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RESUME

De nombreux cristaux presentant de l'interet pour le Programme nucleaire canadien
peuvent subir des transitions de phase dans leur champ d'application. Au cours de cette
transition de phase, une representation du groupe spatial du polymorphe a plus haute
symetrie s'affaiblit et permet ainsi de produire la transition.

Le present rapport est le premier d'une eerie interessant les proprietes (influencees par la
theorie des groupes) de la transition de phase des cristaux. L'objet de la recherche est
d'identifier tous les modes mous spectroscopiquement actifs des 230 groupes ponctuels
de l'espace euclidien. [/identification de ces modes mous permettra l'examen detaille de
la transition de phase des cristaux presentant de l'interet pour le Programme nucleaire
canadien et aidera a l'optimalisation des proprietes des cristaux.

Dans le present rapport, on examine les proprietes (influencees par la theorie des groupes)
des structures cristallines et de la transition de phase. On demontre que le probleme
de I'extension d'un groupe se reduit au probleme de la determination de ses automor-
phismes. On tire les groupes d'automorphismes des groupes ponctuels cristallographiques
et icosaedraux a l'aide d'une presentation constante (reguliere).
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ABSTRACT

Many crystalline materials of interest to the Canadian Nuclear Program have the po-
tential to undergo phase transitions in their range of application. During such phase
transitions, a representation of the space group of the higher symmetry polymorph soft-
ens to induce the transition.

This report is the first in a series of reports concerned with the group-theoretic properties
of phase transitions in crystalline materials. The object of the research is to identify all
spectroscopically-active soft modes for the 230 three-dimensional space groups. Identi-
fication of these soft modes will enable a detailed examination of phase transitions in
materials of interest to the Canadian Nuclear Program and aid in the optimization of
material properties.

In this report, the group-theoretic properties of crystal structures and phase transitions
are reviewed. It is demonstrated that the problem of extending a group reduces to that of
determining its automorphisms. The automorphism groups of the crystallographic and
icosahedral point groups are derived using a consistent presentation.
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1. INTRODUCTION

A crystalline phase of a material can exist in one or more polymorphs. The polymorph
corresponding to the equilibrium structure for a given set of conditions is the polymorph
with the lowest free energy under these conditions.

Should the conditions change (e.g., pressure, temperature changes) then a different poly-
morph may become stabilized relative to the original structure. This will occur if the
new polymorph has a lower free energy under the changed conditions. If thermodynamic
equilibrium is to be restored, then the crystal must undergo a transition to the lowest free
energy. The transition that connects the two polymorphs is known as a phase transition.

Many crystalline materials that are of interest to the Canadian Nuclear Program have
the potential to undergo phase transitions in their range of application. Examples of
materials exhibiting phase transitions are:

UO2 [1] A fuel material,

ThO2 [2] A fuel material for advanced fuel cycles,

ZrO2 [3] An insulating material with low neutron cross-section, and

BeO [4] A moderator material for high-temperature application.

During the phase transition a representation of the space group of the higher symmetry
polymorph softens to induce th^ transition. In the case of structural phase transitions,
the transition is induced by the softening of a vibrational or librational mode.

This report is part of a series of reports concerned with the group-theoretic properties
of phase transitions in crystalline materials. The object of the research is to identify all
spectroscopically-active soft modes for the 230 three-dimensional space groups. Identi-
fication of these soft modes will enable a detailed examination of phase transitions in
experimental facilities such as DUALSPEC [5j. These studies will aid in the optimization
of materials of interest to the Canadian Nuclear Program.

In this report, we will review the group-theoretic properties of crystal structures and
phase transitions. We will demonstrate that the problem of extending a group reduces to
that of determining its automorphisms. Finally, we will derive the automorphism groups
of the crystallographic and icosahedral point groups with a consistent presentation.
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2. CRYSTALLQGRAPHIC GROUPS

2.1 Bravais Lattices

2.1.1 One-Dimensional

There is a single one-dimensional lattice. This consists of a single row of equally-spaced
points.

2.1.2 Two-Dimensional

There are five two-dimensional lattices. All of the lattices are primitive, except one rect-
angular lattice that is body-centered. The two-dimensional lattices are given in Table 1.

Table 1
The Five Two-Dimensional Lattices

System

Oblique

Rectangular

Square

Hexagonal

Number of Lattices

in System

1

2

1

1

Nature of Axes

and Angles

afb

7^90°
a^b

7 = 90°

a = b

7 = 90°

a = b

7 = 120°

2.1.3 Three-Dimensional

There are fourteen three-dimensional lattices. They are listed in Table 2. The lattice
symbols used in Table 2 refer to the different types of lattice as follows:
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A, B, or C Centered on one pair of opposite faces of the unit cell as
well as having points at the corners,

F All faces centered, in addition to points at the corners,

/ Body centered, in addition to points at the corners,

P Primitive (points only at the corners), except rhombohe-

R

dral,

Primitive rhombohedral.

Table 2
The Fourteen Three-Dimensional Lattices

System

Triclinic

Monoclinic

Orthorhombic

Tetragonal

Cubic

Trigonal

Hexagonal

Number of Lattices

in System

1

2

4

2

3

1

1

Lattice Symbols

P

P, B (or C)

P, C, I, F

P,I

P,I,F

R

P

Nature of Axes

and Angles

a f 0 / 7 / 90°
a^bjtc

a = /3 = 90° 5* 7

a^bjtc

a = 0 = 7 = 90°
a = b ̂  c

a = j3 = 7 = 90°

a = b — c

a = /3 = 7 = 90°

a = b = c

a = /3 = 1< 120°,/90°

a = b ̂  c

a = /? = 90°,7 = 120°

2.1.4 Four-Dimensional

There are 64 four-dimensional lattices. The reader is referred elsewhere [6j for the details.
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2.2 The Three-Dimensional Point Groups

The crystallographic point groups are those groups of symmetry operations that can
operate on the three-dimensional Bravais lattices so as to leave one point unmoved.
They are grouped into the systems according to the lattices on which they can operate
(Table 3).

Table 3
The 32 Three-Dimensional Point Groups

System

Triclinic

Monoch'nic

Orthorhombic

Tetragonal

Cubic

Trigonal

Hexagonal

Hermann- Mauguin

Notation

1,1

2, TO, 2/m

222, mm2,mmm

4,4,4/m

422,4mm

42m, 4/mmm

23,m3,432

43m, vnZvn

3,3,32

3m, 3m

6,6,6/m

622,6mm,6m2

6/mmm

Schonflies

Notation

E (or Ci), S, (or d)

C2, CIH (or C,), Cih

D2,C2v,D2h

Ct,S4,Cth

DA,Civ

D2d, Dih

T,Th,0

Td,Oh

C3,S6 {oiC3i), Dz

CzvyDzd

CBJ C$h, Ce/i

De, CevtDah

D6h

2.3 Space Groups

The space groups can be determined as the geometrically-distinct extensions of the lat-
tices by the point groups (see Section 4).
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2.3.1 One-Dimensional

There are only two one-dimensional point groups (E, Ci/,). Since the one-dimensional
lattice is simply a set of evenly spaced points along a line, there are only two possible
one-dimensional space groups.

2.3.2 Two-Dimensional

There are five two-dimensional lattices (see Section 1). These can be extended by the
10 two-dimensional point groups (E, Cz, Cu,, C2V, C+, dV) C3, C$v, Ce, CQV) to give 17 two-
dimensional space groups. These two-dimensional space groups have application in wall-
paper and textile design [7]. For example, there are only 17 geometrically-distinct types
of wallpaper pattern.

2.3.3 Three-Dimensional

There are 14 three-dimensional lattices (see Section 2.1.3). These can be extended by
the 32 three-dimensional point groups (Section 2.2) to give 230 three-dimensional space
groups [8, 9]. These three-dimensional space groups have application in crystallographic
studies using a variety of diffraction techniques [10].

2.3.4 Four-Dimensional

There are 64 four-dimensional lattices. These can be extended by the 271 four-dimensional
point groups to give 4895 four-dimensional space groups [11]. The four-dimensional space
groups are somewhat more abstract than the three-dimensional space groups. They have
application in the magnetic properties of matter.

3. PHASE TRANSITIONS

The group-theoretic aspects of phase transitions will be discussed in detail in subsequent
reports in this series. In this report we first give a summary of these properties, to
establish a context for the remaining sections.

As mentioned previously, the crystalline phase of matter may exist in one or more poly-
morphs. The polymorph corresponding to the equilibrium structure for a given set of
phv:;ical conditions is the polymorph that exhibits the lowest free energy for those con-
ditions. If the conditions change so that a different polymorph has a lower free energy,
then a phase transition must occur to restore the thermodynamic equilibrium.
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Phase transitions are usually classified as being first or second order.

A first order transition is a transition characterized by a discontinuity in the free energy
of the system. Such a transition requires the transfer of energy between the crystal and
the surroundings at the transition point (ft). Hence, both phases must be present at the
transition point and the change of structure is gradual. The melting of a pure substance
is an example of a first order transition, where the increase in free energy at the transition
corresponds to the latent heat of fusion.

In a second order transition, there is a continuous structural change and no discontinuity
in the free energy at the transition. The discontinuity occurs in the first derivative of the
free energy with respect to the parameter that is inducing the transition. It is common
practice to measure the specific heat of a substance with respect to temperature. The
specific heat is the first derivative of the free energy with respect to temperature. Hence,
the specific heat exhibits a discontinuity at the transition point during a second order
transition. Second order transitions are often termed A-transitions, because of the nature
of the discontinuity in the specific heat (Figure 1).

Structural phase transitions were first studied by Landau, who studied order-disorder
transitions in alloys [12, 13]. He showed that, for these transitions, the low symmetry
phase (GL) must be a normal subgroup of the high symmetry phase (GH). The change in
symmetry must correspond to an irreducible representation (TI,J) olGH. Hence, a vibra-
tional or librational mode must exist in Ga that softens to induce the phase transition.

Landau showed that if the symmetrized cube of irreducible representation ({T*^}3) con-
tains the totally symmetric representation (rf,i+), then the phase transition associated
with Tkj must be first order. Lifshitz [14, 15] was able to show that a second order tran-
sition can occur only if the anti-symmetrized square of the representation ([TAJ]2) does
not contain the representation of a polar vector (TT,V).

The group-theoretic conditions for a second order (A) transition can be expressed as
follows:

1. Gl C GH,

2. Ky} 3 n 7ril+ = o,

3- ht,;]1 H TT> = 0,

4. Tkj of GH subduces to TT,I+ of GL, and

5. T^J corresponds to a physical tensor field.

The representational analysis of Landau and Lifshitz was supplemented by Ascher [16,
17, 18, 19] for transitions involving no change in the number of atoms per unit cell. For
these transitions, Ascher was able to show that the lower symmetry group (G^) must
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First Order

Second Order

Second Order

Figure 1: Thermodynamic Classification of Phase Transitions. Note the charac-
teristic shape of dEjdf for the second order (A) transition.
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be a zellengleiche subgroup1 of the higher symmetry group (GH). The actual subgroup
{GL) is determined by the invariance properties of the phenomenon responsible for the
phase transition.

For many phase transitions (including all zellengleiche transitions), the problem of de-
termining the appropriate irreducible representations and subgroup-supergroup relation-
ships between the 230 space group reduces to determining the corresponding relationships
between the 32 crystallographic point groups.

As will be discussed in further detail in subsequent reports in this series, group extension
theory can be used to determine GL, GH, and T^J.

4. EXTENSIONS

The concept of extending a group was used in the nineteenth century but it was not for-
malized until 1926 [20, 21]. Consequently, it has not hitherto been recognized as having
important applications in crystallography, except perhaps in the papers of Ascher and
Janner [22, 23, 24] and in a book by Janssen [25]. Many famous problems can, however,
be fruitfully formulated in terms of this concept [26]. For example, the problem of the
enumeration of the 230 space groups is merely the enumeration of all the geometrically
distinct extensions of the Bravais lattices (translation groups) by spatial symmetry ele-
ments. The double groups are extensions of the group containing the identity and the
"27r-rotation" by the point group. The magnetic groups are the extensions of the unitary
subgroup by the group containing the identity and a two-fold anti-unitary element. The
representation groups [27] are extensions of Schur's multiplicator by the point group.

The structure of a point group may often be expressed in the language of group exten-
sion theory. For example, the semi-direct product groups are splitting extensions (see
Section 4.5) and the direct product is included in the set of splitting extensions as the
unique central splitting extension.

A group G is an extension of a group A by a group B if A is normally contained in (7
and the factor set G/A is isomorphic to B. That is,

A < G, and

G/A Z B.

In general, G is not unique.

The elements of A will be denoted here by Latin letters, e, a, b, c,..., and the elements
of B by Greek letters, e, a,/?,7, — From the definition of an extension, given above, G
can be decomposed into cosets of A,

G = gt{A} + ga{A} + 90{A} + . . . ,

'A lellengleiche subgroup of a space group has the same translational subgroup as the original group.
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where for every coset gA of A in G we have chosen a representative, ga, where a is the
element of B associated with the coset gA in the isomorphism between G/A and B.

The product of two coset representatives ga-gp must lie in the coset with representative
ga0 and, hence,

9a'90 = 9a0mat0.

The factor system (fna>/g € A,Va,/3 € B) is not unique, and depends upon the actual
choice of coset representatives. However, there are a number of relationships that restrict
the value of the factor system.

Putting a = /3 = e, we obtain

9*9t = 9tmttt, and hence,

The transformation of A by ga induces an automorphism in A. We shall denote the
image of an element a of A under this transformation by aa\

Then
(o°y = (a-*)1""-", (1)

and also

so that
3.7 = rna0,-r7nl,0- (2)

The elements of G can be taken as gaa, etc., and hence the composition law for the
extension is

gaa-gpb - ga0maJia?b. (3)

Further manipulation of the above formulae yields

If all possible systems of automorphisms a —• aa and all possible sets of factor systems
are determined subject to Equations (1) and (2), then all possible extensions of A by
B will have been determined. Group extensions are usually defined up to equivalence.
Two groups G\ and Gi are said to be equivalent if there is an isomorphism between G\
and (?} that induces the identity automorphism on A, and also maps onto each other the
cosets of A that correspond to the same element of B. If we define

S Aut(A),

then it can be proved that two extensions are equivalent if the same homomorphism of
B into Aut(A) is associated with each extension.
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4.1 Extensions Of Abelian Groups

If A is an Abelian group, the problem of enumeration of the extensions is simplified
somewhat. In this case, we have that since A is an Abelian normal subgroup of G the
automorphisms of A induced by the coset representatives are independent of the actual
choice of representative. Thus Aut(A) =

Hence, for an extension of an Abelian group A by a group B we have only to define the
products aa,a € A, a € B, such that

(ab)a = aa-ba j
a(a/3) = {aa)(3 \ (4)

at = a J

and define the factor system maip such that

and we will have enumerated all of the possible extensions of A by B.

4.2 Example: The Extensions Of C4 By C2

Let us define
C4 = e, a, a2, a3 a4 = e
Ci = e, a a2 = e.

There are only two possible automorphisms of d:

Ci — e a a2 a3, and
C4 = e a3 a2 a,

hence $(£4) = C2, and there are only two possible groups of operators that satisfy
Equation (4).

4.2.1 (e> a, a2, a?)C2 = (e, a, a2, a3)

If we consider the factor system relationship,

it can be seen, by substitution, that no restrictions are placed on the value of rnc7,c2-
Thus we have four non-equivalent extensions associated with this automorphism of A
that correspond to the factor system
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e e
e T/

where TJ can take any of the values, e,a,a2
ta

3. The extensions generated by this auto-
morphism of C4 and these four sets of factor systems are illustrated in Figure 2.

4.2.2 (e,a,a2,a3)C2 = {e,a3,a2,

If we again consider the factor system relationship, it can be seen that

This equation can only be satisfied if wic,,Cj — e o r rnci,c-i — °?• Thus we have two
non-equivalent extensions associated with this automorphism of A that correspond to
the factor system

e

c2

e
e
e

e

where 77 can take the value e or a2. The extensions generated by this automorphism of
CA and these two sets of factor systems are illustrated in Figure 2.

4.3 Extensions Of Non-Abelian Groups

Baer [28] was able to show that the extensions of a non-Abelian group associated with a
given homomorphism are one-to-one with the extensions of the centre (see Section 5.1)
of the group associated with the same homomorphism. Thus, it is possible to obtain the
extensions of a non-Abelian group, A, by generating the extensions of Z(A). Hence, the
extensions of all groups can be obtained from the extensions of the Abelian groups.

4.4 Central Extensions

An extension G of an Abelian group A by a group B is called central if A lies in the centre
of G. This is equivalent to saying that the automorphisms a —» a" of A corresponding
to this extension are all equal to the identity. In the context of the example given in
Figure 2, the groups Cth and C% are centra] extensions of d by CV
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e, a, a2, a3 e,o3,a2,a

d = e, a, a2, a3

Figure 2: The Extensions of C4 by C2.
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4.5 Splitting Extensions

Suppose G is an extension of a group A by a group B such that we can choose, in the
cosets gA, representatives gtt, a 6 B, with the property

9a9p = 9a0, that is

TOO|/3 = e.

The representatives ga then form a subgroup (B1) of G, isomorphic to B. Moreover,
the subgroups A and B' completely generate G, and their intersection is E. Such an
extension is said to be splitting. We also say that G is a semi-direct product of A by
B'. In the context of the example given in Figure 2, the groups C4h (with mc3fc, = e)
and Z?4 are splitting extensions of C4 by C3. The central, splitting extension (C4/i with
mCi,c-2 — e) is the direct product of C4 with Gi.

5. ENUMERATION OF THE AUTOMORPHISMS

In the previous sections, we have reviewed the group-theoretic properties of phase tran-
sitions and demonstrated that the problem of extending a group reduces to that of de-
termining its automorphisms.

In this section, we derive four groups that are relevant to the determination of the auto-
morphisms:

The Centre (Z),

The Commutator Subgroup (d1(G)),

The Frattini yi-group, and

The Inner Automorphism Group ($').

The centre, commutator subgroup and Frattini y>-group are all subgroups and are straight-
forwardly determined. The inner automorphism group is isomorphic to the quotient of
the group and its centre and, hence, is readily determined once the centre is known.

Having derived the centres, commutator subgroups, Frattini y>-groups, and the inner
automorphisms groups, we use knowledge of these groups to derive the automorphisms
of the crystallographic and icosahedral point groups with a consistent set of presentations.
Some of the 32 crystallographic point groups do not appear in the tables, since they are
isomorphic to other groups. The isomorphism relationships are given in Table 4. Some
supergroups of the 32 crystallographic point groups are included where it is useful to
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demonstrate an aufbau principle. The icosahedral groups are included because some
chemical compounds (e.g., B^Hu2') are known to have icosahedral symmetry and can
form crystal structures exhibiting icosahedral symmetry elements.

5.1 The Centres

The centre (Z) of a group, G, is that subgroup of G which contains those elements
of G that commute with every element of G. The elements of Z form a group since
every power or product of elements of Z must also have the commutative property and,
hence, be an element of G in Z. The commutative property also implies that Z will
be an Abelian group and, indeed, when G is Abelian it is its own centre. Further,
Z must be a normal (or invariant) subgroup, since conjugation with respect to any
elements of G will leave Z unchanged. In the context of Altmann's pole model [29,
30], the elements of Z will leave the poles of the operations of G unchanged.

For a non-Abelian point group, the matrix representing an element of Z in an irreducible
representation of G will, by Schur's lemma, be a scalar multiple of the unit matrix: for
an orthogonal matrix this factor will be ±1 and, hence, the trace of the matrix will be
plus or minus its dimensionality. This is the basis for an easy method of recognizing the
elements of the centre by inspecting the character table of a non-Abelian group.

Alternatively, if the conjugacy class structure of a group G is known, the commutation
of an element Zi of the centre with any element Gj of G leads to G^ZiGj = Z{. This
implies that Z consists of all those elements of G that are in a class by themselves. The
centres of the point groups are listed in Table 5.

In group extension theory the centres are important because they reduce the problem of
extending a non-Abelian group to that of extending an Abelian group (see Section 4.3).

5.2 The Commutator Subgroups

The commutator subgroup [31] is the group generated from the products of all the com-
mutators of the group. That is, if S is the set of all commutators of G,

then the commutator subgroup of G, d1(G), is the group-theoretical product of all the
elements of S. That is,

The commutator subgroup is also known as the first derived group. The second derived
group, denoted d2(G), is the commutator subgroup of the first derived group, i.e.,

d2(G) = d\8\G)).
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Table 4
Isomorphisms Between the 32 Three-Dimensional Point Groups

Group
E

s2
c2
clh

D\
C2v
D2h

s\

D<

D2d

T
TH

0
Td

OH

c356

Da

ct
Czh

c6h
De
C6v
D3h

Deh

Isomorphic Group
E

c2
c2
c2

D\
D2

D2h

c\
CD<

°D\

T
Th

Td

Td

OH

c3
C6

DI
CCe
Ce
Cen
De
De
De
Deh
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The major use of the commutator subgroup is to determine the solvability of a group.
The usual definition of a solvable group is a group that has a finite subnormal series with
last term identity and that has an Abelian series of factor groups. That is,

E - Gn < ... < G2 < Gx <\ Go = G, with G,/G,+1 Abelian.

This cumbersome definition can be replaced by a definition involving commutator sub-
groups that is much easier to calculate: a solvable group is one that has a derived chain
that terminates on the identity. That is, G is solvable if

E = dn(G) C .. . C d\G) C d\G) C d\G) = G.

An Abelian group has d1(G) = E. A perfect group has dx{G) = G and is not solvable.
The commutator subgroups of the point groups are given in Table 5. This table shows
that the point groups of crystallographic importance are solvable with the exception of the
icosahedral groups. The icosahedral groups (J and //,) are not solvable since dl{Ih) = I,
and / is a perfect group.

5.3 The Frattini y>-Groups

The Frattini (p-group is defined [32] as the intersection of all the maximal subgroups of
the group under investigation.

The Frattini v'-group is important in the presentation of a group. The p-group is the
set of non-generators of the group. That is, if a set of generators is devised for a group
that contains an element of the ^o-group, then the element of the ys-group can always be
removed from the set of generators and the set will still completely generate the group.
The Frattini y?-groups of the point groups are given in Table 5.

5.4 The Inner Automorphism Groups

The inner automorphism group ($') of a group G is defined as the group of all auto-
morphisms of G that can be generated by conjugating elements. Conjugation with the
element Gj maps the element Gi onto GjlG{Gj. When all the elements Gi of G are con-
sidered, the conjugation is an automorphism of the group G. In general, some of these
automorphisms will be the same and we must find out how to choose a set of different au-
tomorphisms that have the group property. The clue to this is that whenever an element
Gj belongs to the centre of G, the automorphism will be the identity automorphism.
Since the centre is an invariant subgroup, we can define a factor group G/Z and, hence,
classify the elements of G into cosets. The elements of a given coset will produce the
same automorphism of G and, hence, the factor group G/Z satisfies the requirements for
$'. It should be stressed that while GjZ is always isomorphic to a subgroup of G, the
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inner automorphism group itself is not a subgroup of G. To illustrate this let us consider
the case when G is the point group C4v. The centre Z is C2 and G/Z is isomorphic to
Cjv, which may be presented as P2 = Q2 — E, PQ = QP. The action of the generators
(P and Q) of $' on the generators (C4 and o~") of (74u may be expressed as PC4 = C4,
Pal' = Cla? = <rjf% QC4 = C\, Qa^' = < x . It can thus be verified that P and Q
cannot be identified with any of the elements of C4u. Note that saying the automorphism
P is produced by conjugation with one of the four-fold elements of C4u is not the same
as saying that P is C4 or C4: P is a two-fold element of $'. The inner automorphism
groups of the point groups are tabulated in Table 5, and the effects of their generators
on the point groups are included in Tables 6-10.

The Centres, Commutator Subgroups, Frattini yvGroups, and Inner Automorphism
Groups of the Point Groups

Group

c2
c3
c4
Cs
Ce
D2

D3

D<
DB

De
D2h

D4h
D5h

Deh

cih

Ceh
T
Td

Th

Oh
I
h

Centre

c3
c4
Cs

c6
D2

E

c2
E

c2
D2h

C2H

clh
C2h

c<h

Ceh
E
E

s2
s2E

s2

Commutator
Subgroup

E
E
E
E
E
E
C3

c2
Cs
C3

E

c2
Cs
Cs
E
E
E

D2

T
D2

T
I
I

Frattini
<p- Group

c2
C3

c2
Cs
E
E
E
E
E
E
E
E
E
E

c2E
E
E
E
E
E
E
E

Inner Automorphism
Group

E
E
E
E
E
E
Dz
D2

Ds
Dz
E
D2
E
D3

E
E
E
T
Td

T
0
I
I



- 18 -

5.5 The Outer Automorphism Groups

The outer automorphism group (<£) is the group of all possible automorphisms of G. The
inner automorphism group is a subgroup of the outer automorphism group. There is
no little formula like G/Z or conjugation process to determine $. The determination of
$ is considerably more difficult and more abstract than the determination of the inner
automorphism group. Nevertheless, the outer automorphism group is required if one
wishes to study all possible extensions of a given group. Such exhaustive studies are not
only necessary when one attempts an enumeration problem, but also when one is looking
for an extension with a particular property.

First, one may dispense with the complete groups (i.e., those that are isomorphic with
their automorphism groups). For this to be the case, the centre Z must contain the
identity only, but this is not a sufficient condition. Holder [33] was able to show that
the full permutation, or "symmetric", groups, Pn (3 < n ^ 6) were complete and hence
since the point groups C3v and D3 are isomorphic to P3, and Td and O are isomorphic
to P4, the outer automorphism groups are known for these groups. The actions of the
generators of the automorphism groups on these point groups will be elucidated in the
subsequent sections.

Holder was also able to find the outer automorphism groups for the alternating groups
(i.e., the groups of even permutations), An (5 < n ^ 6). He showed that these were
isomorphic to the corresponding full permutation group. Since the icosahedral rotation
group, / , is isomorphic to As, its outer automorphism group is isomorphic to P5.

The outer automorphism groups of the remaining point groups can be deduced by an
aufbau process in which the groups are presented in terms of a complete set of independent
generators. The single-generator, or cyclic, groups must, therefore, be considered first.

5.5.1 Cyclic Groups, Cn and Sn

The cyclic group of order n can be generated by any one of its n-fold elements. If the
n elements are written C\ (1 < i < n — 1), then the order of C\ is the highest common
factor (hcf) of n and i. The number of n-fold elements is thus Y£=i £{hcf(t,n),i}, where 8 is
the Kronecker delta that takes the value +1 if hcf(i, n) = 1 and zero if hcf(i, n) =̂  1. This
function of the number n is known as Euler's ^-function [34], although it was Gauss [35]
rather than Euler who used the letter <f>: Euler used nn in his original work. The order
of the outer automorphism group is precisely <f>{n). If (f>(n) is prime, then ${Cn) — C*(n).

If <f>(n) is composite, rather than prime, ${Cn) is determined using a formulation derived
by Hilton [36]. The subset of the numbers i (1 < i < n—1) such that hcf(i,n) = 1 form an
Abelian group under multiplication modulo n. This group is known as the multiplicative
group of units of the ring of numbers Zn = {0,1,2,. . . , n — 1} and is denoted by U(Zn).
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Hilton showed vhat #(Cn) = U(Zn) if 4>{n) is composite.

A useful property of Euler's (̂ -function is that when the integers nj and n2 are relatively
prime (i.e., hcf(ni,n2) = 1), $(nin2) = $(ni)<£(n2). Consequently, the structure of the
automorphism group of Cninj will be the direct product of the automorphism groups of
Cni and Cni.

5.5.2 Two-Generator Groups

Those point groups that can be specified by two generators are either direct products (e.g.,
Cinh) or semi-direct products (e.g., Cnv = Dn = Dzj (n even)). Of these, C2l) = D7 = CZh
is a special case.

5.5.2.1 Dihedral Groups, Dn and Cnv

The dihedral groups are defined abstractly by two generators, A and B, such that An =
B7 — E and BA =• An~1B. The choice of the n-fold generator A is completely determined
by the automorphisms of the cyclic group Cn. The two-fold generator B must be one of
the n elements APB (0 < p < n — 1). The choice of B is therefore ra-fold and, since it
may be chosen freely, is defined by a cyclic permutation group isomorphic to Cn. To find
the structure of <&(Dn) we need to study the effects of its generators on the elements of
Dn. We cannot assume that, because the choice of A and B is free, the proup $(£)„)
must have the direct product structure $(Cn) x Cn as the following derivation shows.

Let $(Dn) be presented as an extension of $((?„) by the generator P such that Pn = E
and let Q be any element of 3>(Cn). Then, the structure of $(Dn) is known if we can
express all elements of the type QP in terms of standard elements P'Qk. To do this the
effect of QP on the general element AlB of Dn must be studied. By definition,

PA = A, PB = APB (0 < p < n - 1), and
QA = Aq (hcf(?, n) = 1), QB = B.

QP{AlB) = Q{A'+pB) = Al"+pqB, and

= P'(All>kB) = Alqk+piB.

Hence,

QP can therefore be identified with the element PjQk of ${Dn) if j = q and k - 1. The
relationship between a generator Q of ${Cn) and P is therefore such that QP = PqQ.
Since $(Cn) always contains the inverse automorphism when n > 2, it must always
contain a subgroup isomorphic to Dn. When n — 3, 4 or 6, there are no other generators
in ${Cn) and hence $(£>„) = Dn in these cases. Although $(£•„) = Dn for n = 4 and 6,
it is not the inner automorphism group, since it cannot be generated by the conjugation
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process from elements of Dn. In these cases the inner automorphism group is a haJving
subgroup of $(Dn). The order of $(Ai) is ncj)(n).

5.5.2.2 The Cnh Groups

The Cnh groups are direct product groups and hence can be denned abstractly by two
independent generators A and B such that An = B2 = E and BA = AB. When n is odd,
the Cn/, group is cyclic and its automorphism group is isomorphic to the group
determined above. When n is even, there is a difference between the Cjn/i and
families, since these respectively contain 20(4n) 4n-fold and 3<fi(4n + 2) {in + 2)-fold
elements, any of which could be chosen as the generator A.

The outer automorphism groups of the C(in+2)h (n > 1) family may be considered as
generated by the generators of the group ${Cin+2)- Operator Q has the effects QA =
A" (hc%,4n + 2) = 1) and QB = B. Operator P has the effects PA = A, PB = A2n+1B.
Operator R has the effects RA = AB and RB = A2n+1. The operators P and R are such
that P2 = R? = E and RP = PR2, and hence form a group of order six isomorphic to
the dihedral group D3. P and R commute with all operators Q and hence $(C4ri+2) is a
factor in a direct product structure. <£(C(4n+2)/i) is therefore isomorphic to 2?3 x $(£4,1+2)
and is of order 6<j>(4n + 2). In the case of the crystallographic point group (78/,, the outer
automorphism group will accordingly be isomorphic to D3 x C2 (' e., Ds).

The outer automorphism groups of the C4,,/, family will be generated in .-. similar way.
However, the operator R, which has the effects RA = AB and RB — A2nB, is such that
R2 is one of the operators of $(C4n), since R2A - A2n+1 and R2B = B. If, therefore,
we consider only those operators Q which correspond to indices q < In in the definition
QA = A9 (hcf(g, 4n) = 1) and QB = B, the operators Q for which q > In can always be
expressed as R2 times a Q for which q < 2n. This restricted class of operators Q generates
the factor group <£(C<n)/{.Z?, R2} where {E, R2} is a group of two elements isomorphic to
C2. Since P (which is defined to have the effects PA = A and PB = A2nB) and R both
commute with the operations of the factor group, ^{C^n)/{E, R'} is a factor in a direct
product structure. The operators P and R are such that P2 = R* = E and RP = PR3

and, hence, form a group of order 8 isomorphic to the dihedral group D4. The structure
of $(CAnh) is then isomorphic to £>4 x {$(C4n)/C2} and is a group of order 4#(4TI). In
the case of the crystallographic group CM, the automorphism group ^(C^h) is isomorphic
to D4.

5.5.2.3 The D^ Groups

The Dnd groups are isomorphic to £)2n when n is even and to Cinh when n is odd. Their
outer automorphism groups are, therefore, isomorphic to the outer automorphism groups
of these groups, which have been determined above.
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5.5.2.4 Klein's Vierergruppe (C2u, D2, or C2h)

The determination of the outer automorphism group of this Abelian group was presented
by Holder [33]. Its elements may be written in terms of two generators as {E, A, B, AB}.
There is a choice of three elements for the generator A which, once chosen, leaves a choice
of two for B. The third two-fold element is then the product of the two generators. The
order of $(C2v) is 3 x 2 = 6 and its group may be presented as

PA = A PB = AB
QA = AB QB = A

where P2 = Q3 - E and QP = PQ2. *(C2u) is, therefore, isomorphic to the dihedral
group D3.

5.5.3 The Dnh Groups

5.5.3.1 The D{2n+l)h Groups

The Z?(2n+i)h groups are isomorphic to the Din+2 dihedral groups. Hence, the automor-
phisms of the i?(2n+i)/i groups can be calculated by the method given in Section 5.5.2.1.

5.5.3.2 The D2nh (n > 1) Groups

These groups, which are defined by A2n = B2 = C2 = E, BA = A2n~xB, CA = AC, and
BC = CB, may be conveniently separated into a C^nh part and a dihedral part.

= {C2nh} + {nC's + nC2' + n<rv + nad}.

Now, due to the order and class structure of these groups, it is not possible for an auto-
morphism to map any of the C2nh elements onto the dihedral part elements. Therefore,
the generators A and C of D^nh are completely determined by an automorphism of C2nh-
It only remains to make a choice for the generating element B.

From the point of view of acting as a generator, all of the An dihedral elements are
equivalent. Hence, the choice for the generating element B ranges over all of the in
dihedral elements. The automorphisms generated from B form the Abelian group C2nh,
which is normal in $(D2n/l). Hence, we obtain a semi-direct product for the isomorphism
group of D2nh

fc) = C2nh A
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The automorphisms of the C n̂/, groups are divided into two families (see Section 5.5.2.2).
Hence, we obtain for n > 1,

and

= C4nh A {D4 x
2? C4nhA{D4x{U(Z4n)/C2}},

A {Z>3 X

A {Z?3 X

5.5.3.3 The D2H Group

The Z?2h group is defined by A2 = B2 = C2 = £!, with >U? = 5,4, 5 C = CB, and
J4C = CA. Generator A is of the same order (i.e., 2) as the generators B and £7. This
prevents the separation into a Cinh subgroup and a dihedral part and, hence, $(Z)2/,)
cannot be determined by the method given in Section 5.5.3.2.

The choice of generator A ranges over any of the seven two-fold elements. Similarly,
the generator B may range over any of the six remaining two-fold elements. These two
generators, A and B, generate the dihedral group Z?2- The choice for generating element
C is thus restricted to any of the four two-fold elements that are not contained in the
above dihedral group. Hence, the automorphisms of the group Dih form a group of order
168.

o($(Z)2A)) = 7 x 6 x 4 = 168.

This group, whose actions are given in Table 6, is isomorphic to Klein's simple group
[37].

5.5.4 Cubic Groups

5.5.4.1 The Td Group

The Tj group is fundamental to the construction of the automorphisms of the cubic
groups. The Tj group is isomorphic to the permutation group P+. As has been mentioned
previously, P4 is complete, therefore

S Td.
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5.5.4.2 The T Group

The group 7j can be decomposed into its subgroup, T, and the remaining part {Tj - T}:

Td= {E + 4C3 + ACl + 3C2} +
A3 = B2 = C2 = E D2 = E
BA = AC DA = A2CD
CB = BC DB = BD
CA = ABC DC = BCD.

The generating relations ensure that, given a presentation of the group T, there is only
one possible choice for the generator D. Hence, every automorphism of Tj is induced by
a single automorphism of the group T. The automorphisms of the groups T and Td must
be one-to-one. Therefore,

5.5.4.3 The Th Group

The group Th can also be split into the subgroup T and the part {Th — T}:

Th= {E + 4C3 + 4C2 + 3C2} + {52 + 45fl + 45|+3^}
A* = B2 = C2 = E D2 = E
BA = AC DA = AD
CB = BC DB = BD
CA = ABC DC = CD.

As was the case for the Tj group, for a specific presentation of the group T, the generating
relations ensure that there is only one possible choice for the generating element D.
Therefore,

5.5.4.4 The Oh Group

The cubic group Oh can be conveniently decomposed into its cubic subgroup O and the
remaining part {Oh — O}:

Oh= {E + 8C3 + 6C2 + 6C4 + 3C2} + {52 + 6S4 + 856 +
The Subgroup 0

The group 0 is isomcrphic to the group Tj, and hence is complete:
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In addition to the automorphisms induced by those of the group O, there is the class of
automorphisms generated by the mapping:

6Cl
2 - > 6<rl

d

6Ci -* 65 '

6S{ -» 6Ci

Q<r'd - » 6<7j.

This two-fold automorphism commutes with all of the automorphisms generated by the
automorphisms of O, and hence we obtain

= #(0) xC2 = OxC2^Oh.

5.5.5 Icosahedral Groups

5.5.5.1 The / Group

The automorphisms of the group I can be deduced by considering the class structure of
the group:

/ = {12C5} + {12C5
2} + {20<73} + {15C72}.

It is well known that the group of inner automorphisms of I is isomorphic to / , since

Now, because of the class structure of / , the only two classes that can be interchanged
by an automorphism are {I2C5} and {12C|}. These classes cannot be interchanged by
an inner automorphism. Hence, if we produce a mapping {I2C5} <-» {12C7s} we are
able to produce a complete set of automorphisms. The automorphism so produced does
not commute with any of the inner automorphisms of the group, because of the class
structure. Hence, the group of automorphisms is isomorphic to the permutation group
ft; i.e.,

*(/) = P..

5.5.5.2 The Ih Group

The group Is is the direct product of the group / with the group 52- Due to the structure
of the group it is possible to choose the additional generator (S2) in only one way. In
addition, no class of {Ih — 1} may be permuted by an automorphism with any class of
/ , due to the order structure of the group. Hence, every automorphism of //, is induced
by a sing1"- automorphism of / ,

a? p 5 .
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Table 6
The Automorphisms of the Cyclic Groups

Group

<?2

c3
c4
c5
c6
Cio

Presentation

A2 =

A3 =

A4 =

AB =

A6 =

A10 =

E
E
E
E
E
E

E
E
E
E
E
E

Group
E

c2
c2
c4
c2
c<

Presentation
E
P2

P2

p4

P2

P4

= E

= E
= E
= E
= E

Action

PA
PA
PA
PA
PA

= A2

= A3

= A2

= AS

= A3

Table 7
The Automorphisms of the Two-Generator Point Groups

Group

D2

D3

D<

D,

D6

Presentation

A2 = B2 = E
AB = BA

A3 = B2 = E
BA = A2B

A4 = B2 = E
BA = A3B

A5 = B2 = E
BA = A4B

A6 = B* = E
BA = A5B

E

D3

D2

D5

D3

$
Group

D3

D3

D4

C5AC4

Presentation
P3 = Q2 = E

QP = P2Q

P* = Q* = E
QP = P2Q

P* = Q2 = E
QP = P3Q

ps = Q* = E
QP = P3Q

P6 = Q2 = E
QP = PSQ

Action
PA = B
PB = AB
QA = B
QB = A
PA = A
PB = A2B
QA = A2

QB = A2B
PA = A
PB = AB
QA = A3

QB = B
PA = A
PB = A2B
QA = A2

QB = B
PA = A
PB = AB
QA = AS

QB = B

Continued.
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Table 7
The Automorphisms of the Two-Generator Point Groups (Concluded)

Group

# 1 0

Presentation

A* = B2 = E
BA = A7B

A10 = B2 = E
BA = A9B

A12 = B2 = E
BA = AnB

BA = AB

BA = AB

*'

D6

E

E

$
Group

CaAD2

Cl0 A C4

C12 A D2

Presentation
Pa = Q2 =R2 = E
QP = P7Q
RP = P3R
QR = RQ

P10 = Q4 = E
QP = P7Q

pl2 _ Q2 _ D2 _ F

QP = PUQ
RP = P*R
\tS ft ilW

QP = P3Q

QP = P3Q

Action
PA = A
PB = AB
(§ A •— J\
*qf dX — J*.
/^ D D

JVi l — J\

RB = B
PA = A
PB = AB
QA= I s

QB = B
PA = A
PB = AB
QA = An

QB = B
RA = AB

RB = B
PA = AB
PB = A2B
QA = A
QB = A2B
PA = A2B
PB = A3B
QA = A
QB = A3B
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Table 8
The Automorphisms of the D2nh Groups

Group

D2h

Z/4/1

L/Qh

Presentation

A2 = B2 = C2 = E
AB = BA
CA- AC
CB = BC

AA = B2 = C2 = E
BA = A3B
CA = AC
CB = BC

A6 = B2 - C2 - E
BA = A*B
CA = AC
CB = BC

*'

E

D2

D3

Group
Klein's
Simple
Group

of
Order

168

C4h A DA

C6h A D6

| Presentation
P4 = Q7 - (PQ)2 =

{P-'Q)3 = E

P4 = Q2 = R* =
S2 = E

QP - P3Q
SR=RS
PR = RSP
PS = R2SP
\J J\ — JXVJ;

QS = R2SQ

P6 = Q2 = R6 =
S2 = E

QP = PSQ
SR = RS
PR = RSSP
QR = RQ
PS = R3P
QS = R3SQ

Action
PA = A
PB = C
PC = AB
QA = B
QB - AC
QC = A
PA = AC
PB = B
PC = A2C
QA = A
L/ MI ^r f>

QC = A2C
RA = A
RB = AB

SB = BC
SC = C
PA - AhC
PB = B
PC = A3

QA = A
QB = B
QC = AZC
RA = A
RB = AB
RC = C
SA = A
SB = BC
SC = C
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Table 9
The Automorphisms of the Cubic Groups

Group

T

Td

Presentation

A3 = B2 = C2 = E
BA = AC
BC = CB
CA = ABC

A3 = B2 = C2 = D2 = E
BA = AC
CA = ABC
CB = BC
DA = A2CD
DB = BD
DC = BCD

V

T

Td

Group

Td

Td

Presentation
P3 = Q2 = R2 =

S2 = E
QP = PR
RQ = QR
RP = PQR
SP = P2RS
SQ = QS
SR = QRS

P3 = Q2 = R2 =
S2 = E

QP = PR
RP = PQR
RQ = QR
SP = P2RS
SQ = QS
SR = QRS

Action
PA = A
D D D /"T

£ It — fj 1^

PC = B
QA = CA
QB - B
QC -C
RA =z BCA
RB = B

SA = A2BC

SC = BC
PA = A
PB = BC
PC = B
PD = A2BCD
QA = ABC
QB = B
QC = C
QD = D
RA = AB
RB = B
RC = C
RD = BD
SA = A2BC
SB = B
SC = BC
SD = BD

Continued...
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Table 9
The Automorphisms of the Cubic Groups (Concluded)

Group

Th

OH

Presentation

A6 = B2 = C2 = E
BA = ABC
CA = AB
CB = BC

A* = B2 = C2 = D2 = E
BA = AC
BA3 = A3B
CA = A*BC
BC = CB
DA = A2BD
DB = CD
DC = BD

V

T

0

Group
Td

0h

Presentation
P3 = Q2 =z R2 =

S2 = E
QP = PR
RP = PQR

SP = P2RS
SQ = QS
SR = QRS

P6 = Q2 = R2 =
S2 = E

QP = PR
QP3 = P3Q
RP = P4QR
XI, v*/ — \tJ It,

SP = P2QS

Action
PA = A
PB = BC
PC = B
QA = A2BC

QC = C
RA = ABC
RB = B

SA = AhBC
SB = B

PA = A
PB = C
PC = A3BC
PD = A4BD
QA = ABC
QB = B
QC = C
QD = A3BCD
RA = A*B
RB = B
RC = C
RD = A3BCD
SA = A2B
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Table 10
The Automorphisms of the Icosahedral Groups

Group

I

Presentation

AB =
D2

BA =
CA =
DA =

DC =
DB =

B3 = C2 =
= E
A*B2

A2B
A*D

CD
CB2

V

I
Group

PB

$
Presentation

P s =
S2

QP =
RP =
SP =

SR =
SQ =
TP =
TQ =
TR =
TS =

Q* = R2 =
= T2 = E
P*Q2

P2Q
P*S

RS
RQ2

P3SQ2T
QT
PQ2RST
SQP2T

PA
PB
PC
PD
QA

QQC
QD
RA
RB

RD
SA
SB
SC
SD
TA
TB

fc
TD

Action

= A
= A3B2

= AB
= A*D
= A3C

ii 
ii

to
 b

= CD
= A2BC
= BCD
= C
= D
= A4

= BC
= C
= D
= B2AD
= B
= ACB2

= A3B2D

Continued.
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Table 10
The Automorphisms of the Icosahedral Groups (Concluded)

Group

h

Presentation

A* = B3 = C2 =
D2 = I2 = E

BA = A4B2

CA = A2B
DA = A*D
BD = CB
DC = CD
DB = CB2

AI = IA
BI -IB
CI = IC
DI = ID

V

I
Group

Pi

Presentation
P* = Q3 = R2 =

S2 = T2 = E
QP = P4Q2

RP = P2Q
SP = P*S
QS = RQ
SR = RS
SQ = RQ2

TP = P3SQ2T
TQ = QT
TR = PQ2RST
TS = SQP2T

Action
PA = A
PB = A3B2

PC = AB
PD = AAD
QA = A3C
QB = B
QC = D

RA = A2BC
RB = BCD
RC = C
RD = D
SA = A4

SB= BC
SC = C
SD = D
TA = B2AD
TB = B
TC = ACB2

TD = A3B2D
PI = I
f\ T T
L/j — - j

RI = I
SI = I
fl = I
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6. CONCLUSIONS

In this report, we have reviewed the group-theoretic properties of phase transitions and
demonstrated that the problem of extending a group reduces to that of determining its
automorphisms.

The automorphism groups of the crystallographic and icosahedral point groups have
been derived with a consistent presentation. These new results, which are presented in
Tables 6-10, enable the derivation of all extensions of the crystallographic point groups.

Further reports in this series will use this information to identify all spectroscopically-
active soft modes for the 230 space groups. Identification of these soft modes will enable a
detailed examination of phase transitions in materials of interest to the Canadian Nuclear
Program and aid in the optimization of material properties.
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