KFT1--93-2.
XOTH 93-2

Харьковский физико-технический институт

И.А. Хажмурадов

О СХОДИМОСТИ ИТЕРАЦИОННОГО МЕТОДА РАЗМЕЩЕНИЯ ТЕПЛОВИДЕЛЯЮЩИХ ЭЛЕМЕЙТОВ В ОГРАНИЧЕННОЙ ОБЛАСТИ

Пропринт

YAK 628.3:519.711

ХАЖМУРАДОВ М.А. О сходимости итерационного метода размещения тепловыделяющих элементов в ограниченной области: Препринт XФТИ 93-2. - Харьков: XФТИ, 1993. -12 с.

Исследован на сходимость алгорити итерационного метода размещения тепловиделяющих элементов в ограниченной области. Даны рекомендации по выбору параметров итерационной формули. Математическое доказательство апробировано на конкретных задачах, реализованных на ЭВМ.

Рис.3, список лит. - 11 назв.

Просим извинить за низкое качество печати, вызванное дефицитом полиграфических материалов.

⁽С) Харьковский физико-технический институт, (ХФТИ), 1993.

В работах [1,2] получено ращиональное размещение тепловиделямир элементов (ТБЭ) итерационным методом последовательно-одиночного нерегулярного размещения. Целью дамной работы является анализсходимости предложенного алгоритма. Отметим, что задача размещения
ТБЭ с учетом теплофизических и геометрических ограничений относятся
к классу задач оптимизации многосвизиих систем с распределенными
параметрами [3,4]. Дии учета взаимного теплового влижия ТБЭ (рис. I)
вводится вектор взаимных влижний $\mathcal{E} = \{\mathcal{E}_{\mathcal{E}}\}$, $\mathcal{E} = 1, 2, ..., N$, дарижеризуший априори влияние ТБЭ, которые размещением после \mathcal{E} —го ТБЭ
на \mathcal{E} —й интерации воследовательно-одиночного [1] (группового \mathcal{E})

 $\mathcal{E}_{\ell} = \sum_{p=0+1}^{N} \mathcal{T}_{p}^{*}(\mathcal{X}_{\ell}, \mathcal{Y}_{\ell}), \ \ell = 1, 2, ..., N-1,$ (1)

где $T_{\rho}(x_{\ell},y_{\ell})$ -температура, создаваемия ТВО с номером ρ в должесе ТВО с номером ℓ ; \mathcal{N} - количество ТВО, которые будут разметраться в области \mathcal{Q} ; \mathcal{X}_{ℓ} - коорданити полоса ТВО с номером ℓ .

Дия уточнения значения ξ в работе предлагается итерационный процесс $\left[5-7\right]$

$$\mathcal{E}_{\ell}^{kng} = \mathcal{F}_{\ell}^{k} \mathcal{E}_{\ell}^{k} + \mathcal{F}_{\ell}^{k} \left[\mathcal{T}^{k} (x_{\ell}^{k}, y_{\ell}^{k}) - \mathcal{T}_{g\ell} \right], \quad (2)$$

где k - номер итерации; $T_{g\ell}$ - допустикое значиние темпиратури ℓ -го ТВЭ; $T^k(x_\ell^k,y_\ell^k)$ - температура в полиски ℓ -го ТВЭ наk - в итерации.

Температурное поле $T^k(x_\ell^k, y_\ell^k)$ равно сумме температурных полей, создаваемое отдельными ТВЭ $T_\ell^k(x_\ell^k, y_\ell^k)$ и граничными условиями $T_0^k(x_\ell^k, y_\ell^k)$ [1.2]

$$T^{-k}(x_{e}^{k}, y_{e}^{k}) = T_{o}^{-k}(x_{e}^{k}, y_{e}^{k}) + \sum_{p=l, p \neq e}^{N} T_{o}^{-k}(x_{p}^{k}, y_{p}^{k}) = T_{ge}.$$
 (3)

Выполняя условие (3), можно производить уплотнение расположения ТВЭ, минимизируя занимаемую ими площадь.

Учитывая (2), условие (3) запишем в виде

$$T^{*k}(x_{e}^{k}, y_{e}^{k}) = T_{o}^{*k}(x_{e}^{k}, y_{e}^{k}) + \sum_{p=1}^{\ell-1} T_{p}^{k}(x_{e}^{k}, y_{e}^{k}) + T_{e}^{k}(x_{e}^{k}, y_{e}^{k}) + \mathcal{E}_{e}^{k} = T_{ge}. \tag{4}$$

Отметим, что краевая задача в работах [1,2] решается вариацисино-структурным методом [8]. Тогда выражение (4) можно представить в следующем виде [1]:

$$T^{-k}(x_{e}^{k}, y_{e}^{k}) = \sum_{\ell=1}^{N} \sum_{\ell=j=0}^{N} C_{ij}^{k} (S_{e}^{k}(y_{e}^{k}, E_{1}^{k}, E_{2}^{k}, \dots, E_{N}^{k}), y_{e}^{k})_{\times}$$

$$\times V_{ij}^{k} (S_{e}^{k}(y_{e}^{k}, E_{1}^{k}, E_{2}^{k}, \dots, E_{N}^{k}), y_{e}^{k}),$$
(5)

гце $\mathcal{Z}_{\mathcal{E}} = \mathcal{S}_{\ell}(\mathcal{Y}_{\ell}, \mathcal{E}_{1}, \mathcal{E}_{2}, \dots, \mathcal{E}_{N})$ — обобщения годограф функции плотного размещения [9]; C_{ij} — неизвестные комфициенты, определяемые из резения системы линейных уравнений; V_{ij} — элементы базисных систем функций [8].

Очевидно, существует такой вектор $\{\mathcal{E}_{\ell}\}$, при котором разметение объектов в области \mathcal{Q} , при заданиях значениях интенсивности тепловиделения ТВЭ (\mathcal{F}_{ℓ}) и допустимых значениях рабочих температур, будет оптимальным. Найти этот вектор можно рыссматривал все ТВЭ в их взаимной свизи, поскольку изменение местоположения одисто из ТВЭ вызывает изменение температурного поли над всеми остальными ТВЭ.

Опредоление. Релимение Тоэ в области \$2 неслиментого сетимеными, если выполняется условие

Задача такого типа относится к илаксу задач иногоситеного управления [3] ТВЭ с распределениями параметрини [6]. Это востоятельство требует специального лидхода к оправалении заитери управнемия $\{\mathcal{E}_{\ell}\}$, так нак расположение (\mathcal{E}_{ℓ}) —го ТВЭ завнейт от инемения $\{\mathcal{E}_{\ell}\}$. Чем больше значение \mathcal{E}_{ℓ} , тем дальне будет расположение (\mathcal{E}_{ℓ}) —го ТВЭ от ТВЭ с номером ℓ . Однако заитер $\{\mathcal{E}_{\ell}\}$ эприори не известен, поэтому при произвольно заданием $\{\mathcal{E}_{\ell}\}$ ТВЭ, относительно друг друга в общем случае размещаются нерационально. С другой стороны, скорость сходимости итерационного процесса заимент от вентора параметров $\{\mathcal{B}_{\ell}\}$ и $\{\mathcal{E}_{\ell}\}$, которые также первоначально неизвестны, а потому процесс при произвольно выбраниях $\{\mathcal{E}_{\ell}\}$ и $\{\mathcal{E}_{\ell}\}$ жотор оказаться расходящися.

BEFOR HAPAMETPOB MTEPAUMUHBOTO HPONECCA

Представим выражение в скобках (2) в скедущем виде:

$$T^{k}(x_{2}^{k}, y_{e}^{k}) - T_{ye} = T_{o}^{k}(x_{2}^{k}, y_{e}^{k}) - T_{ye} + \sum_{i+j=0}^{\infty} C_{ij}^{k}(x_{2}^{k}, y_{e}^{k}, x_{2}^{k}, y_{e}^{k}, ..., x_{N}^{k}, y_{N}^{k})_{x}$$

$$S_{2}^{k}(y_{2}^{k}, \mathcal{E}_{1}^{k}, \mathcal{E}_{2}^{k}, \cdots, \mathcal{E}_{\ell}^{k}), y_{2}^{k}, \cdots, S_{N}^{k}(y_{N}^{k}, \mathcal{E}_{1}^{k}, \mathcal{E}_{2}^{k}, \cdots, \mathcal{E}_{\ell}^{k}), y_{N}^{k}],$$

или в более общем виде:

$$T^{k}(x_{\ell}^{k}, y_{\ell}^{k}) - T_{g\ell} = P_{\ell}^{k}(\mathcal{E}_{1}^{k}, \mathcal{E}_{2}^{k}, \dots, \mathcal{E}_{\ell}^{k}), \ell = 1, 2, \dots, N, (6)$$

где $\mathcal{N} = \{\mathcal{M}_{\ell}^{k}\}$ — векторуфункция, учитывающая свойства обобщенного годографа функции плотного размещения и выбранную систему координатизм функций.

Па выражения (6) следует:

$$\mathcal{E}_{e}^{k} = \mathcal{L}_{e}^{k} \left[\mathcal{T}^{k} (x_{1}^{k}, y_{1}^{k}) - T_{g_{1}}, \mathcal{T}^{k} (x_{2}^{k}, y_{2}^{k}) - T_{g_{2}}, \dots, \mathcal{T}^{k} (x_{n}^{k}, y_{n}^{k}) - T_{g_{N}} \right]^{(7)}$$

 $rme \mathcal{L} = \{\mathcal{L}_{k}^{k}\}$ — вектор функция, обратная вектор функции \mathcal{M}

Требуется построить такую рекурентную формулу $\mathcal{E}_{\ell}^{k+1} = Q\left(\mathcal{E}_{\ell}^{0}, \mathcal{E}_{\ell}^{2}, \cdots, \mathcal{E}_{N}^{N}, \mathcal{E}_{\ell}^{1}, \mathcal{E}_{\ell}^{2}, \cdots, \mathcal{E}_{N}^{K}, \cdots, \mathcal{E}_{\ell}^{k}, \mathcal{E}_{\ell}^{2}, \cdots, \mathcal{E}_{N}^{K}\right), \quad (8)$

$$\lim_{k\to\infty} (\Delta \mathcal{E}_{\ell}^{k+1}) = \lim_{k\to\infty} (\mathcal{E}_{\ell}^{k+1} - \mathcal{E}_{\ell}^{k}) = 0$$
.

ушитывая (7), получаем жа (8)

$$\begin{split} & \mathcal{E}_{\ell}^{k+1} = q \left\{ \mathcal{E}_{1}^{s}, \mathcal{E}_{2}^{s}, ..., \mathcal{E}_{N}^{s}, \mathcal{L}_{1}^{l} \left[T^{l}(x_{1}^{l}, x_{2}^{l}) - T_{\boldsymbol{q}1}, T^{l}(x_{2}^{l}, y_{2}^{l}) - T_{\boldsymbol{q}2}, ..., \right. \\ & \left. T^{l}(x_{N}^{l}, y_{N}^{l}) - T_{\boldsymbol{q}N} \right], \mathcal{L}_{2} \left[T^{l}(x_{1}^{l}, y_{1}^{l}) - T_{\boldsymbol{q}1}, T^{l}(x_{2}^{l}, y_{2}^{l}) - T_{\boldsymbol{q}2}, ..., \right. \\ & \left. T^{l}(x_{N}^{l}, y_{N}^{l}) - T_{\boldsymbol{q}N} \right], \dots, \mathcal{L}_{N} \left[T^{l}(x_{1}^{l}, y_{1}^{l}) - T_{\boldsymbol{q}1}, T^{l}(x_{2}^{l}, y_{2}^{l}) - T_{\boldsymbol{q}2}, ..., \right. \end{split}$$

$$T^{k}(x_{N}^{k}, y_{N}^{k}) T_{qN}^{k}, \dots L_{1}[T^{k}(x_{1}^{k}, y_{1}^{k}) - T_{q1}, T^{k}(x_{2}^{k}, y_{2}^{k}) - T_{q2}, \dots, T^{k}(x_{N}^{k}, y_{N}^{k}) - T_{qN}], L_{2}[T^{k}(x_{1}^{k}, y_{1}^{k}) - T_{q1}, T^{k}(x_{2}^{k}, y_{2}^{k}) - T_{q2}, \dots, T^{k}(x_{N}^{k}, y_{N}^{k}) -$$

T' (2k, yk) - 73N], ... LN[T' (2k, yk) - Tax, T' (2k, yk) - Tgz, ",

$$T^{k}(x_{1}^{k}, y_{N}^{k}) - T_{gN}^{2} = q^{k} \left[\mathcal{E}_{1}^{s}, \mathcal{E}_{2}^{s}, \dots, \mathcal{E}_{N}^{s}, T^{s}(x_{2}^{s}, y_{2}^{s}) - T_{gs}^{s}, \right]$$

$$T^{s}(x_{2}^{s}, y_{2}^{s}) - T_{gs}^{s}, \dots, T^{s}(x_{N}^{s}, y_{N}^{s}) - T_{gN}^{s}, \dots,$$

$$T^{s}(x_{2}^{k}, y_{N}^{k}) - T_{gs}^{s}, T^{s}(x_{2}^{k}, y_{N}^{s}) - T_{gs}^{s}, \dots, T^{s}(x_{N}^{s}, y_{N}^{s}) - T_{gN}^{s} \right].$$

В общем случае q^{*} является нелинейной функцией от многих параметров и на конечном интервале значении этих параметров с защанной точностью может быть представлены с помощью иногомерного полинома $\mathcal{E}_{\ell}^{k+i} = P_{o} + \sum_{i=1}^{N} P_{ii} \mathcal{E}_{i}^{*} + \sum_{m=1}^{N} \sum_{i=1}^{N} P_{2m_{i}} \left[T^{m_{i}} (x_{i}^{m_{i}} y_{i}^{m_{i}}) - T_{q_{i}} \right] + \sum_{i,j=1}^{N} P_{2i,j} \mathcal{E}_{i}^{*} \mathcal{E}_{j}^{*} + \sum_{i,j=1}^{N} P_{2m_{i}i,j} \mathcal{E}_{i}^{*} \left[T^{m_{i}} (x_{i}^{m_{i}}, y_{j}^{m_{i}}) - T_{q_{i}} \right] + \sum_{i,j=1}^{N} P_{2i,j} \mathcal{E}_{i}^{*} \mathcal{E}_{j}^{*} + \sum_{i,j=1}^{N} P_{2m_{i}i,j} \mathcal{E}_{i}^{*} \left[T^{m_{i}} (x_{i}^{m_{i}}, y_{j}^{m_{i}}) - T_{q_{i}} \right] + \sum_{i,j=1}^{N} P_{2i,j} \mathcal{E}_{i}^{*} \mathcal{E}_{j}^{*} + \sum_{i,j=1}^{N} P_{2m_{i}i,j} \mathcal{E}_{i}^{*} \left[T^{m_{i}} (x_{i}^{m_{i}}, y_{j}^{m_{i}}) - T_{q_{i}} \right] + \sum_{i,j=1}^{N} P_{2i,j} \mathcal{E}_{i}^{*} \mathcal{E}_{j}^{*} + \sum_{i,j=1}^{N} P_{2m_{i}i,j} \mathcal{E}_{i}^{*} \left[T^{m_{i}} (x_{i}^{m_{i}}, y_{j}^{m_{i}}) - T_{q_{i}} \right] + \sum_{i,j=1}^{N} P_{2i,j} \mathcal{E}_{i}^{*} \mathcal{E}_{i}^{*} + \sum_{i,j=1}^{N} P_{2m_{i}i,j} \mathcal{E}_{i}^{*} \left[T^{m_{i}} (x_{i}^{m_{i}}, y_{j}^{m_{i}}) - T_{q_{i}} \right] + \sum_{i,j=1}^{N} P_{2m_{i}i,j} \mathcal{E}_{i}^{*} \left[T^{m_{i}} (x_{i}^{m_{i}}, y_{j}^{m_{i}}) - T_{q_{i}} \right] + \sum_{i,j=1}^{N} P_{2m_{i}i,j} \mathcal{E}_{i}^{*} \left[T^{m_{i}} (x_{i}^{m_{i}}, y_{j}^{m_{i}}) - T_{q_{i}} \right] + \sum_{i,j=1}^{N} P_{2m_{i}i,j} \mathcal{E}_{i}^{*} \left[T^{m_{i}} (x_{i}^{m_{i}}, y_{j}^{m_{i}}) - T_{q_{i}} \right] + \sum_{i,j=1}^{N} P_{2m_{i}i,j} \mathcal{E}_{i}^{*} \left[T^{m_{i}} (x_{i}^{m_{i}}, y_{j}^{m_{i}}) - T_{q_{i}} \right] + \sum_{i,j=1}^{N} P_{2m_{i}i,j} \mathcal{E}_{i}^{*} \left[T^{m_{i}} (x_{i}^{m_{i}}, y_{j}^{m_{i}}) - T_{q_{i}} \right] + \sum_{i,j=1}^{N} P_{2m_{i}i,j} \mathcal{E}_{i}^{*} \left[T^{m_{i}} (x_{i}^{m_{i}}, y_{i}^{m_{i}}) - T_{q_{i}} \right] + \sum_{i,j=1}^{N} P_{2m_{i}i,j} \mathcal{E}_{i}^{*} \left[T^{m_{i}i,j} (x_{i}^{m_{i}}, y_{i}^{m_{i}}) - T_{q_{i}i,j} \right] + \sum_{i,j=1}^{N} P_{2m_{i}i,j} \mathcal{E}_{i}^{*} \left[T^{m_{i}i,j} (x_{i}^{m_{i}}, y_{i}^{m_{i}}) - T_{q_{i}i,j} \right] + \sum_{i,j=1}^{N} P_{2m_{i}i,j} \mathcal{E}_{i}^{*} \left[T^{m_{i}i,j} (x_{i}^{m_{i}}, y_{i}^{m_{i}}) - T_{q_{$

$$+\sum_{z,m=1}^{k}\sum_{i,j=1}^{m}P_{zz,m,z_{i,j}}[T^{z}(x_{i}^{z},y_{i}^{z})-T_{gz}][T^{z}(x_{j}^{m},y_{j}^{m})-T_{gj}]+$$

Учителя (7) и (8), получаен

$$\begin{split} \mathcal{E}_{\ell}^{k_{M}} &= \sum_{i=1}^{N} P_{\ell i} \left[T^{k}(\mathbf{x}_{i}^{k}, y_{i}^{k}) - T_{g i} \right] + \sum_{i,j=1}^{N} P_{\ell i,j}^{k} \mathcal{E}_{i} \left[T^{k}(\mathbf{x}_{j}^{k}, y_{j}^{k}) - T_{g j} \right] + \\ &+ \sum_{k=1}^{k} \sum_{i,j=1}^{N} P_{22,k,j}^{k} \left[T^{k}(\mathbf{x}_{i}^{k}, y_{k}^{k}) - T_{g j} \right] - T_{g j} \left[T^{k}(\mathbf{x}_{j}^{k}, y_{j}^{k}) - T_{g j} \right] + \\ &+ \sum_{k=1}^{k} \sum_{i,j=1}^{N} P_{2m,k,j} \left[T^{k}(\mathbf{x}_{k}^{k}, y_{k}^{k}) \right] \left[T^{m}(\mathbf{x}_{j}^{m}, y_{j}^{m}) - T_{g j} \right] + \cdots \end{split}$$

(9)

В качестве примера рассмотрим линейное приближение

$$\Delta \mathcal{E}_{e}^{k+1} = \mathcal{E}_{e}^{k+1} - \mathcal{E}_{e}^{k} = P_{1e}^{k} \left[T^{k} (x_{e}^{k}, y_{e}^{k}) - T_{ge} \right],$$

$$\mathcal{E}_{e}^{k+1} = \mathcal{E}_{e}^{k} + P_{1e}^{k} \left[T^{k} (x_{e}^{k}, y_{e}^{k}) - T_{ge} \right], \qquad (10)$$

где $\rho_{2\ell}^{\ \ \ \ }$ - величина, характеризующая шаг в итерационном процессе [5].

цессе [5]. Разность $T^k(x_\ell^k, y_\ell^k) - T_{g\ell}$ указывает направление изменения ξ_ℓ^k .

Рассмотрим более подробно этот частный случай и выясним гранивы применимости соотношений (IO) для определения $\{\mathcal{E}_{\ell}\}$ по схо-

ізвестно [4,11], что итерационный процесс (IO) сходится, если собственные значения λ_{ℓ} матрицы Якоби, построенной для системы тункций f_{ℓ} , составленной на точном решении $\{\mathcal{E}_{\ell}^{k}\}$ и $\mathcal{T}^{*}(x_{\ell},y_{\ell})$

$$\mathcal{E}_{\ell}^{k+1} = f_{\ell}\left(\mathcal{E}_{\ell}^{k}, \mathcal{T}^{*}(x_{\ell}^{k}, y_{\ell}^{k}) - \mathcal{T}_{g\ell}\right). \tag{II}$$

удовлетворяют неравенству

$$|\lambda_i| < 1, \quad i = 1, 2, \dots, \gamma,$$
 (12)

тде у - число собственных значений матрицы. Матрица Якоби имеет следующий вид:

$$\frac{\partial f_{1}\left(\mathcal{E}_{1}^{*},T_{1}^{*}\right)}{\partial \mathcal{E}_{1}} + \frac{\partial f_{2}\left(\mathcal{E}_{1}^{*},T_{1}^{*}\right)}{\partial T_{1}} \frac{\partial f_{2}^{*}\left(\mathcal{E}_{1}^{*},T_{1}^{*}\right)}{\partial T} \frac{\partial f_{2}^{*}\left(\mathcal{E}_{1}^{*},T_{1}^{*}\right)}{\partial T} \frac{\partial f_{2}^{*}\left(\mathcal{E}_{1}^{*},T_{1}^{*}\right)}{\partial T} \frac{\partial f_{2}^{*}\left(\mathcal{E}_{1}^{*},T_{2}^{*}\right)}{\partial \mathcal{E}_{2}} + \frac{\partial f_{2}\left(\mathcal{E}_{1}^{*},T_{2}^{*}\right)}{\partial \mathcal{E}_{2}} \frac{\partial f_{2}^{*}\left(\mathcal{E}_{1}^{*},T_{2}^{*}\right)}{\partial \mathcal{E}_{2}^{*}} \frac{\partial f_{2}^{*}\left(\mathcal{E}_{1}^{*},T_{2}^{*}\right)}{\partial \mathcal{E}_{2}^{*}} \frac{\partial f_{2}^{*}\left(\mathcal{E}_{1}^{*},T_{2}^{*}\right)}{\partial \mathcal{E}_{2}^{*}} \frac{\partial f_{2}^{*}\left(\mathcal{E}_{1}^{*},T_{2}^{*}\right)}{\partial \mathcal{E}_{2}^{*}} \frac{\partial f_{2}^{*}\left(\mathcal{E}_{1}^{*},T_{2}^{*}\right)}{\partial \mathcal{E$$

$$\frac{\partial f_{2}(\mathcal{E}_{1}^{*}, \mathcal{T}_{1}^{**})}{\partial \mathcal{E}_{1}} \quad 0 \quad 0 \quad 0$$

$$\frac{\partial f_{2}(\mathcal{E}_{1}^{*}, \mathcal{T}_{2}^{**})}{\partial \mathcal{E}_{2}} \quad 0 \quad 0$$

$$\frac{\partial f_{2}(\mathcal{E}_{1}^{*}, \mathcal{T}_{2}^{**})}{\partial \mathcal{E}_{2}} \quad 0 \quad 0$$

$$\frac{\partial f_{2}(\mathcal{E}_{1}^{*}, \mathcal{T}_{2}^{**})}{\partial \mathcal{E}_{2}} \quad 0$$

$$\frac{\partial f_{2}(\mathcal{E}_{1}^{*}, \mathcal{T}_{2}^{**})}{\partial \mathcal{E}_{N}} \quad 0 \quad 0 \quad 0$$

$$\frac{\partial f_{2}(\mathcal{E}_{1}^{*}, \mathcal{T}_{2}^{**})}{\partial \mathcal{E}_{N}} \quad 0 \quad 0 \quad 0$$

$$\frac{\partial f_{2}(\mathcal{E}_{1}^{*}, \mathcal{T}_{2}^{**})}{\partial \mathcal{E}_{N}} \quad 0 \quad 0 \quad 0$$

 $T_e^* = T^*(x_e^k, y_e^k) - T_{ge}$, $\ell = 1, 2, ..., N$.

$$\frac{\partial f_{\ell}}{\partial \xi} = \beta_{\ell}, \quad \frac{\partial f_{\ell}}{\partial T} = Y_{\ell},$$
где β_{ℓ} и Y_{ℓ} — диагональные матрицы размера $\mathcal{N} \times \mathcal{N}$

A = Be + Se G, для упрощений обозначений принито

TOLIS

(13)

$$G = \frac{\partial T'(x_{2},y_{1})}{\partial \mathcal{E}_{1}} \frac{\partial T'(x_{2},y_{2})}{\partial \mathcal{E}_{2}} \frac{\partial T'(x_{2},y_{2})}{\partial \mathcal{E}_{N}} \frac{\partial T''(x_{2},y_{2})}{\partial \mathcal{E}_{N}}$$

$$\frac{\partial T''(x_{2},y_{2})}{\partial \mathcal{E}_{1}} \frac{\partial T''(x_{2},y_{2})}{\partial \mathcal{E}_{N}} \frac{\partial T''(x_{2},y_{N})}{\partial \mathcal{E}_{N}}$$

$$\frac{\partial T''(x_{2},y_{N})}{\partial \mathcal{E}_{1}} \frac{\partial T''(x_{2},y_{2})}{\partial \mathcal{E}_{2}} \frac{\partial T''(x_{2},y_{N})}{\partial \mathcal{E}_{N}}$$

Собственные значения $\sqrt{}$ матрицы ϵ определяются из

уравнения
$$\frac{\left|\frac{\partial T'(x_{2},y_{2})}{\partial \mathcal{E}_{1}}\right|}{\partial \mathcal{E}_{1}} = \frac{\left|\frac{\partial T''(x_{2},y_{2})}{\partial \mathcal{E}_{2}}\right|}{\partial \mathcal{E}_{2}} = \frac{\partial T''(x_{2},y_{2})}{\partial \mathcal{E}_{2}} = \frac{\partial T''(x_{2},y_{2})}{\partial \mathcal{E}_{2}} = \frac{\partial T''(x_{2},y_{2})}{\partial \mathcal{E}_{N}} = \frac{\partial T''(x_{2},y$$

Подставим собственные значения матрицы (6)

На основании (I2)

NIL

Пусть V_M и V_M есть соответственно наибольшем и наименьшее

$$-\frac{(1+\beta_e)}{V_e} < V_m. \qquad (14)$$

$$\frac{(1+\beta_e)}{V_e} > V_M. \qquad (15)$$

$$\frac{(1+\beta_2)}{Y_n} > V_M \tag{15}$$

Сведем неравенства (14) * (15) к оцному виду и сноявым жежи собой, тогия

Так нак в общем случае оперировать с разенствеми легче, чем с неравенствами, то неравенства (16) преобразуем в разенства лучем введения дополнительных переменных $\omega_{\mathcal{E}} > 0$

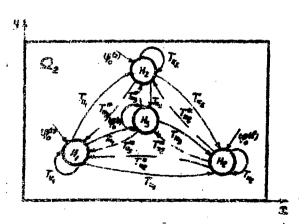
$$V_e = \frac{2}{V_M - V_m} - \omega_e$$
, $S_e = I - \frac{2V_M}{V_m - V_m} - \frac{1}{S_e}$. (17)
Следует заметить, что в целевую функцию дополнительные пере-

Следует заметить, что в целезую функцию дополнительные переменные $\{u\}$ и $\{f\}$ не входят и зависят от размера окрестности экстреуельной точки.

из (17) следует, что каковы бы не были конечные эначения \mathcal{V}_{n} , могут быть найдены такие $\mathcal{V}_{p} > 0$ и $eta_{p} > 0$, при которых итерационный процесс (2) сходится и существует решение задачи размещения ТиЭ. Для частных случаев, когда $\beta_{ij} = j$ или $\beta_{ij} + \sqrt{j}_{ij} = j$ в работе [6]даны некоторые рекомендации для выбора В и у .Опнако епособ выбора 🥕 и 🎢 в общем случае не является единственным, ч для ремения практических задач размещения ТЭЭ в отраниченной области могут быть использованы различные алгоритмы выбора и уточнения параметров β_ℓ и f_ℓ , ℓ -42,..., N[I]. При реализации итерационного процесса (2) был использован алгоризм для уточнения произвольно выпранных 3, и / , основанный на минимизации отклонений температуры над каждым ТВЭ от допустимой. На рис. 2 представлен результат работы алгоритма, Начано каждого размещаемого ТВЭ обозначено циброй в кружочке, соответствующей номеру размешаемого ТВЭ. Крестиками обозначены местоположения ТВЗ на очередном жеге итерации. В таблице приведены значения параметров 🏖 💃 (🕮 👵 💋 , температур $\mathcal{T}(x_i, y_i)$ в полюсах начельного и конечного размедения. Допустимое значение температуры для всех ТБО привато

 4 равным $T \approx 25\,^{\circ}$ C. Как видио из таблици и рис.3, получению значения этемперахуры в полисах ТВО практически не отличаются от заданних значений.

((30 -3 +% T ₀	Первон	епальное	размещение	Окончат	ельное	оазмедение	Мощность
***	X	y	! температура !в грай.	X	i A	температу- ра в град	
I	I , O	0,11	28,64	0,14	0,13	24,91	7,5
5	0,09	0,27	29,10	0,13	0,355	24,95	6,0
3	0,08	0,5	29,08	0,125	0,54	25, 15	7,5
\$	0,08	0,75	27,87	0,12	0,78	24,98	7,5
5	0,25	0,44	27,68	0,255	0,445	25,05	6,0
Ó	0,24	0,55	27,4I	0,745	0,815	24,93	5,25
7	0,255	0,77	26,67	0 ,3 7	0,84	24,75	10,0
5	0,32	0,215	27, 66	0,405	0,23	24,94	12,5
9	0,44	0,43	2 5,0 I	0,555.	0,43	24,72	5,0
IC	0,44	0,6	25,04	0,55	0,605	24,85	6,125
II	0,42	0,79	25,758	0,305	0,795	24,97	10,0
15	0.51	80,0	25,833	0,61	0,09	24,57	5,0 .
13	0,5	0,25	25,86	0,815	0,315	24, I8	5,0
7.4	0,6	0,58	23,78	0,705	0,56	2 4,5 I	8,8 5
15	0,66	0,245	23,61	0,805	0,855	24,76	6,0
16	0,66	0,74	23,09	0,815	0,19	23,89	5,0
177	0,75	0,45	21,01	0,87	0,45	23, 95	4.0
ĩ8	0,76	0,92	23,74	0,895	0,655	24,45	6,0



Рыс.1. Скома взаимовлияния ТВЭ

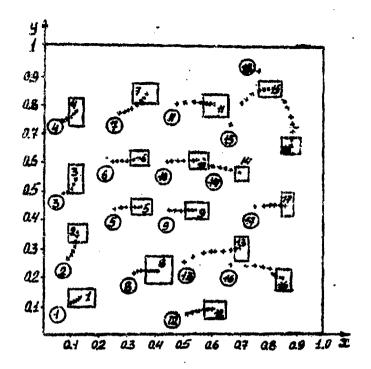


Рис. 2. Размещения ТВЭ в заданной области

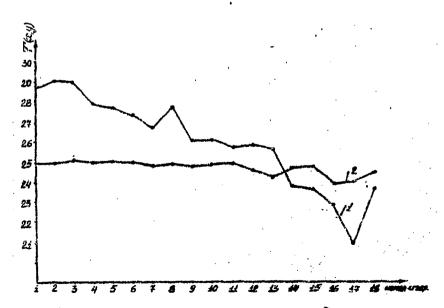


Рис. 3. Гистогранна распределения температур в полюсах ТВЗ не нумевой и седьней итерациях

CHICOK INTEPATYPH

- 1. Стоян D.Г., Хакмурадов М.А. Об одном методе рационального размещения однотипных тепловых объектов, имеющих форму квадрата, в прямоугольной области//Методы поисковой оптимизации и размещения геометрических объектов. Киев: Ин-т Кибернетики, 1976. С.15-24.
- 2. Стоян D.Г., Хаммурадов М.А. Размещение тепловыделяющих элементов с учетом неоднородности сред//Электронное моделирование. 1985. #3. C.66-71.
- 3. Мееров М.В., Інтвак Б.Л. Оптимизация систем многосвязного управления. М.: Наука, 1972.
- 4. Опойцев В.И. Равновеске и устойчивость в моделях коллективного поведения. М.: Наука, 1977.
- 5. Пвеничный Б.Н., Даниянин В.Н. Численные методы в экстремальных задачах. Н.: Наука, 1975.
- 6. Беленький В.З., Волконский В.А. Итеративные методы в теории игр и программировании. N.: Наука, 1974.
- 7. Рвачев В.Л., Слесаренко А.П. Алгебра догики и интегральные преобразования в краевых задачах. Киев: Наукова дунка, 1976.
- 8. Халмурадов М.А. Оптинизация размещения тепловых источников произвольной геометрической формы в прямоугольной области: Автореф. дис. ... канд. техн. маук. Харьков: 1979.
- 9. Ортега Дж., Рейнболдт В. Итерационные методы режения нелянейных систем ура эний со многими немаместными. М.: Мир. 1975.
- Бутковский А.Г. Теория оптимального управления системами с распределенным параметрами. И.: Наука, 1965.
- 11. Волгин Л.Н. Принцип согласованного оптимума. М.: Советское радио, 1977.

Менен Ахиадович Халиурадов

О СХОДИМОСТИ ИТЕРАЦИОННОГО МЕТОДА РАЗМЕЩЕНИЯ
ТЕЛІОВИДЕЛЯВЩИХ ЭЛЕМЕНТОВ В ОГРАНИЧЕННОЙ ОБЛАСТИ
ОТВОТСТВОНИВЫЙ За ВМИУСК Л.М.Ракионовко

Корректор А.И.Нагориая

Нодписано в печать 24.12.92. Формет 60х84/16. Бум.писч. Р1. Офсети.печ. Усл.п.я. 6,9. Уч.—вед.л.0,7. Тирая 60. Заказ Р 2. Цена 7 крб. Нидекс 3624.

gricianos Medida

7 крб.

Препринт, 1993, 1-12.