeério da Ciencia e Tecnologia - MCT

Sao José dos Campus, SP, 12225, Brazil
ABSTRACT

The propagation characteristics of ion-acoustic negative solitons,
in a multi-component plasma with negative ions, are investigated
considering a kinetic model which taker into account electron reflection
and positive jon trapping in the negative potential well of the soliton.
The Poisson gquation is solved consistently using the Sagdeev potential
formalism. It is verified that the kinetic effects assoclated with
trapping of positive jons and reflection of electrons modify the results
predicted by the simple Korteweg-de Vries fluid model in “EFh a way that
the Mach number fs reduced as the ion temperature and the pepulation of
reflected electrons increase. Comparison with experimental observations
shows that the measured values of the Mach number can be reproducedlby
this kinetic model under proper selection of the fon temperature and
the shape of the reflected electron distribution function, with a

dependence on the negative fon concentration.




1. INTRODUCTION

The ion-acoustic negative solitons, also referred to in the
literature ae rarefactive solitons, correspond to a propagating
localized depression in the plasma potential resulting from a
compression of negative ions in a multi-compeoner: plasma, whereas the
ion~gcoustic positive solitons are propagating positive potential pulses
due to a compression of positive fons. The fon-acoustic positive
solitons have been extensively investigated, using a fluid model,
leading to the Korteweg-de Vries equation (e.g. Washimi and Taniuti,
1966; lkezl et al., 1970; Sakanaka, 1972; Tran, 1979) and using a
kinetic model, which included trapping of electrons in the soliton
potential (e.g. Schamel, [972; Schamel, 1973; Schamel, 1979). The ion-
acoustic negative sclitons have also been theoretical investigated using
fluid models (e.g. Das and Tagare, 1975; Tagare, 1975).

The first experimental observations of ion-acoustic negative solitons
wvere made in a8 double plasma machine (Ludwig et al., 1984) using a gas
mixture of Ar and §Fg. Further experimental investigations were also
made by Nakamura and Tsukabayashi (1984), and Nakamura et al. (1985a),
using Ar and SFg. The experimental results for the Hach number obtained
by Nakamura st al. (1985a), agreed teasonably well with theoretical
predictions of a fluid model, whereas those of Ludwig et al. (1984),
using & smaller double-plasma device, indicated Mach numbers much larger
than those pradicted by & fluld model, These high Mach number values
could not be explained on the basis of simple fluid models with
isothermal electrons using the Korteweg-de Vries equation (Ludwig etal.,

1984), or using the Sagdeev potential formalism (Nakamura et al,, 1985b).
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Also, inclusion of the finite ion temperature effect (pr;ssurt gradient
tera) in the fluid model did not alter significantly the Mach number
values (Nakamura et al., 1985a). It seems, therefore, that kinetic
effects, such as trapping of positive ions and reflection of electrons
by the scoliton negative potential well, may be important in the
forsmulation of a theoretlcal model for ion-acoustic negative solitons.
In this paper the role played by kinetic effects on the propagation
characteristics of lon-acoustic negative solitons is investigated. The
kinetic model described here includes electron reflection and positive
fon trapping in the negative potential well of the soliton, and uses
the Sagdeev potential formalism (Sagdeev, 1966). This method can account
for Jarge applitude solitons, whose experimental observation have
already been reported (Nakamura et al., 1985b), whereas the Korteweg-de

Vries equation method applies only to small amplitude solitons.

2, THEORETICAL MODEL

A sulti-component plasma composed of hot electrons (mags LN charge
-e), hot positive ions (maes LI charge e) and cold negative fons (mass
m_, charge -s) 1is considered. Position coordinates in the reference
framgs of ths laboratory (x) and of the soliton (x') are related by
x' » x = ut, where u denotes the soliton speed in the laboratory frame,
The soliton negative potential ¢(x') satisfies the one-dimensional

Poisson equation

d*¢(x' 1 '
7(%7}'-30(:). )



’
where ¢y is the free space electric permittivity and the total electric

charge density p(x') includes the contributions from electrons, p.(x').

positive ions, p+(x') and negative lons, p_{(x'),
p(x') = ﬂ.(x') +p,(x') +p_(x') . (2)

The electric charge densities for the electrons and for the positive
ions can be expressed in terms of their distribution functions fe(x',v)
and f+(x',v), respectively,

4o
Pa(n') = q l £ (x',v)d% , (3)
-
with a =~ ¢, +, where fa(x',v) satisfies the time-independent Vlasov
equation,
of q d¢ af

v—=2-2 —— 2.9, %)

' w dx' ¥
a

For the cold negative ions, p-(x') - -en_(x'), where the negative ion

nuosber density n_(x') is given by

n
n_(x') = ' (5)
- [1+ 2e4(x’)/m_u?}}/?
obtained considering conservation of particle flux and of energy,
n_(x")u_(x') = nfu?, (6)



% mu?(x') - ed(x') = % m ()2, {7)

respectively. In these expressions u_(x') denotes the negative ion
macroscopic velocity, and nf and uf are the negative fon number density
and macroscopic velocity at infinity, respectively (uf = —y). It is
assumed here that a v?/2 > e|¢o|. where ¢g is the soliton amplitude, so
that there are no reflection of negative ions. The effects due to
reflection of negative ions, when a finite temperature is cornsidered for
them, is expccted to be small compaye] to the effects of reflected
electyons, since m /m_ << 1.

In order to solve Eq. (1), a method similar to that described by
Schamel (1972) will be used, in which the distribution functions
f.(x'.v) and f+(x',v) are prescribed and the potential ¢(x') is
calculated consistently using the Sagdeev potential formalism (Sagdeev,
1966)., In this formalism, Eq. (1) is writte: in terms of the Sagdeev

potential v(¢) as

a29(x’') 1 oy dv( -
"R'ﬁr -eop(x)- e’ (8)

in analogy with the classical dynamics equation of motion for
conservative systems, wd?x/dt® = -dV¥/dx. From (8), the Sagdeev potential
can be expressed as

é

V(4) = V(0) + t—‘o [ px")d¢' . (9)
0
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This function must satisly the comditions V($) = O and d;(x')fdx' = 0,
vhen ¢ = 0 (x' + t»), which assure soliton type solutions (same behaviour
of V(4) at x' + ie), Substituting the appropriate expressions for the
particle charge densitjes in Eq. (9), ylelds an integral expression for
Vie).

The free particle distribution functions for both electrons and
positive ions are considered to be shifted Maxwellians in the absence of
reflected electrons and trapped positive ions. It is convenient to
introduce at this point the following diwensionless variables:
¥ = -ed/kyT,, ($20), 6 = n_/m,, U= u/C, here C, = (k,T,/n)/2,

BP - T+ITE, p= u_/m+ and r = nE/nﬂ, where '1‘e is the electron
temperature, T, is the positive 1lon temperature, kB is Boltzuann's
constant, n? and n: are the positiva lon density and electron density

-+

at infinity, respectively. For the free electrons it is assumed

1/2 5 2
fef(x'.v) = ng E;] expi- E[U t vt - 2y - ¥)/8) T}, (10)

vhere the (+) sign 1s used when v > [2(¥y ~ 1:)/6]1”2 and the (-) sign

when v < ~[2(¥, - v)/&]llz. For the free positive ions,

26

' of_1)"? 1 Vo s A b
f+f(x ,v) = n+[§;3:] exp{- ——;[U vt - 2¢]7 ), (11)

1/2 and the (-) sign when

where the (+) sign applies when v > {(2¢)
v < _(2*)1/2.
The distribution functions for the reflected electrons and for the

trapped positive ions are considered to be Maxwellian functions given,

respectively, by



1/2 x 2
f“(x',v) - n: 2—5'] exp[-— gzl—]exp{-u[% - (¥g - 0)]] , (12)

for |v| s {29y - t)lé]llz. and

1/2
] exp[- 5"',: up[— 52:(\" - 2#)] ’ (13)

f-l-t(" sV) = n_?_[ﬁ
+

for |v| ¢ (20)1I2, where the parameters o and B are used to adjust the
forms of the distribution functions of the reflected electrons and the
trapped positive ions, respectively, and are allowed to be negative as
well, corresponding to a depression in the corresponding distribution
functions. Note that the distribution functions f, and f_ are continuous
at the points v = $[2(y, - *)/61112 and v = :(Zt)llz. respectively.
Fig. 1 illustrates qualfitatively the form of the distribution functions
for the electrons and for the positive ions, and the role played by the
parameters a and 8 on the particle densities., Note that for a = 1 the
electron distribution function reduces to a Maxwellian, except in the
velocity interval -[U? + 2(y, - *)16]1/2 $v s -[2(yy - ﬁ)/ﬁlllz-

Using these expressions for the distribution functions in the charge
density equation (3), and introducing polar coordinates (r,9) the
integral in r can be performed analytically. After some mathematical
manipulatione, following the method used by Schamel (1972), the particle

charge densities can be expressed as



Pa(x’) = -e(l = r)n) lexp(¥ Jerfe(8) + K|~ 5" ' ¢°] +
exp(nio)erf (/ll_ir;) -1
-1/2
+ o x lexp(¥_-®erfc(V¥_-¥) +
% F(/ |e]v) 0 °
¥

expla(¥,-#) Jerf (Ya(9,-¥)]| [a30
-172]

2
+ x[———‘" ¥ -t] +|a] (1%)
2o % FI/ el (o, - ) a<o
n

and

os) = exf enl- 15 lem[Ferte[/F) + ol )+

+

/2 exp [%f]erf [/%_f]

+ |87 . (15)
l F .!.B_Lt 8 < 0
Vo VAR | .
For the negative ions, from Eq. (5),
erng
p_(x') = - i7" (16)
(1 = 2¢/uU3)

In these expressions the guantities ng and ng have been eliminated using the

macroscopic charge neutrality condition at x’ + = (y = 0),



lim Lp_(x") = 0 . ) an
w0 a

The integral K{a,b) is defined as

ul2

K(a,b) = 2 /% I d6 cos® exp(a cos®6 - b tg?8)erf(/a coss) (18)
0

the function F(x) is the Dawson integral
X
F(x) = exp(-x?) J exp(t?)de , (19)
0
erf(x) is the error function

x
erf(x) = J exp(-t¥)de , (20)
0

A~

and erfc(x) is the complementary error function erfc(x) = 1 - erf(x).
These integrals must be solved numerically.

Poisson equation (8) in normalized form becomes

.., (21)

d¢

A |2 d%ue)  av()
r) dg?

where £ = x'/t, with ¢t a scale length associated with spatial gradients

and Ae is the Debye length

ek T
(im0 BE€ (22)

¢ 2 - r)n)



The norsalized Sagdeev potential is therefore given by d

.
v - I [P, (¥) + £, (¥) + p_(¥')]a¥" , (23)

with the charge densities given by Eqs. (14), (15) and (16).

In order to obtain a relationship between the soliton amplitude ¥
and its velocity U(’o), the equation U(to) = 0 is conasidered next. After
some mathematical manipulations it is obtained from (23} (for details

refer to Roberto, 19B6),

- &y + k|82 ]
V(ﬁu) enp(*n)erfc( #o) +K 7 ) *0 +

' exp(n"o)!rf(/a—*;) l 1!

+ [ez|"”2 4 : x

ES AR
e ]

L J

2
x| exp(v )erfe(/¥ ) +% B -1+ &, 1'0] +
L]

[ 1
exp(awu)err(/?ﬁ.') - % v‘avo

- L
. |a] 1/2 4 1,
/i_ P/ Jalv) - 2/ lale
Li

v 0

L
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_n? / 2%
to-no uU’]

»

,.
).
+

" .,,[%:)mc[/?ga] v L /‘g:- HH[;; 0, %)+
L}

+ +

o S ) - 2 /BE)] o

-1/2
L8 | =0 (24)

B [ :
2| /lelva _ 2 /lslwg a,8<0
7 8, v % )

where

c
H(a,b,¢c) = ] K(a,x)dx . (25)
b

3. LIMIT OF SMALL AMPLI1UDES

In the limit of small amplitudes (when 00 + 0} Eq. (24) yields an
expression for the normalized ifon-acoustic velocity § = C;/Q+.
Expanding Eq. (24) in powers of &0, for small #0, and neglecti~g the

inertia of electrons (&4 = Q), it is obtained
vi _
V(Wg) " -E [;{U) + 2¢!/28(U) + % *gC(U)‘ -0, (26)

where

r _ 1
(1 = r)ub* 1 - r)

AlU) = =1 +

12 /I [ U ]
- =/ F »  (27)
R A T N za;l
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2 { 2
B(U)-—-i—-/_(u-l)-—-/_a_exp[——u'—‘ _'él'}'; B-l""u_} » (28)
Svn 15/%{l -~ r) 20+ 0+ QF

and
- 2
c) = 1 + —=E — l :--I—+U—+
_ - 2 3
(I -cehe® G-1) 6 28
2 2 2
;,[;_U_ 2 o AZ _1’.] (29)

8+ 20+ 20+ 6+

In the limit to + 0 (l.e. U= 8) Eq, (26) leads to A(S) = 0, which

gives the feollowing expression

-1+ L3 - - 1 |-...1_.-l /S_zp[/i?_]—l-o, 30)
(1 - r)us (1 -r) |8 6, 28, 8,

+

When 0+ + 0 this equation must yield an expression for § identical to
that obtaired from the fluid model. Using an asymptotic expansion for

the Dawson integral, when 9+ + 0, it 1is obtained accordingly,

-

S = [1_*'_’/_“]”2 . (31)

l-r1

For arbitrary values of B+, Eq. (30) must be soclved numerically.
The Mach number M = U/S can also be expanded in terms of powers of
wo, in the small amplitude limit, so that it can be written

approximately as

. 1/2 32
M 1"'""0 +cvo, (32)
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vhers b and ¢ are constants, As r increases (r:0.10), 6+* Oanda= I, b

becomes negligible (Roberto, 1986) and Eq. (32) reduces to
M1+ c&o . (33)

4, RESULTS AND DISCUSSION

Numerical values for the normalized ion-acoustic velocity S, and for
the soliton velocity U, can be obtained from Egs. (30) and (24),
respectively. Solutions with U > § must be considered since the solitons
can propagate only with velocities above the lon-acoustic velocity.
Using this appreoach, numerical values can be determined for the Mach
number H = U/S as a function of wu, for given values of r, p, B+, a and
8. For purposes of comparison with the experimental observations of
Ludwig et al. (1984) and Nakamura et al. (1985a) it is considered here
specifically a plasma composed of Ar+ and F .

Initially, in order to invesiigate the kinetic effect due to the
trapping of positive fons on the soliton velocity, Eqs. (24) and (30)
are considered in the limit when & = 0 and o = [ (neglecting for the
moment the effect due to reflection of electrons). A plot of the
coefficient -c = -(M - I)N0 versue concentration r, for various vaiues
of 0+ and with 8 = 1, 1is shown in Fig. 2, for purposes of comparison
with Fig, 1 of Ludwig et sl. (1984} and Fig. 6 of Nakamura et al.
(1985a), The principal effect associated with the finite temperature,
and trapping, of the act ions 18 a reduction in the soliton velocity as

8, increases, for a given amplitude and concentration r. As the positive

ion temperature increases, the corresponding distribution function
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becomes broader, so that wmore ions are available with sufficiently low
energy to become trapped in the soliton potentlal well. The numerical
results also show that small changes in the parameter B have little
effect on the soliton velocity, for a given temperature G+. This result
is in contrast to that obtained by Nakamura et al. (1985a) (the dashed
curve of their Fig. 6) using a fluid model, who concluded that the
soliton velocity increases as the positive ion temperature increases, a
result analogous to that obtained by Sakanaka (1972) for positive
solitons., This difference in behaviour may be due to the inclusion, in
the kinetic wodel, of posfitive ion trapping in the scliton potential
well, which cnu§e3 a decrease in the soliton velocity. Similar behaviour
was obtained by Schamel (1979}, analyzing the effect of electron
trapping in a positive soliton, who concluded that, as the population
of trapped electrons increases, the soliton velocity decreases. From
the curves in Fig. 2 the minimum critical concentration T, necessary to
have negative soliton solutions can be estimated, noting that as 6
increasges, 8 larger amount of F is required.

In order to show the effect due to reflection of electfons by the
soliton potential well, it 1is presented in Figs. 3, 4, 5 and 6 plots of
the Mach nymber M = U/S as function of the soliton amplitude ¢o, for
r=0.)5, 0,26, 0.35 and 0,62, respectively, considering various values
of « and for 6 = 0 (neglecting for the moment the effect of positive
ion trapping). The experimental values obtained in a double-plasma
machine by Ferreira (1986) are also shown, for purposes of comparison.
it is seen the population of reflected electrons, represented by the

parameter o, has a large effect on the soliton velocity. For a given
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amplitude, as & decreases (representing a decrease in éhe amount of
reflected electrons), the soliton velocity increases, so that for a
glven concentration r ther: 1s a value of a which best fits the
experimental values. Note also that, for a given #n and a, the
dependence of M on T reaches a maxiwum at a given concentration. This
behaviour is also evident in the experimental data of Ferreira (1986)
and Ludwig (1984).

Fig. 7 shows M versus *u for various values of B , considering B = 1,
r = 0.26 and a = 0.20, to 1llustrate the kinetic effect of positive ion
trapping, relative to that of electron reflection. It is seen that for
& given « and r, M decreases as 0+ increases. For a = 1 and 0, = 0 the
results reproduce those predicted by the fluid model.

The effects of ion trapping and electron reflection on the soliton
amplitude can be physically understood by locking at the negative
soliton spatial charge distribution shown in Fig. 8. Reflected
electrons of high energy spend more time close to the soliton center
enhancing the negative charge at the potential well, while low energy
electrons reduce the positive charge density at the wings of the
structure, Therefore, depending on the value of @&, reflected electrons
can increase or decrease the scliton amplitude., On the otuer hand, the
positive trapped ions will reduce the negative space charge in the
potential well, decreasing the soliton amplitude.

The results presented indicate that the experimental values obtained
for M can be reproduced by proper selection of the parameters o and 0+,
which may vary for different concentrations. For r = 0.35 (Fig. 5), for
example, negative values of a are required to explain the relatively

large experimental values of M, which suggest the existence of a
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!
depression in the distribution function for the reflected electronsa.

Yoshizawa et al. (1979) have investigated theoretically the form of the
electron distribution function in a plasma of SFg, showing that there
are cnerg} ranges in which electrons are removed from the plasma due to
e¢lectron attachment to form the negative ions. in the low energy range
{<leV), corresponding to that in which electron reflection occurs, the
cross sections for capture of electrons to form SF; and SF; are large
(Fig. 1 of Yoshizawa et al. (1979)], suggesting the existence of a
depression in the electron distribution function in this energy range.
These considerations are consistent with the numerical results presented
here, which show that as r increases (increasing the amount of SFg in
the chamber), a smaller amount of reflected electrons (a) is required
to fit the experimental data, up to a certain value of r. However,
above a given value of r, M starts to decrease, as can be seen from
Fig. 6 for r = 0.62, As r Iincreases, less electrons are available in
the plasma, and as r * 1 (limiting case in which the plasma neutrality
is due to F only) the theoretical as well as experimental values found
for M mugt tend to the same value as predicted by the fluid model.
However, it is found here that for large r (r 2 0.50), the experimental
values approach this limiting value faster than the theoretical cnes.
This means that increasingly larger o values are necessary to explain
the experimental data as r incresses (r z 0.50). Although this result
apparently contradicts the previous argument used to explain the
depression in the distribution function of reflected electrons for small
values of r (o must decrease as r increases, when r € 0.50), it may be

related to a reduction in the r lative concentration of SFy and 8F ,
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since as r increases, the F {ion concentration becomes dd;inant, as

suggested by Ludwig et al. (1984).

5. SUMMARY AND CONCLUSIONS

The role played by positive ion trapping and electron reflection on
the propagation characteristics of negative solitons, has been
investigated using & kinetic model, considering specifically a plasma
produyced from a mixture of Ar and SFg, The particle distribution
functions have been prescribed and the soliton electric potential
determined consistently hsiug the Sagdeev potential formalism. The
numerical results obtained are compared with experimental data measured
in the multicomponent plasma produced in a double plasma machine. It is
found that the experimental data for the soliton propagation velocity
can be reproduced by proper selectfon of the particle distribution
functions, for given plaswma parameters. The population of reflected
electyons and trapped positive iona play an important role on the
soliton propagation velocity, and the results show that the soliton
velocity decreases as the population of reflected electrons and trapped
positive ions increases, for a given concentration and soliton
anplitude, Adjusting properly the parameters o and B+. for a given
concentration, the experimental values for M can be satisfactorily
reproduced. Measurements of the particle distribution functions seem
therefore to be very important for understanding the kinetic effects on
the propagation characteristics of negative solitons a.J for the

development of a kinetic model.
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FIGURE CAPTIONS

Form of the distribution fuentions for electrona and ions

indicating the effect of the parameters a and B on the densities

of the reflected electrons and trapped positive ions.

Dependence of —(M - l)lto on the concentration ratio r-nglng:
i]llustrating the kinetic sffect due trapping of positive ions,

for 8 = 1 and 8, = 0, 1/15, 1/10, 1/8, 1/5.

Depandence of the Mach numer M on the amplitude to. for

r=0.15, 0+ = 0 and various values of a, showing the effect

of the reflected electrons.

Same as in Fig. 3, but for r = 0.26.
Same as in Fig. 3, but for r = 0,35,
Same as in Fig. 3, but for r = 0.62.

Dependence of the Mach number M on the anplitude.io, for
r = 0.26, a = 0.20 and various values of ¢ , showing the

effects due to electron reflection and positive ion trapping.

Space charge distribution in a negative soliton.
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