
The ESRF Control System; Status and Highlights

W.-D.KIotz
European Synchrotron Radiation Facility

BP220
38043 Grenoble Cedex, France

1 Introduction
The European Synchrotron Radiation Facility1 [1] will op­
erate a 6GeV e ~ / e + storage ring of 850m circumference
to deliver to date unprecedented high brilliance X-rays
to the European research community. The ESRF is the
first member of a new generation of Synchrotron Radia­
tion Sources, in which the brilliance of the beam and the
utilization of insertion devices are pushed to their present
limits.

Commissioning of the facility's storage ring will start in
spring 1992. A full energy injector, consisting of a 200MeV
linear preinjector and a 6GeV fast cycling synchrotron
(10Hz) of 350m circumference have been successfully com­
missioned during the last months.

The machine control system for this facility, which is
under construction since 1988, is still under development,
but its initial on-site operation this year has clearly made
easier the commissioning of the preinjector plant.

A description of the current system is given and appli­
cation software for start-up is briefly described.

2 Architecture
The ESRF control system is based on a multi-level ar­
chitecture of distributed hard- and software processing
units[2]. Logically the system is structured into four levels.
From top to bottom we call them:

• Console Level (Presentation);

t Process Level (Applications);

• Group Level (Device Servers);

• Field Level (Equipments, Embedded Controlers).

On the lowest level, all equipments are interfaced; either
by intelligent controlers, as they are delivered from the
manufacturer, or by dumb interfaces. Equipments are log­
ically grouped together on the group level. Grouping of
equipments is done by similar functionality. The group
level is responsible for hardware specific and real time
1/O-operations. Device servers perform the task of hiding
hardware specifics to the upper level. The process level

represents that level of the control system where practi­
cally all higher level control tasks take place and where
physics applications are processed. Powerful multitasking
capabilities and fast processing is mandatory on this level.
The presentation level presents the interface between the
operators and the system. Within this level data entering
from the lower level are presented graphically or are for­
matted to readable reports. Commands entered by means
of interactive devices are decoded into events and finally
passed as internal messages to the lower levels.

Physically the system is split into 2 levels. All nodes of
the presentation and process level consist of UNIX based
workstations and file/compute servers interconnected by
Ethernet. The group level nodes are realised by VMEbus
crates, equipped with 68030 CPU boards. These systems
run the OS9 multitasking real time kernel/operating sys­
tem. Every process level server connects to a private Eth­
ernet segment onto which group level nodes it Is in charge
of are connected.

The physical bcder line between group level and field
level is fuzzy. In our system some dumb devices are di­
rectly interfaced to VME I/O-boards that are plugged into
group level crates, but most dumb devices are interfaced
by means of G64 crates. Groups of G64 crates, that inter­
face classes of similar devices, are connected to multidrop
highways that are mastered by group level crates. This
multidrop highway 2 was developed at ESRF. However, in­
telligent devices with embedded controlers are, in the ma­
jority of cases, directly connected to VME (group level)
crates 3.

3 Networks
Modern control systems are distributed[3, 4]. The larger
the accelerator is, the more important is its network in­
frastructure. The ESRF control system is fully distributed
and relies strongly on a high speed computer network.

Figure 1 gives ao overview of the logical and physical
implementation of the control system and its network.

Apart from the home-made multidrop highway all com­
puter connections are based on the Ethemet(IEEE 802.3)

HESRF)
*we named it FBUS
3in the majority by RS422 or RS232 uynchronoui ferial linki

121

^ ^ 5 DMION

Figure 1: Overall Layout of Control System and Networks

LAN standard and the T C P / I P protocol suite. The net­
work is constructed using 50/125/im multimode graded in­
dex optic fibres 4 for cabling, that will allow a later migra­
tion to FDDI.

Four networking centers are located around the storage
ring tunnel, a center comprising a "NODE" and a wiring
"HUB". A NODE is the location that acts as the conver­
gent point for IEEE 802.3 compliant active devices e.g. an
active star. To the NODE are attached "LOBES" which
are configured on a star wired topology. A LOBE is the
remote system connected to a NODE, and in this case it is
a remote "transceiver" attached by a standard AUI 5 cable
to a VME crate, process computer, graphics workstation
or fanout unit.

For the active stars at the NODES, the "Lannet Mutti-
net II" system was chosen for its ability to operate in a sin­
gle chassis and support up to four independent backbone
bus's. In addition all backbone fibre optic links are run in
a synchronous Ethernet mode. By using this mode it is
possible to install more than the "four" repeaters that re­
stricts standard asynchronous Ethernet systems, with the
restraining factor being, the round trip delay that limits

* Bandwidth ipecified at 850nm > 500MHz * km and at
1300nm > 700MHz m km

5 Attachment Unit Interface

each Ethernet segment to approx. 4.5 kilometers.
The wiring HUB is the central point for passive network

components, i.e. the backbone optical fibres that link all the
HUBs together in a circular structure around the storage
ring tunnel. It also acts as the termination point for all
star wired fibres that are attached to the LOBES.

When installing the circular backbone, provision for 10
independent rings has been made, out of which four will
be used initially. One ring functions as the main control
segment, to which all upper layer processors are connected.
There are three dedicated process servers that operate as
network gateways to the other three rings. The latter are
used as process segments to which all middle layer VME
systems are connected. Devices in the field are either con­
nected directly to them or accessed through the multidrop
highway.

Response times on a heavily loaded Ethernet become
quasi stochastic. Having this in mind, the whole system
was designed in a way to provide maximum flexibility in
distributing sinks and sources of network traffic. This is
accomplished by fiber optic patch panels situated by the
HUBs. By simply crosspatching between panels, any pro­
cessor can immediately be connected to any of the inde­
pendent rings comprising the backbone. Upgrading the
backbone to FDDI would be another, although much more
elaborate, remedy against network congestion.

4 Computers
4.1 Consoles
The standard console in the control room will be an HP
Apollo 9000 Model 720 workstation with local disk to hold
the bootable image of the operating system and to provide
local swap space. File systems containing control system
and physics applications software are remotely mounted 6

from the process servers. Currently we are running 5 con­
soles in the main control room.

In addition to tha t , RISC based X Window graphics
terminals, like the HP 700/X familiy, that are served by
the process servers, will be used as console devices. Their
ideal usage will be that of "remote" consoles. They will be
outside of the control room but plugging to the backbone's
control segment. Their main purpose is to give scientists,
working on an experiment, the possibility to control the
movements of ikeir "insertion device" by themselves.

4.2 Process Servers
As process servers the HP 9000 Series 800 Model 842 and
857 midrange super-mini computers were selected. There
are currently three of these machines in the system. Sys­
tem features are:

• high reliability;

^currently we are using SUN'* NFS that we hope to replace by
OSF'* DCB

122

• 29 Mips; 6.9 DP 7 Mflops; CMOS RISC technology;
• interna] disk storage: <2.oP Gbytes;
• I/O bandwidth 21 Mbytes/sec;
• integrated DAT* unit: 1.3 Gbytes capacity;

These machines are configured as network gateways be­
tween the control segment and one of the corresponding
process segments. To accomplish this, each of them is
equipped with two high speed LAN adapters.

The process servers and the console workstations run
HP-UX; an AT&T System V Rel 3.0, and BSD 4.3 com­
pliant implementation of the UNIX operating system. All
machines run MIT's X Window System, which allows ap­
plications to run as X-clients on the process servers and to
perform interactive I /O through X-servers running on the
consoles.

4.3 VME Systems
All VME systems have an identical base configuration.
This comprises a CPU with Motorola 68030 @ 20 MHz,
4 Mbyte RAM, on board Ethernet adapter, and additional
512Kbyte battery backed up RAM on a separate board.

On these systems we run Microware's OS9 realtime
kernel/operating system. In addition the systems are
equipped with a T C P / I P Internet Support Package pro­
viding Berkely sockets, and SUN's Network File System.

All systems are running in a diskless configuration for
ease of maintenance and reliability. The battery backed
512Kbyte RAM holds the OS9 real time kernel and a min­
imal T C P / I P configuration. When the system boots, it
loads additional OS9 modules, applications, and the NFS
modules from a process server. Using NFS, it then copies
configuration files from the process server into its RAM
disc and initialises the applications. 9 Cold start-up still has
to be done manually by toggling a switch on the board's
front panel, but we are working on a remote facility.

5 Interfacing
Many of the VME systems drive fast multidrop highways.
This FBUS is not a general purpose network but imple­
ments a low cost remote input/ouput facility. It relies on
a master-slave relationship, where a controller (VME based
module) drives a large number 1 0 of slave nodes. The nodes
comply with the G6*4 standard, so that full advantage can
be taken of existing interface boards from industry. The
FBUS multidrop highway is based on a synchronous se­
rial protocol. Physical implementation uses an extremly
noise resistant Manchester encoding with transformer iso­
lation, i.e. each node being galvanically isolated from the

7 With floating-point processor. Double Precision
a Digital Audio Tape
"MJcrowiire ha* recently s ta r ted t o ship the BOOTP Por t Packs

for OS9. B O O T P is used to make a boot PROM with the possibility
to boot OS9 directly over Ethernet , thus avoiding the bat tery backed
up RAM

1 0 u p to 64 on one highway

highway. The data rate is up to 2 Mbits per second on
a 200m-300m long highway. FBUS can still be safely op­
erated at a speed of 1 Mbits per second on distances of
up to 1 km and 30 nodes without repeater. The transmis­
sion medium is a flexible shielded twisted-pair cable with
a characteristic impedance of 78 Ohms.

G64 and FBUS interfacing has been used for control
of main magnet power supplies, beam position monitors,
magnet interlocks, corrector magnet power supplies, and
injection/extraction elements. Other significant subsys­
tems that include G64 crates are the system to distribute
the slow timing pulses, the video cross point switch, and
the video multiplexors for fluorescent screen monitors. The
rest of devices is directly interfaced to the VME systems;
either by asynchronous serial lines or digital I /Os.

As a result of an early taken policy, to stick to industry
standards, only a few boards had to be designed by the
ESRF Digital Electronics team:

• video multiplexor1 1 (VME)
• delay unit 1 2 (VME)
• ADC with on-boaid memory (G64)
• FBUS master (VME and PC/ATbus)
• FBUS slave (G64)
• clock divider 1 3

Unavoidably some other dedicated electronics had to be
designed to adapt some exotic devices to the standards
chosen.

Table 1 gives an overview of interfacing.

6 Software
6 . 1 E q u i p m e n t A c c e s s

The low level system software for the distributed control
system is based on a "Client/Server" architecture. The
Client/Server technology is a simple mechanism to dis­
tribute software tasks across any number of processors.
This approach is open and object oriented, can be imple­
mented on existing systems (eg. OS9 and UNIX), and will
be discussed in detail by a contribution to this conference
from A.Gotz.

Objects are sets of hidden data on which well defined
operations may be performed by authorized users. Associ­
ated which each object is a "Server" process tha t manages
the object and exports its functionality as a service. This
server-based model is implemented using "Remote Proce­
dure Calls" l 4 [5 , 6). When a user process wants to perform
an operation on an object, i t sends a request message to
the Server in charge of it. The message contains access
keys, a specification of the operation to be performed, and
any parameters the operation requires. The user process,

1 1 15 :1
1 3 6 channels, 32MHz resolution, 0-524 m> range
" f o r RF-synchronous triggers, 352MHz:32MHz
" R P C ; in our implementation we use SUN's R P C and XDH

123

V M E
crate

V M E
dig I /O

V M E
serial I / O

V M E
special I /O

G 6 4
crate

6 6 4
analog in

G 6 4
analog out

W h e r e

1 20 8 6 15 84 84 Transfer Line 1
1 48 6 4 3 3 Transfer Line 2
1 6 2 3 Injection/Extraction
1 16 5 75 Syncbr. Diagnostic
2 3 15 9 Synchr. Magnet

Power Supplies
3 56 Synchr. Vacuum
1 34 36 8 SY/SR slow timing
1 37 33 224 Storage King

Diagnostics
1 21 1 36 36 36 Storage Ring Magnet

Power Supplies
16 448 34 32 2050 Storage Ring Vacuum
1 1 5 51 576 Geodesy & Mag. Interlocks
14 48 14 9 9 Insertion Devices

68 17 816 Front Ends
41 14 82 X-ray BPMs

2 34 53 Radiation & Safety
2 2 misc. Monitoring
4 R F & LINAC (subcontr.)
51 102 719 254 224 3946 132 T O T A L

Table 1: Overview of Hardware Interfacing for the ESRF accelerator plant

known as the "Client", then blocks- After the Server has
performed the operation, it sends back a reply message
that unblocks the Client. The combination of sending a
request message, blocking, and accepting a reply message
forms a Remote Procedure Call, which can be encapsu­
lated to make the entire remote operation look like a local
procedure call.

The lowest level of objects in the accelerator plant are
the actors and sensors (or physical devices). These objects
are "terminator objects"; they are easy to identify, and
their behaviour can be modelled and documented.

"Device Servers" are terminator objects that operate on
physical devices. The more general term "Server" or "Vir­
tual Device Server" covers objects on a higher level of ab­
straction. Objects on a higher level of abstraction can use
terminator objects to offer a given service 1 5 .

The Device Server is an intermediary between applica­
tion programs and the physical resources of the accelerator
system. It contains all device-specific code, and insulates
applications from differences between hardware. It per­
forms the following tasks:

• Allows access to the device by multiple clients. To
implement security, the server, depending on its state,
may deny access from certain clients.

• Interprets network messages from clients and acts on

them.
RPCs.

Messages are generated by clients through

• Maintains complex data structures, including device
state information. Server maintained information re­
duce the amount of data that has to be maintained
by each client and the amount of data that has to be
passed over the network.

At ESRF the Device Servers follow the O O P 1 6 paradigm
and have to be implemented in a certain, fixed style. The
OOP paradigm is based on the "widget" model from the
X l l Intrinsics Tool kit [7] of MIT and is implemented in
ANSI C.

The control system designers have decided to implement
all important functions necessary to run the distributed
system in Servers. This includes the processes to boot
and manage the system, to access the database, to ban-
die graphics objects, as well as Device Servers to access
equipments.

According to our current s tate of knowledge about 53
Device Servers have to be written for the complete system.
About 50% of them are currently released. The average
size of a Device Server ranges typically between 2000-2500
lines of C code.

1 6 T h e encapsulation of lower level services into higher level services
can continue until a very high abstraction like physical machine pa­
rameters, i.e. energy, chromotidty, tune, emittance is achieved. 1 6 Object oriented programming

124

6.2 Graphics User Interface
This field of technology is in a state of tremendous inno­
vations. Fortunately some standards exist now: X l l , and
Motif. The Xll-window system, or Xll, is a network-
transparent window system. With Xll, multiple applica­
tions can run simultaneously in windows, generating text
and graphics. Network transparency means that applica­
tion programs that are running on other machines scat­
tered throughout the network, can be used as if they were
running on a local machine.

The core components of the OSF/Motif technology in­
clude an extensible user interface17, an applications pro­
gramming interface18, a user interface metalanguage19,
and a window manager. Motif is based on the X Intrin-
sics, a toolkit framework provided with XI1. The Intrinsics
use an object oriented model to create a class hierarchy of
graphical objects known as "widgets".

Both Xll and Motif, are extremely helpful but their
libraries are complex to learn and to use for program­
ming. Coding of applications started initially with those
libraries, and demanded substantial efforts in becoming fa­
miliar with this new technology.

User Interface Management Systems20 (sometimes
called interface builders) are the tools which help the ap­
plication programmer to design the user interface part of
the application interactively. A UIMS is generally com­
posed of a graphic oriented editor and a code generator,
and sometimes other complementary tools. There are sev­
eral Motif compliant UIMS available. A few of them have
been tested at ESRF. At present one of them has been
selected for use[8].

This UIMS drastically eases now the design of Motif-
based user interfaces. It generates stand-alone C code
and/or a combination of Motif-compliant C and UIL code.

Synoptic drawings with selectable objects are scarcely
supported by the above mentioned tools. We therefore
work on an implementation of a Motif compliant widget
that uses vectorial drawings generated by PHIGS 2 1. Syn­
optics will be generated by CAE systems like AUTOCAD
or EUCLID.

6.3 Database
The control system data are stored in relational databases
which manage two logical parts:

• Resource data;
• Runtime data.

The resource database keeps permanent data. Examples
are: start-up resources, calibrations, equipment defini­
tions, installation- & maintenance data, etc...

"UI
"API
"UIL
2 0 UIMS
3 1 standi for Programmer'! Hierarchical Graphic* Syitem and U an

ISO itandard

The implementation of the resource database uses ORA­
CLE and its powerful set of development tools. Modifica­
tions on the resource database cause automatic update of
runtime data sets, that are redundant copies of the parent
data set in the resource database.

The runtime database is a central warehouse for all sorts
of temporary or transient data. It is not a medium for per­
manent storage. It is simply a front for permanent storage.
Only memory resident database systems can meet the de­
mands for sufficiently short transaction times. A prototype
of the runtime database is operational and uses a Real-
Time Database Base Management System22 available on
HPs.

The runtime database can be used to alleviate con­
gestion problems. Multiple processes can update data
asynchronously in the database. Other processes can re­
trieve this information aynchronously without blocking the
process doing the updating. Since the memory resident
database profits from a much higher than normal I/O
throughput, this mechanism is used to resolve information
traffic jams that may occur.

The runtime database's prime source is a so-called Up­
date Daemon that updates the current machine status if
a particular client requests this. The database contains
ring buffered tables to store brief histories of the results of
requests issued to a device. Although physically the run­
time database is distributed over all process servers, access
to it is transparent to database clients. On-line data can
be archived continously. Only a time window of some five
minutes is kept in memory by RTDB, the rest of the data is
dumped into the disk-based ORACLE database. An index
to these data is constructed to allow queries in accelerator
physics terms on archived data. Data can be stamped with
time or accelerator status information.

The same runtime database can also be used by applica­
tions as a mean for interprocess communication. Applica­
tions dynamically allocate "tables" of formatted data, that
can then be piped or multiplexed to other applications.

The volume of data that will be managed by the resource
database is estimated to be some lOMbytes. The whole
control system comprises more than 3000 devices and more
than 50000 static resources. The throughput of on-line
data at its worst is estimated to be some 40kbytes/sec. If
all data coming from the machine is stored at an interval
of a second, it would mean 12Mbytes every 5 minutes.

6.4 Applications
Application program development at ESRF has been taken
care of at an early stage of the project. Usually this class
of software tends to be too little and too late. To give
accelerator physicists the possibility to develop their ap­
plications in parallel with the control system software, an
applications programmer interface33 has been defined very
early and kept stable until then.

"called RTDB
3 3 API

125

NFS/RPC API
UDP TCP UDP

open connection
close connection

20-25ms
0.1-0.2ms

35-45ms
0.3-0.5ms

55-65ms
10-20ms

RPC with lOObytes
RPC with Skbytes
RPC with 401tbytes

10-15ms
25-35ms

15-20ms
55-65ms
220-250ms

15-20ms
30-40ms

Table 2: Performance figures for RPC and API

Access to the Device Servers is provided by a small set
of C calls. These calls allow the users to develop their ap­
plications in peace without being affected by what goes on
in the Device Server software. Initially very simple Device
Servers have been written, that ran on the local host, and
that only simulated devices. These API-calls hide the com­
plexity of Device Servers and their implementation from
users by offering them a set of high level commands as ac­
cess method. How and where the Device Server executes
the high level command is hidden. In the distributed en­
vironment this workload is spread over a number of ma­
chines.

The following functions form the basis of the Device
Server API:

• int dev_iaport(naae, acceBS, ds.ptr, error)
char *na*e; / • Device Server Naae */
long int access; / * Access Type */
devserver *ds_ptr; / • DevServer Handle • /
long *error; / * Error Code * /

la called by the application to establish a connection to a
Device of the specified name.

• in t dev_putget(do, cad, a r g i n . p t r , typein
argout_ptr , typeout, e r ror)

devserver dsj / * DevServer Handle */
DevCad cud; / * Device Coaaand • /
DevArgPtr argin_ptr ; / * Call Parameter «/
DevType typein; / * Parameter Type */
DevArgPtr a rgou t . p t r ; / » Return Parameter */
DevType typaout; / * Parameter Type */
long *errorj

Is called by the application to execute a command on the
device. This is a "blocking" call which doesn't return until
the command requested has been executed.

• in t dev_put(ds, cad, a r g i n . p t r , typein,
e r ror)

Is called by the application to execute a command on the
device. This is an "asynchronous" call which will return
as soon as the command has been delivered to the server
or an error occurred. This call can only be used to start
a command, no knowledge is returned about its execution
and/or success. It is up to the application to interrogate
the Device Server to determine its status.

• i n t dev_fr«*(d8, e r ror)
DevServer ds ; /* DevServer Handle */
long *«rror;

Is called by an application to release a device properly.

Measurements of RPC and API performance that we
achieve between a process server and a VME node are given
in table 2.

Using strictly this device access interface and the XI1
and Motif standards for interactive graphical I /O, an im­
pressive number of physics applications have been devel­
oped in parallel with the basic control system software, and
have considerably helped to commission the booster in due
time. An enumeration of applications presently available
follows:

T rans fe r l i ne 1 & 2 : These programs execute specific
procedures for step by step alignment, emittance mea­
surement, and modelling of beam envelopes.

C losed o r b i t : The program performs basic control of
steerers and bumps, beam position readout, orbit
plots, fourier analysis of orbit and steerers, and au­
tomatic orbit correction.

B o o s t e r v a c u u m : This program controls the vacuum
system. It allows individual device control, display of
periodically updated status, and display of pressure
profile.

B o o s t e r i n j e c t i o n / e x t r a c t i o n : This program allows
control of current- and timing settings of pulsed injec­
tion/extraction elements.

B o o s t e r o p t i c s : Different options in this applica­
tion allow tune measurement /setting, chromaticity
measurement/setting, measurement of /^-functions at
qtiadrupole locations, and measurement of dispersion
(^function).

S t o r a g e ring in jec t ion : Used for tuning of the injec­
tion kicker/septa to maintain an injection bump and
control injected beam position and angle.

7 Conclusion
The ESRF control system is operational since August 1991-
It played an important role during commissioning of the
booster synchrotron. The system has been designed from
bottom up, using object oriented programming techniques,
and is based on proven industry standards. Its design has
been guided by a clear preference for mature commercial
systems over custom- or home-made ones, without formally
excluding the latter.

The system is not finished yet, but it is easily extend­
able and adaptable to future needs. It is through the
standards that have been selected for the control system,
that ESRF will be able to migrate together with indus­
try to new technologies while preserving considerable in­
vestments in hard- and software. The choices of UNIX,
Xll /Motif , VME/OS9, Ethernet, and T C P / I P have been
fundamental in this sense.

126

8 Aknowledgements
The author is grateful to all contributing members of the
ESRF controls group; in particular to C.Herve, head of the
Digital Design Group, and A.Gotz, head of the Control
Software Group, for their competent and efficient leader­
ship of the project. He takes the opportunity to thank
also A.Ropert, L.Farvacque, and all members of the ma­
chine division Theory Group, for their ongoing engage­
ment in the production of control- and physics applica­
tions, and the smooth collaboration with them. Thanks
also to J.Altaber, and F.Perriollat (both CERN), as well
as collaborating groups from CERN, Trieste, and Julich,
who initially helped us to get the project going.

9 References

References
[1] 3.L. Laclare, "Overview of the European Synchrotron

Light Source" in IEEE Particle Accelerator Confer­
ence, Washington, D.C., March 1987, pp. 417-421.

[2] W.D. Klotz and C.Herve, "The Conceptual design of
the ESRF Control System" in European Particle Ac-
celerator Conference, Rome, June 1988, pp. 1196-1198.

[Z] Proceedings of Europhysics Conference on Control
Systems for Experimental Physics, Villars-sur-OHon,
Switzerland, Sept.28 - Oct.2, 1987.

[4] Proceedings of ike International Conference on Accel­
erator and Large Physics Control Systems, Vancouver,
BC, October 30 - November 3, 1989.

[5] Pal S. Andersen, V. Frammery, and R. Wikke, "Tools
for Remote Computing in Accelerator control" in Pro­
ceedings of the International Conference on Accelerator
and Large Physics Control Systems, Vancouver, BC,
October 30 - November 3, 1989, pp. 225-230.

[6] Network Programming Guide, SUN microsystems, Part
Number: 800-3850-10, Revision A of 27 March, 1990.

[7] A. Nye and T. O'Reilly, X Toolkit Intrinsics Program­
ming Manual, O'Reilly & Associates, Inc., 1990.

[8] The Builder Xcessory User Guide, Cambridge, MA: In­
tegrated Computer Solutions, Inc. 1990

Trademarks
UNIX is a trademark of AT&T in the USA and other countries.

OS9/68000 it a trademark of Microware Systems Corp., USA.

OSF/Motif is a t rademark of the Open Software Foundation, Inc.

O S F / D C E it a trademark of the Open Software Foundation, Inc.

Builder Xcessory is a t rademark of Integrated Computer Solutions,
Inc.

NFS is a trademark of SUN Microsystems, Inc.
XDR is a t rademark of SUN Microsystems, Inc.
Ethernet U a trademark of Xerox Corp.
The X Window System is a trademark of the M.I.T.
HP-UX is a trademark of Hewlett Packard, Corp.
ORACLE is a t rademark of Oracle Corp.

RTDB is a t rademark of Automated Technology Associates, Indi­
anapolis, USA

AUTOCAD is a t rademark of Autodesk, Inc.

EUCLID is a trademark of Mat ra Datavision, S.A.

All other t rademarks or registered trademarks are of their respec­
tive companies. ESRF disclaims any responsability for specifying
which marks are owned by which companies or organizations.

127

