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1 Introduction 
The European Synchrotron Radiation Facility1 [1] will op­
erate a 6GeV e ~ / e + storage ring of 850m circumference 
to deliver to date unprecedented high brilliance X-rays 
to the European research community. The ESRF is the 
first member of a new generation of Synchrotron Radia­
tion Sources, in which the brilliance of the beam and the 
utilization of insertion devices are pushed to their present 
limits. 

Commissioning of the facility's storage ring will start in 
spring 1992. A full energy injector, consisting of a 200MeV 
linear preinjector and a 6GeV fast cycling synchrotron 
(10Hz) of 350m circumference have been successfully com­
missioned during the last months. 

The machine control system for this facility, which is 
under construction since 1988, is still under development, 
but its initial on-site operation this year has clearly made 
easier the commissioning of the preinjector plant. 

A description of the current system is given and appli­
cation software for start-up is briefly described. 

2 Architecture 
The ESRF control system is based on a multi-level ar­
chitecture of distributed hard- and software processing 
units[2]. Logically the system is structured into four levels. 
From top to bottom we call them: 

• Console Level (Presentation); 

t Process Level (Applications); 

• Group Level (Device Servers); 

• Field Level (Equipments, Embedded Controlers). 

On the lowest level, all equipments are interfaced; either 
by intelligent controlers, as they are delivered from the 
manufacturer, or by dumb interfaces. Equipments are log­
ically grouped together on the group level. Grouping of 
equipments is done by similar functionality. The group 
level is responsible for hardware specific and real time 
1/O-operations. Device servers perform the task of hiding 
hardware specifics to the upper level. The process level 

represents that level of the control system where practi­
cally all higher level control tasks take place and where 
physics applications are processed. Powerful multitasking 
capabilities and fast processing is mandatory on this level. 
The presentation level presents the interface between the 
operators and the system. Within this level data entering 
from the lower level are presented graphically or are for­
matted to readable reports. Commands entered by means 
of interactive devices are decoded into events and finally 
passed as internal messages to the lower levels. 

Physically the system is split into 2 levels. All nodes of 
the presentation and process level consist of UNIX based 
workstations and file/compute servers interconnected by 
Ethernet. The group level nodes are realised by VMEbus 
crates, equipped with 68030 CPU boards. These systems 
run the OS9 multitasking real time kernel/operating sys­
tem. Every process level server connects to a private Eth­
ernet segment onto which group level nodes it Is in charge 
of are connected. 

The physical bcder line between group level and field 
level is fuzzy. In our system some dumb devices are di­
rectly interfaced to VME I/O-boards that are plugged into 
group level crates, but most dumb devices are interfaced 
by means of G64 crates. Groups of G64 crates, that inter­
face classes of similar devices, are connected to multidrop 
highways that are mastered by group level crates. This 
multidrop highway 2 was developed at ESRF. However, in­
telligent devices with embedded controlers are, in the ma­
jority of cases, directly connected to VME (group level) 
crates 3. 

3 Networks 
Modern control systems are distributed[3, 4]. The larger 
the accelerator is, the more important is its network in­
frastructure. The ESRF control system is fully distributed 
and relies strongly on a high speed computer network. 

Figure 1 gives ao overview of the logical and physical 
implementation of the control system and its network. 

Apart from the home-made multidrop highway all com­
puter connections are based on the Ethemet(IEEE 802.3) 

HESRF) 
*we named it FBUS 
3in the majority by RS422 or RS232 uynchronoui ferial linki 
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Figure 1: Overall Layout of Control System and Networks 

LAN standard and the T C P / I P protocol suite. The net­
work is constructed using 50/125/im multimode graded in­
dex optic fibres 4 for cabling, that will allow a later migra­
tion to FDDI. 

Four networking centers are located around the storage 
ring tunnel, a center comprising a "NODE" and a wiring 
"HUB". A NODE is the location that acts as the conver­
gent point for IEEE 802.3 compliant active devices e.g. an 
active star. To the NODE are attached "LOBES" which 
are configured on a star wired topology. A LOBE is the 
remote system connected to a NODE, and in this case it is 
a remote "transceiver" attached by a standard AUI 5 cable 
to a VME crate, process computer, graphics workstation 
or fanout unit. 

For the active stars at the NODES, the "Lannet Mutti-
net II" system was chosen for its ability to operate in a sin­
gle chassis and support up to four independent backbone 
bus's. In addition all backbone fibre optic links are run in 
a synchronous Ethernet mode. By using this mode it is 
possible to install more than the "four" repeaters that re­
stricts standard asynchronous Ethernet systems, with the 
restraining factor being, the round trip delay that limits 

* Bandwidth ipecified at 850nm > 500MHz * km and at 
1300nm > 700MHz m km 

5 Attachment Unit Interface 

each Ethernet segment to approx. 4.5 kilometers. 
The wiring HUB is the central point for passive network 

components, i.e. the backbone optical fibres that link all the 
HUBs together in a circular structure around the storage 
ring tunnel. It also acts as the termination point for all 
star wired fibres that are attached to the LOBES. 

When installing the circular backbone, provision for 10 
independent rings has been made, out of which four will 
be used initially. One ring functions as the main control 
segment, to which all upper layer processors are connected. 
There are three dedicated process servers that operate as 
network gateways to the other three rings. The latter are 
used as process segments to which all middle layer VME 
systems are connected. Devices in the field are either con­
nected directly to them or accessed through the multidrop 
highway. 

Response times on a heavily loaded Ethernet become 
quasi stochastic. Having this in mind, the whole system 
was designed in a way to provide maximum flexibility in 
distributing sinks and sources of network traffic. This is 
accomplished by fiber optic patch panels situated by the 
HUBs. By simply crosspatching between panels, any pro­
cessor can immediately be connected to any of the inde­
pendent rings comprising the backbone. Upgrading the 
backbone to FDDI would be another, although much more 
elaborate, remedy against network congestion. 

4 Computers 
4.1 Consoles 
The standard console in the control room will be an HP 
Apollo 9000 Model 720 workstation with local disk to hold 
the bootable image of the operating system and to provide 
local swap space. File systems containing control system 
and physics applications software are remotely mounted 6 

from the process servers. Currently we are running 5 con­
soles in the main control room. 

In addition to tha t , RISC based X Window graphics 
terminals, like the HP 700/X familiy, that are served by 
the process servers, will be used as console devices. Their 
ideal usage will be that of "remote" consoles. They will be 
outside of the control room but plugging to the backbone's 
control segment. Their main purpose is to give scientists, 
working on an experiment, the possibility to control the 
movements of ikeir "insertion device" by themselves. 

4.2 Process Servers 
As process servers the HP 9000 Series 800 Model 842 and 
857 midrange super-mini computers were selected. There 
are currently three of these machines in the system. Sys­
tem features are: 

• high reliability; 

^currently we are using SUN'* NFS that we hope to replace by 
OSF'* DCB 
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• 29 Mips; 6.9 DP 7 Mflops; CMOS RISC technology; 
• interna] disk storage: <2.oP Gbytes; 
• I/O bandwidth 21 Mbytes/sec; 
• integrated DAT* unit: 1.3 Gbytes capacity; 

These machines are configured as network gateways be­
tween the control segment and one of the corresponding 
process segments. To accomplish this, each of them is 
equipped with two high speed LAN adapters. 

The process servers and the console workstations run 
HP-UX; an AT&T System V Rel 3.0, and BSD 4.3 com­
pliant implementation of the UNIX operating system. All 
machines run MIT's X Window System, which allows ap­
plications to run as X-clients on the process servers and to 
perform interactive I /O through X-servers running on the 
consoles. 

4.3 VME Systems 
All VME systems have an identical base configuration. 
This comprises a CPU with Motorola 68030 @ 20 MHz, 
4 Mbyte RAM, on board Ethernet adapter, and additional 
512Kbyte battery backed up RAM on a separate board. 

On these systems we run Microware's OS9 realtime 
kernel/operating system. In addition the systems are 
equipped with a T C P / I P Internet Support Package pro­
viding Berkely sockets, and SUN's Network File System. 

All systems are running in a diskless configuration for 
ease of maintenance and reliability. The battery backed 
512Kbyte RAM holds the OS9 real time kernel and a min­
imal T C P / I P configuration. When the system boots, it 
loads additional OS9 modules, applications, and the NFS 
modules from a process server. Using NFS, it then copies 
configuration files from the process server into its RAM 
disc and initialises the applications. 9 Cold start-up still has 
to be done manually by toggling a switch on the board's 
front panel, but we are working on a remote facility. 

5 Interfacing 
Many of the VME systems drive fast multidrop highways. 
This FBUS is not a general purpose network but imple­
ments a low cost remote input/ouput facility. It relies on 
a master-slave relationship, where a controller (VME based 
module) drives a large number 1 0 of slave nodes. The nodes 
comply with the G6*4 standard, so that full advantage can 
be taken of existing interface boards from industry. The 
FBUS multidrop highway is based on a synchronous se­
rial protocol. Physical implementation uses an extremly 
noise resistant Manchester encoding with transformer iso­
lation, i.e. each node being galvanically isolated from the 

7 With floating-point processor. Double Precision 
a Digital Audio Tape 
"MJcrowiire ha* recently s ta r ted t o ship the BOOTP Por t Packs 

for OS9. B O O T P is used to make a boot PROM with the possibility 
to boot OS9 directly over Ethernet , thus avoiding the bat tery backed 
up RAM 

1 0 u p to 64 on one highway 

highway. The data rate is up to 2 Mbits per second on 
a 200m-300m long highway. FBUS can still be safely op­
erated at a speed of 1 Mbits per second on distances of 
up to 1 km and 30 nodes without repeater. The transmis­
sion medium is a flexible shielded twisted-pair cable with 
a characteristic impedance of 78 Ohms. 

G64 and FBUS interfacing has been used for control 
of main magnet power supplies, beam position monitors, 
magnet interlocks, corrector magnet power supplies, and 
injection/extraction elements. Other significant subsys­
tems that include G64 crates are the system to distribute 
the slow timing pulses, the video cross point switch, and 
the video multiplexors for fluorescent screen monitors. The 
rest of devices is directly interfaced to the VME systems; 
either by asynchronous serial lines or digital I /Os. 

As a result of an early taken policy, to stick to industry 
standards, only a few boards had to be designed by the 
ESRF Digital Electronics team: 

• video multiplexor1 1 (VME) 
• delay unit 1 2 (VME) 
• ADC with on-boaid memory (G64) 
• FBUS master (VME and PC/ATbus) 
• FBUS slave (G64) 
• clock divider 1 3 

Unavoidably some other dedicated electronics had to be 
designed to adapt some exotic devices to the standards 
chosen. 

Table 1 gives an overview of interfacing. 

6 Software 
6 . 1 E q u i p m e n t A c c e s s 

The low level system software for the distributed control 
system is based on a "Client/Server" architecture. The 
Client/Server technology is a simple mechanism to dis­
tribute software tasks across any number of processors. 
This approach is open and object oriented, can be imple­
mented on existing systems (eg. OS9 and UNIX), and will 
be discussed in detail by a contribution to this conference 
from A.Gotz. 

Objects are sets of hidden data on which well defined 
operations may be performed by authorized users. Associ­
ated which each object is a "Server" process tha t manages 
the object and exports its functionality as a service. This 
server-based model is implemented using "Remote Proce­
dure Calls" l 4 [ 5 , 6). When a user process wants to perform 
an operation on an object, i t sends a request message to 
the Server in charge of it. The message contains access 
keys, a specification of the operation to be performed, and 
any parameters the operation requires. The user process, 

1 1 15 :1 
1 3 6 channels, 32MHz resolution, 0-524 m> range 
" f o r RF-synchronous triggers, 352MHz:32MHz 
" R P C ; in our implementation we use SUN's R P C and XDH 
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V M E 
crate 

V M E 
dig I /O 

V M E 
serial I / O 

V M E 
special I /O 

G 6 4 
crate 

6 6 4 
analog in 

G 6 4 
analog out 

W h e r e 

1 20 8 6 15 84 84 Transfer Line 1 
1 48 6 4 3 3 Transfer Line 2 
1 6 2 3 Injection/Extraction 
1 16 5 75 Syncbr. Diagnostic 
2 3 15 9 Synchr. Magnet 

Power Supplies 
3 56 Synchr. Vacuum 
1 34 36 8 SY/SR slow timing 
1 37 33 224 Storage King 

Diagnostics 
1 21 1 36 36 36 Storage Ring Magnet 

Power Supplies 
16 448 34 32 2050 Storage Ring Vacuum 
1 1 5 51 576 Geodesy & Mag. Interlocks 
14 48 14 9 9 Insertion Devices 

68 17 816 Front Ends 
41 14 82 X-ray BPMs 

2 34 53 Radiation & Safety 
2 2 misc. Monitoring 
4 R F & LINAC (subcontr.) 
51 102 719 254 224 3946 132 T O T A L 

Table 1: Overview of Hardware Interfacing for the ESRF accelerator plant 

known as the "Client", then blocks- After the Server has 
performed the operation, it sends back a reply message 
that unblocks the Client. The combination of sending a 
request message, blocking, and accepting a reply message 
forms a Remote Procedure Call, which can be encapsu­
lated to make the entire remote operation look like a local 
procedure call. 

The lowest level of objects in the accelerator plant are 
the actors and sensors (or physical devices). These objects 
are "terminator objects"; they are easy to identify, and 
their behaviour can be modelled and documented. 

"Device Servers" are terminator objects that operate on 
physical devices. The more general term "Server" or "Vir­
tual Device Server" covers objects on a higher level of ab­
straction. Objects on a higher level of abstraction can use 
terminator objects to offer a given service 1 5 . 

The Device Server is an intermediary between applica­
tion programs and the physical resources of the accelerator 
system. It contains all device-specific code, and insulates 
applications from differences between hardware. It per­
forms the following tasks: 

• Allows access to the device by multiple clients. To 
implement security, the server, depending on its state, 
may deny access from certain clients. 

• Interprets network messages from clients and acts on 

them. 
RPCs. 

Messages are generated by clients through 

• Maintains complex data structures, including device 
state information. Server maintained information re­
duce the amount of data that has to be maintained 
by each client and the amount of data that has to be 
passed over the network. 

At ESRF the Device Servers follow the O O P 1 6 paradigm 
and have to be implemented in a certain, fixed style. The 
OOP paradigm is based on the "widget" model from the 
X l l Intrinsics Tool kit [7] of MIT and is implemented in 
ANSI C. 

The control system designers have decided to implement 
all important functions necessary to run the distributed 
system in Servers. This includes the processes to boot 
and manage the system, to access the database, to ban-
die graphics objects, as well as Device Servers to access 
equipments. 

According to our current s tate of knowledge about 53 
Device Servers have to be written for the complete system. 
About 50% of them are currently released. The average 
size of a Device Server ranges typically between 2000-2500 
lines of C code. 

1 6 T h e encapsulation of lower level services into higher level services 
can continue until a very high abstraction like physical machine pa­
rameters, i.e. energy, chromotidty, tune, emittance is achieved. 1 6 Object oriented programming 
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6.2 Graphics User Interface 
This field of technology is in a state of tremendous inno­
vations. Fortunately some standards exist now: X l l , and 
Motif. The Xll-window system, or Xll, is a network-
transparent window system. With Xll, multiple applica­
tions can run simultaneously in windows, generating text 
and graphics. Network transparency means that applica­
tion programs that are running on other machines scat­
tered throughout the network, can be used as if they were 
running on a local machine. 

The core components of the OSF/Motif technology in­
clude an extensible user interface17, an applications pro­
gramming interface18, a user interface metalanguage19, 
and a window manager. Motif is based on the X Intrin-
sics, a toolkit framework provided with XI1. The Intrinsics 
use an object oriented model to create a class hierarchy of 
graphical objects known as "widgets". 

Both Xll and Motif, are extremely helpful but their 
libraries are complex to learn and to use for program­
ming. Coding of applications started initially with those 
libraries, and demanded substantial efforts in becoming fa­
miliar with this new technology. 

User Interface Management Systems20 (sometimes 
called interface builders) are the tools which help the ap­
plication programmer to design the user interface part of 
the application interactively. A UIMS is generally com­
posed of a graphic oriented editor and a code generator, 
and sometimes other complementary tools. There are sev­
eral Motif compliant UIMS available. A few of them have 
been tested at ESRF. At present one of them has been 
selected for use[8]. 

This UIMS drastically eases now the design of Motif-
based user interfaces. It generates stand-alone C code 
and/or a combination of Motif-compliant C and UIL code. 

Synoptic drawings with selectable objects are scarcely 
supported by the above mentioned tools. We therefore 
work on an implementation of a Motif compliant widget 
that uses vectorial drawings generated by PHIGS 2 1. Syn­
optics will be generated by CAE systems like AUTOCAD 
or EUCLID. 

6.3 Database 
The control system data are stored in relational databases 
which manage two logical parts: 

• Resource data; 
• Runtime data. 

The resource database keeps permanent data. Examples 
are: start-up resources, calibrations, equipment defini­
tions, installation- & maintenance data, etc... 

"UI 
"API 
"UIL 
2 0 UIMS 
3 1 standi for Programmer'! Hierarchical Graphic* Syitem and U an 

ISO itandard 

The implementation of the resource database uses ORA­
CLE and its powerful set of development tools. Modifica­
tions on the resource database cause automatic update of 
runtime data sets, that are redundant copies of the parent 
data set in the resource database. 

The runtime database is a central warehouse for all sorts 
of temporary or transient data. It is not a medium for per­
manent storage. It is simply a front for permanent storage. 
Only memory resident database systems can meet the de­
mands for sufficiently short transaction times. A prototype 
of the runtime database is operational and uses a Real-
Time Database Base Management System22 available on 
HPs. 

The runtime database can be used to alleviate con­
gestion problems. Multiple processes can update data 
asynchronously in the database. Other processes can re­
trieve this information aynchronously without blocking the 
process doing the updating. Since the memory resident 
database profits from a much higher than normal I/O 
throughput, this mechanism is used to resolve information 
traffic jams that may occur. 

The runtime database's prime source is a so-called Up­
date Daemon that updates the current machine status if 
a particular client requests this. The database contains 
ring buffered tables to store brief histories of the results of 
requests issued to a device. Although physically the run­
time database is distributed over all process servers, access 
to it is transparent to database clients. On-line data can 
be archived continously. Only a time window of some five 
minutes is kept in memory by RTDB, the rest of the data is 
dumped into the disk-based ORACLE database. An index 
to these data is constructed to allow queries in accelerator 
physics terms on archived data. Data can be stamped with 
time or accelerator status information. 

The same runtime database can also be used by applica­
tions as a mean for interprocess communication. Applica­
tions dynamically allocate "tables" of formatted data, that 
can then be piped or multiplexed to other applications. 

The volume of data that will be managed by the resource 
database is estimated to be some lOMbytes. The whole 
control system comprises more than 3000 devices and more 
than 50000 static resources. The throughput of on-line 
data at its worst is estimated to be some 40kbytes/sec. If 
all data coming from the machine is stored at an interval 
of a second, it would mean 12Mbytes every 5 minutes. 

6.4 Applications 
Application program development at ESRF has been taken 
care of at an early stage of the project. Usually this class 
of software tends to be too little and too late. To give 
accelerator physicists the possibility to develop their ap­
plications in parallel with the control system software, an 
applications programmer interface33 has been defined very 
early and kept stable until then. 

"called RTDB 
3 3 API 
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NFS/RPC API 
UDP TCP UDP 

open connection 
close connection 

20-25ms 
0.1-0.2ms 

35-45ms 
0.3-0.5ms 

55-65ms 
10-20ms 

RPC with lOObytes 
RPC with Skbytes 
RPC with 401tbytes 

10-15ms 
25-35ms 

15-20ms 
55-65ms 
220-250ms 

15-20ms 
30-40ms 

Table 2: Performance figures for RPC and API 

Access to the Device Servers is provided by a small set 
of C calls. These calls allow the users to develop their ap­
plications in peace without being affected by what goes on 
in the Device Server software. Initially very simple Device 
Servers have been written, that ran on the local host, and 
that only simulated devices. These API-calls hide the com­
plexity of Device Servers and their implementation from 
users by offering them a set of high level commands as ac­
cess method. How and where the Device Server executes 
the high level command is hidden. In the distributed en­
vironment this workload is spread over a number of ma­
chines. 

The following functions form the basis of the Device 
Server API: 

• int dev_iaport(naae, acceBS, ds.ptr, error) 
char *na*e; / • Device Server Naae */ 
long int access; / * Access Type */ 
devserver *ds_ptr; / • DevServer Handle • / 
long *error; / * Error Code * / 

la called by the application to establish a connection to a 
Device of the specified name. 

• in t dev_putget(do, cad, a r g i n . p t r , typein 
argout_ptr , typeout, e r ror ) 

devserver dsj / * DevServer Handle */ 
DevCad cud; / * Device Coaaand • / 
DevArgPtr argin_ptr ; / * Call Parameter «/ 
DevType typein; / * Parameter Type */ 
DevArgPtr a rgou t . p t r ; / » Return Parameter */ 
DevType typaout; / * Parameter Type */ 
long *errorj 

Is called by the application to execute a command on the 
device. This is a "blocking" call which doesn't return until 
the command requested has been executed. 

• in t dev_put(ds, cad, a r g i n . p t r , typein, 
e r ror ) 

Is called by the application to execute a command on the 
device. This is an "asynchronous" call which will return 
as soon as the command has been delivered to the server 
or an error occurred. This call can only be used to start 
a command, no knowledge is returned about its execution 
and/or success. It is up to the application to interrogate 
the Device Server to determine its status. 

• i n t dev_fr«*(d8, e r ror ) 
DevServer ds ; /* DevServer Handle */ 
long *«rror; 

Is called by an application to release a device properly. 

Measurements of RPC and API performance that we 
achieve between a process server and a VME node are given 
in table 2. 

Using strictly this device access interface and the XI1 
and Motif standards for interactive graphical I /O, an im­
pressive number of physics applications have been devel­
oped in parallel with the basic control system software, and 
have considerably helped to commission the booster in due 
time. An enumeration of applications presently available 
follows: 

T rans fe r l i ne 1 & 2 : These programs execute specific 
procedures for step by step alignment, emittance mea­
surement, and modelling of beam envelopes. 

C losed o r b i t : The program performs basic control of 
steerers and bumps, beam position readout, orbit 
plots, fourier analysis of orbit and steerers, and au­
tomatic orbit correction. 

B o o s t e r v a c u u m : This program controls the vacuum 
system. It allows individual device control, display of 
periodically updated status, and display of pressure 
profile. 

B o o s t e r i n j e c t i o n / e x t r a c t i o n : This program allows 
control of current- and timing settings of pulsed injec­
tion/extraction elements. 

B o o s t e r o p t i c s : Different options in this applica­
tion allow tune measurement /setting, chromaticity 
measurement/setting, measurement of /^-functions at 
qtiadrupole locations, and measurement of dispersion 
(^function). 

S t o r a g e ring in jec t ion : Used for tuning of the injec­
tion kicker/septa to maintain an injection bump and 
control injected beam position and angle. 

7 Conclusion 
The ESRF control system is operational since August 1991-
It played an important role during commissioning of the 
booster synchrotron. The system has been designed from 
bottom up, using object oriented programming techniques, 
and is based on proven industry standards. Its design has 
been guided by a clear preference for mature commercial 
systems over custom- or home-made ones, without formally 
excluding the latter. 

The system is not finished yet, but it is easily extend­
able and adaptable to future needs. It is through the 
standards that have been selected for the control system, 
that ESRF will be able to migrate together with indus­
try to new technologies while preserving considerable in­
vestments in hard- and software. The choices of UNIX, 
Xll /Motif , VME/OS9, Ethernet, and T C P / I P have been 
fundamental in this sense. 
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