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1. Introduction

The dinuclear system (DNS) formation in deep inelastic heavy ion collisions is well
known [1]. The charge and mass distributions of reaction products are predicted
mainly by the DNS evolution. The relationship between the fusion and quasi-fission
processes depends on the initial DNS configuration. To describe the DMS d:mamics,
we need the calculation of the DNS potential energy at different values of its charge
(mass) asymmetry, distance R between the centers of nuclei, nuclei deformations and
angular momentum J. A small overlap of the nuclei of DNS allows us to write down
the potential energy as a sum of the binding energies of both nuclei (B; and B;) and
the energy of their interaciion. The nucleus-nucleus potential

U(R) = Un(R) + Ueowr(R) + Uroe R) (1

is a sum of nuclear, Coulomb and centrifugal potentials. Usually, the calculation of
Un(R) is most difficult in (1).

Different versions of the potential Un(R) describing the elastic scattering and re-
action cross section in heavy ion reactions can be found in the literature [2]. However,
they have a limited range of applicability. For instance, the energy density formalism
[3] gives a too large value of the distance between the barrier position By and the posi-
tion of the potential pocket minimum R,,. This corresponds to a considerable overlap
of nuclei. The proximity potential [4] is good enough for the description of interaction
of medium and heavy nuclei. However, for strongly asymmetric DNS its application is
not valid. In this case the proximity potential leads to a very deep potential pocket and
contradictory results since the absolute value of the potential minimum is essentially
larger than the @Q—reaction value.

A detailed analysis {5] of various theoretical schemes testifies great efficiency of the
folding procedure of nucleon-nucleon interaction with the nucleon densities of colliding
nuclei to construct Un(R). The question is which nucleon-nucleon forces are most
preferable for the calculations. By using the density independent nucleon-nucleon
interaction, a very deep nucleus-nucleus potential can be obtained. These potentials
are used, for example, to describe a-decay. It is assumed that an a-particle is located
on the first nonoccupied level since the transition to lower levels are forbidden by the
Pauli principle. However, the Pauli principle can effectively be taken into account
by the repulsive core in the potential. In this case the potential has a small depth
and few bound states in it. In the framework of the microscopical approach the



repulsive core appears because of the antisymmetrization effect. The same physical
results can be obtained by using both the deep potential and the potential with the
repulsive core. However, to simplify the calculation of the DNS potential energy, the
second one should be used, especially in the case of interaction of massive nuclei. An
investigation of the DNS evolution necessitates the potential energy calculation for
various DNS configurations. Nevertheless, the method of calculation of the nucleus-
nucleus potential should be available both for symmetric and for asymmetric systems.

In view of the planned investigations of the exotic nuclear shapes and nuclear reac-
tions with radioactive beams the calculation of the DNS potential energy for its various
characteristics is an important problem. It is interesting also to find nuclear systems
where the states with exotic shapes (cluster type states) can appear at relatively low
excitation energies. Light nuclei emission from the contact region of two heavy nuclei
{6] can be an indication of the existence of trinuclear systems. Moreover, the energy of
some symmetric DNS seems to be close to the energy of the corresponding compound
nucleus. In this case the nucleus can transform into the DNS configuration at a low
excitation energy.

In this paper we shall obtain the expressions which are convenient for the calcu-
lation cf the double folding nuclens-nucleus potential {7]. The interaction of spherical
and deformed nuclei will be considered. The relationship between the proposed po-
tential Un(R) and proximity potential will be find out. The results ohtained wiil be
applied to the calculation of the potential energy of real DNS.

2. Nucleus-nucleus potential

2.1 NUCLEAR INTERACTION
The repulsive core in the double folding potential

Un(R) = [ pi(ra)ea(R — £2)F(r3 — ra)dradrs 2)

is obtained naturally when one uses density—dependent nucleon-nucleon forces [8):

Flri~v3) = Cp (ﬂ.""(‘") + Foy (1 - ﬁ‘i"‘—’)) §(r1 — ra),
Poo o /]
Finer = (fines + fineei™2) + Ginees + GineeN2)0102. 3

Here o; and 7 are spin and isospin matrices, respectively. The value of Cp and the
dimensionless parameters f, f’, ¢ and ¢’ are known from the description of a large set
of experimental data within the theory of finite Fermi systems [8]. The interaction (3)



is similar to the density-dependent Skyrme one [9}. At a small overlap of nuclei and
retaining their individuality during the interaction [10) the nucleqn density of DNS

can be written in the sudden approximation
£o(r) = pa(r) + p2(r), 4

where p;(r) (i = 1,2) are the nucleon densities of interacting nuclei. If one neglects

the spin dependence in (3), then (2) can be rewritten as
R'l FG’
O(®) = Cof BB (f frputs ~ R

[ o@)ite - R)dr) + Fur [ mu(eloate - n)dr}, (5)
Fier = fines+ ﬂn,e:(Nl - Z))/A; - (N2 — ZT)/Aﬁv

+

where N;, Z; and A, are neutron, proton and mass numbers, respectively. When one
considers the interaction of nuclei with mass numbers A; > 16, the nuclear density
can be taken either in the Saxon-Woods dependence

_ £00
) = T (G = RO 7)) aw) ©
or in its symnletric form
oy poo sinh(Ri(8}, )/ a0:)
PE) = R UR(B, 1) o) + cosh(rfam)” @

Near the nuclear surface the dependences (6) and (7) are close to each other. The
contact region of two nuclei is the one giving a main contribution to the integrals
of (5). A simpler Fourier transform of function (7) facilitates the calculation of the
integrals in (5). In the expressions (6) and (7) B; and ay; denote the radius and
diffuseness of ith nucleus, respectively, poo = 0.17 fm™2. For light spherical nuclei the
more realistic functional dependence of g;(r) on r is the following

pi(r) = Ai(7*x)*P expl~o*r?), ®
where 7 characterizes the width of the nucleon distribution in the nucleus {11~13]. The

value of 7 can be obtained by minimizing the nuclear binding energy in the density

functional. )
Without restricting the general nature of further calculations let us consider for

simplicity only the quadrupole deformed, axial symmetric nuclei
R;= Ro-(l + ﬂ.Yzo(':, ‘Po))i (9)



where Ro; = ro/‘l}’3 and angles (@), !) are in the body-fixed system. The rotation of
its axes is described by the Euler angles 2; with respect to the space-fixed systen.
The axis z of the space-fixed system coincides with R (Fig.1).

fa

92 Fig.1.Schematic configuration of

two axially symmetric defonmed

R nuclei

It is known that the expansion of (6) and (7) in the deformation parameter f;
converges well at small §;. For §; > 0.2 the following modified expansions suit better

for calculations

dl ’ Ru;‘{" 1 i’
i) = o)+ B gy + B v oo
A = aie)+e Rl pivaioy + v, o

where ;(r) and p?¥(r) differ from pi(r) and p?(r) by the replacement of ag: by bo:
and &), respectively. The values of &, £/, by and bp; are fixed by fitting the radial
dependences of p;(r) and p?(r) at @/ = o;. The angle a; corresponds to the nuclear
surface point nearest to the other nucleus (Fig.1). A small overlap of nuclei allows one
to neglect the dependence of coefficients in (10) and (11) on 8!

Let us consider the first integral in (5)

9
h= [ f(r)ea(r — R)dr = 3 L. (12)
k=1
Inserting the Fourier transformations and using the expression
R d__pi(r)
2 = — ———— —
p;(r) = —pooaoi sinh o dRo,s:_nh—Bﬂ—* (13)

we get

B Ban d 1 T : 2
I = —4mpooeor sinh T m—% o/ 21(P)p2(p)jo(pR)p*dp, (14a)

Tz = ~(47)€apootor Roafe sinh %an(ﬂz)



d
dRm smh

_/ dpp’j2(pR)e (p) _/ drr? ja(pr)—o— 5;(0 r)

= —(47) 2p50001 Roa 3 sinh —— B }zo(ﬂz)dﬂo ——'n_;;/dPPJz(PR)Px(P)

(pmbyz cos(pRoz) coth(xbgzp)+ pRoz sin(pRoz) +2 cos(pRo, ))] :
(14b)

X

3 P ﬂboz
poop? 2 sinh(mbop)

ha = (47)*£, 81 Ror Yoo (9,)/dpp jz(PR)pz(p)/dTr ]‘{pr) P’( )

=(4r )25131 Ro, bm }'20(91 )
xbo

d 7 . 3 . , I 3
K= 6/dPPh(PR)pz(p)[balpzu,a 7 sinh(x,p) {_ (rbm coth(7by,p) + ;)

x(p cos(pRor) — sin(pHo) coth ﬁ)+cos(pﬁo,) ( - R coth E&) pRo; sin(pRoy ))]
by bor b by
(14c)
where T
rilp) = p;::‘;f:;’;"; (— sin(pHo;) coth(raoip) — cos(pRo.))

is the Fourier transformation of (7). The results of calculations of Gy; and Gy3 are
given in Appendix. The assumption of small overlap of the interacting nuclei leads to

the simplified calculations of integrals:

hy= "*"g,ﬂ;}';,(a,) T i, (14d)

s = R Run€i€aBofYon(en) Vaoloa) 7 .m.,,’"' (146
hex Begpvian (146)

I = R"‘R‘g’—fiezu. $¥aolon) Vol ee) g dlen, (14g)
e = B 28, o) Vil 2 o, (14)
o= Bl g2y o Vi) g (143)

The main approximation in (14d-14j) is the replacement of spherical functions in the
integrands by their values at & = a,. The expression for Iy, coincides with the one



for I, where p? and p, are replaced by 52 and j,, respectively. In contrast to Iy, I{}!
contains /2 instead of p? and i,(f) contains g, instead of p;. Therefore, the calculations
of Iy, 1.1‘:) and iﬁ) are similar to the calculation of ;.

To obtain fy;, we should calculate the simple integral. If ag;/ao; is not representable

as the ratio of two integers, then calculating the residues at poles we get for R >

Ro, + Roz:

_ o 3ah00 . R d 1
I = 81rpm-——ﬁ sinh — T smh
1 & (—l) .- Ronn ( (m (aﬂ ) (2) (3)) . . Roamn
x[amg — i sinh 22 { R:LT) - + R)TY” + 277 ) sinh -
—Rog((R+ ﬂ) T,‘"+2T,"’) cosh Fen }+1 «—v2]. (15)
n am

At R < Rg; + Rp: we obtain

ﬂ?naoz h-@- d 1 L o0 (—])n
R a1 dflp; sinh 2,z 7

S ST
e B [I?oz (‘B -2y li'oz) i+ (B - 2R"’) i+ 2T‘(3)]

e Ry, (4 2 o + Roy) T+ (R4 22 - +2Rer) {7 +2T."’]}

Iy =27p3

41— 2 T‘°’] (16}

Here the following notations are used:

7O = Gama [23 ((Bor + Boa)® = 3(Ron + Roz) Roa Roa + aly Ron + aby R
— o (e + ala) + oty + 7Bl — Rlo)a, — b)
- %xz(ag, + ) (R + 2Ror Roa + (Rox — Roz)’)
~ 3R Roz (R* + (Ron ~ Rea)?) — (3% + (Ron — Roa)*) (Rox — Roa)?
+%((R+Rol - Ro2)* + (R~ Rox +Roz)‘)] a7
and
T® _ "%
¥ sin(rnay;/ao:)’



2,2
Tag;

IO T otenae o),
' sin®(7nao;/ao;) s{7nag;/ o)
1 + cos?(xnag;/ag;)
T~(3) - L al) j i
! 2 sin®(xnag;/ao;) (18)

where ¢,j = 1,2 and i # j. The sums in (15) and (16) converge quickly except for the
immediate neighbourhood of R = Ro; + Rg2. In this case the numerical integration in
(14a) is needed.

At ag) = ag2 = a the expression (13) transforms into

4 Ro
I||—-——3—pooRSlllh 2 dRm;m—h&‘_z—e

n=1 n

2Ra  2a a\ {2x° +
x {[R3+ =< (R’+ —+—,) -3¢ (R+2) ( : &'ang)]
x sinh %RD- sinh I:D + 2Ry (7%a® + R3,) cosh R° inh %03
+2Ros(7%a® + R%,)sinh R‘“ cosh ﬁiﬂ} (19)

and (16) transforms into
x 5 a? Rp d Ry trg-m)
1"—5 00 g S8 = s sinh E E { * DR, B, Beo)

+C-KMD(R’ R019 —ROZ)""C_!_‘;R.."_M D(R! —Rola Roz)}_T(O) ) (20)

where

D(R, Ror, Rez) = R’ (Ror + Roa)* (3R + 2(Roy + Rz))
(R’— (Ro: + Ro2)® + gﬁ+ 2"—)

n?
2
+6(R+Rox+Roz+;) (RmRoz—-’—a).

The sums in (15) and (19) coincide with the corresponding sums in [i4] if
sinh (Rgin/ao) is replaced by 0.5exp (Roin/ao). In (16) and (20) the terms, which
are proporticanal to exp (~n(R + Ro + Roz)/ao:), were neglected.

The integrals in (14b) and (14¢) can be calculated in the same manner as in (14a).
By using the expressions (14d-14j) the contribution of terms Iy, (k = 4,...,9) to I -
can be obtained. The integral

k= [ (@)l - Ryde (21)



in (5) results from (12) by replacing index 1 by 2 and vice versa. The calculation of
the integral

k= [ m(P)pir - Rydr (22)

reduces to the calculation of integrals which differ from (12) by the replacement of p?,
7 and & by p1, i1 and &, respectively. Thus, the presented expressions allow us to
calculate Un(R) if the nucleon density is chosen in the form (6) or (7).

2.2 INTERACTION OF LIGHT AND HEAVY NUCLEI AND TWO LIGHT NUCLEI
As it was noted before, for light nuclei the nucleon density is taken in the form (8).
In the further consideration of asymmetric DNS we shall suppose that a light nucleus
has a spherical shape (# = 0). Therefore, to obtain Ux(R), the integrals I, 1z and
I4 should be calculated.

At 7 =0 we get

1/2
Un(R)= 2CDAI( ) IR:;I _,z,z%

A] ‘72 3/ 2(p2 4 12
x [(E‘n — F..) | p2(r)sinh(242Rr) + T (—r—) e~ R Ginh(4+% Rr)
+ pooF. sinh(2? Rr)] rdr. (23)

For B, # 0 the ihtegral I, is calculated as in (23). The integrals in (12) can be reduced
to the first order integrals

&5
L= 474162,32302( ) Yzo(Qz)/ -hz('unz)\/8_':’_}215/2(4727'3)‘1;;

Ia=54; R"’ezﬁ,( )
L-024

x [ e /8 Rl TR) S ”’ rdr. (25)
o

Here Ip41/2(z) is the modified Bessel function, CZ, is the Clebsh-Gordan coefficient.
By evident replacements in (24) and (25) the expressions for Iz, Jo4, I52 and Jay can

ridr, (24)

4
5 (Clt) Yool )

be easiely obtained.



Interaction of two light nuclei is described by the simple analytical expression

for I]
2\3 .2\ 3/2 . Pala2
I, = nA%A, (“:r_') (7_2) VT p ( 29773 R’) ) (26)

- €l -
7] (P i ++

Similar expressions are obtained for /; and /3. Note that the results of this subsection

are useful when instead of (8) we take the dependence

_)‘2 3/2
mir) = (7') (1 +297r%) exp(—~2r?)

A e d
=3 (") - I——Z-y,d—h?; exp(—1;r°)

suggested for O {11].

2.3 COULOMB AND CENTRIFUGAL POTENTIALS

The Coulomb potential for two deformed nuclei

. _ 20 5 pi(ra)pi(rs) Irydis = 2622, 2,
Ut R) = € 4.12/ e = <5

. 1 . .
J P —pdp. (27)

can be calculated analytically by neglecting the diffuseness of the charge distributions
p; and p;. In this case the Fourier transforms pi(p) have a simple form. For R >
Roy + Ryz the same expression can be obtained as in [15]. Since the expression for
Uowt{ 1) is cumbersome for B < Iy + Hya. we do not write it here. Note also the
pussibility to take into acconnt only terms of the first order in J; in the expansion of
p; [16].

If the sticking condition is valid. the DNS rotational encrgy can be written as

WIS+ 1)

Vet ) = —/— .
() 2 i+ ju + plt?)

(28)

where J is the total angular momentum of the system, j; are the moments of inertia
of each nucleus. The values of j; are known for axial and quadrupole deformed nuclei

considered in this paper.

3. Relationship of double folding potential with proximity potential

Using (13) we can approximately rewrite (5) for the spherical nuclei as

. d d .
UN(R)WCO{(F.W. - 1) ('—’- - “un‘;—];—m - lluzm) + l',,}./ mivipa(r — R)dr. (29



Let us consider the case ag; = ag; = «. Then, from (19) and (29), for R > Ry + Ry

we get the approximate expression:

e 2.
Un(R) z?rpgoCOaZ&#{ ST [ﬂ‘nz—Fﬁ(l +né) — 2 Fin — F,,)J]
n=1

R a & -5[21'1"-"‘?&: 252
o ) TV (2 + 206 + R%
3T Pz o 2 o )
_ 2F _z- Fer)(l +nb+ n262)]
n
Rg (a)zeo —-né 2F‘|‘n—Fe:
+ — —_— ——
680 Bz \ Ry ,,Z=:1 ¢ nt
% (6 4 6né + 30282 + n%8° — 27%03%5 — 2x%n%)
—g(ﬁ."T;-—F"l—)(ﬁ + 606 + 3n?6% + 6% - 21r2n36)] } (30)
In (30j the terms of order exp(—nRoifa) have been neglected, § =.(R — Roy — Raa)/«
and Ry = Ro; + Rgz. Let us denote the expression in braces by
B a B (ay
¢a=¢6+—-———¢6+—-——(—-)¢5, 31
@)= S o o O s \ ) 2 &0
where $g, ¢, and ¢, are the first, second and third sums in (30), respectively. At
Fin = Fez = 1 these sums coincide with the corresponding sums obtained in [17] where
the single folding potential has been calculated. The functions ¥4, ¢, and @, are the
same for any pair of interacting nuclei if we suppose Fiper = finer. For example, in

[17] the following expression for the universal function ®o

x _l+né
o(6) =Y e 6—n—;-l~,
n=]

has been obtained which differs from our result by the factor after the exponential.
Thus, the double folding potential can be expressed in the form of the proximity
potential but with another universal function. The sign in (30) depends on the sign of
®(8). In Fig.2 the function ®o(8) is compared with the universal function of the prox-
imity potential [4]). For § < §m;s = 0.15 the function ®,(5) increases with decreasing
6. This leads to formation of the repulsive core in Un(R). By using (20) and (29)
the universal functions can be obtained for § < 0. Their expressions are cumbersome
and are nor given here. The function ®,(8) is an approximately linear function of §
at large negative 5. The universal function of the proximity potential has the same
kind of behavior. The comparison of the universal functions of the double folding and

10



proximity potentials (Fig.2) demonstrates a smaller depth of the first. However, the
difference of these potentials is not essential when B'> R,.
The case of small deformations of nuciei makes it necessary to change geometrical

factors in {30) by using the following substitution
Roi = Roi(1 4 B:Yzo(on)).

It ic assumed that the universal functions depend on the minimum distance § between

the surfaces of nuclei [18).

0.0 prerrrerrrrrrr ey
o i Fig.2. Universal functions ©¢(§) for
;?’—I.O E ) ] proximity potential (dashed line) and
; 1 double folding potential proposed by

L4 3

-1.5F ) 4 us (solid line)
’ 3
3

4. Results of calculations

By using the expressicns obtained above the nucleus-nucleus potentials for the entrance
channels of few reactions have been calculated (Fig.3). A spherical nuclear shape
has been assumed in these calculations. The set of parameters Cy = 300 MeV fm?,
Jin = 0.08, for = —2.59, fi, = 042 and f’_ = 0.54 has been uséd [8]. A good
description of the position (R}) and height (E;) of the entrance potential barrier [19,20]
can be -obta.ined by a small variation of the parameters ro = (1.10-+-1.15) fm and ag =
(0.50 - 0.55) fm in (6). The uependences U(R) on R for few reactions are presented
in Fig.3 at different values of J. In the case of massive systems the potential pocket in
U(R) either has a small depth or is absent because of the strong Coulomb repulsion.
However, due to the nucleon exchange between the interacting nuclei the potential
pocket becomes deeper [21]. Therefore, to evaluate the stability of the massive DNS,
this effect should be taken into account.

11
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Fig.3. Dependence of nucleus—-nucleus potentials on R and J for various combinations
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To calculate the interaction both hetween the light and heavy nuclei and between
the two light nuclei, the formulae of subsection 2.2 have been used. We have chosen
~ = 0.671 fm™! for the a-particle. It corresponds to the minimization of the total a-
particle energy in the density functional {12]. The values of 7 for other light nuclei
have been obtained by fitting empirical values of £, and R, [19,20]. One should note
the strong dependence of the potential pocket depth on 4.

The comparison of {7( R) for the systems °Ar+'9"Au and *He+%33Am (Fig.3) shows
the increase in the potential pocket depth with increasing asymmetry of the DNS. The

same behavior is observed for other forms of the potentials.

260.0 T T Y ARALMARA"
Ca+2%Crm
' i—— o 3
) T *Ca+*™Cm 1
240.0 ¢ l‘ 3
¥ 3
E 2200 b j Fig.4. Dependence of nucleus-nucleus
= i potentials on R for the reac-
3 . 4B
<2000 F 4 tions **Ca+%3Cm and *Ca+?**Cm at
41 J=0
180.0 f 0
160.0¢ B LI S A

To demonstrate the influence of neutron excess on the potential U/(R), the calcu-
lations for the reactions *Ca+2*®¥Cm and *Ca+?®(Cm have been done (Fig.d). It is
seen that the value of E, is smaller for the reaction with **Ca. The entrance potential
barrier can decrease with increasing neutron excess in the colliding nuclet due to the
soft dipole mode [22,23]. This mode corresponds to a dipole oscillation of the excess
neutrons with respect to the nucleus core. The excitation energy of the soft mode can
be estimated in the following way {23]

, s \1/2

huwy, ~ [va%;—x—; 80/A'*  MeV,
where N, is the neutron number of the core. Knowing huw,:, it is possible to estimate
the expectation value of the square of the neutron excess displacement with respect
to the core A?. Assuming that the total nucleon density is constant, one can obtain
the value of the change V. of the entrance barrier due to the soft dipole mode. For
the reaction $Ca+"4Sm we have obtained VA? = 0.46 fm and V. = 4.8 MeV. In our

13



calculation the unchangeable {'v(’¢) has been used. From the above arguments the
great enhancement of sub-barrier fusion is expected at this value of V..

It is known that the exit potential barrier differs from the entrance one [24,25) duc
to the change of deformation of the nuclei during their interaction. The calculated
U(R) for the system *He+2?Am is presented in Fig.5. Due to the deformation of a
heavy nucleus ( = 0.43) the decrease of F, is about 15% at ) = ; = 0. The
same decrease of the emission barrier of the a-particle in the reaction *°Ar+1%"Au is
observed (24,25] in comparison with the fusion barrier of nuclei *He and **Am. I
should be noted that the influence of deforination on the potential form is small. The

width and depth of the potential pocket are not changed essentially.

50.0 v TrrvrerereyTYT Ty
*He+ Am
-—-f=0 ]
«waof — ‘-0.454.
® 3
= t 1
300} :
(3
5 1 3
2040t ] Fig.5. Dependence of nucleus-nucleus
4 1 potential on R for the system *He+**Am
[
10.0 b senn] at J =0 and J = 60. Calculated results
{ for spherical and deformed heavy nucleus
] are presented by dashed and solid lines,
>60.0 [ ‘j respectively
© ]
= 3 k
& '
340.0 N Y el J
. ‘A\‘-\.j
re A wj
20,0 gruussgag e e
R, fm

The dependence of U{ R) on various orientations of nuclei is presented in Fig.6 for
the system 23U4+28U, 4, = #» = 0.26. As one can see, for the touching nuclei the

nose Lo nose configuration is energy preferable.
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=750 } \‘}‘ ; sults for @ = 0and Q =7, Q) =
&, 3

=] ] #/4and Q = 37/4, ) = 7/2 and

650 £ I, : ), = x/2 are presented by solid line,
\\\

S .6 i short dashed line and long dashed line,

550 . j respectively

10 12 14 18 18 20 22
R, fm
The dependences of the DNS potential energy

V(R Z,J) = U(R,Z,J) + By + B; ~ (Biz + Erx(J)) (32)

on the charge of one nucleus and J are presented in Fig.7 for the systems *Ni+%Ni—
163, and 6 As+76As—!52Dy. The value of R for each Z corresponds to the position
of the potential pocket minimum. The mass numbers of nuclei have been chosen by
minimization of (32). For convenience, we have normalized (32) to the energy of a
rotating compound nucleus (Byz + E,(J)). The binding energies B, B; and B),

have been taken from [26,27].

$0.0 v vy
50.0 T an+As
J
0.0 400 0
]
>
* &
= 100 00 803
>
200 3
-10.0
100
-30.0 2 00
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Fig.7. Dependence of the DNS potential energy on charge Z of one nucleus and J
for the systems 38Ni+**Ni and "8As+7®As
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At high values of J the energy of the symmetric configuration seems to be close
to the energy of a compound nucleus. The semiaxes ratio of the equivalent ellipsoitl
is approximately equal to 2 : 1. This ratio characterizes the superdeformed states of
the nuclei. Therefore, the relationship between the superdeformed nuclei and sym-
metrical DNS can be assumed. The symmetrical DNS transforms probably into a
superdeformed mononucleus with increasing neck between the DNS nuclei.

If we consider neutron deficient nuclei far from stability which have relatively small
binding energies, then some of their excited states can be imagined as formed by
two strongly bound interacting fragments. Constituent fragments are strongly bound
because, being lighter, they have such an ¥/Z-ratio that corresponds to large binding
energies. Due to the balance in binding energies these cluster-type states can appear
at relatively low excitation energies. The investigation of the relationship between the

DNS configurations and exotic nuclear shapes is a separate interesting problem.

25 | —3 —5
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Fig.8. Potential energies of some
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> k. —1 t i i -
10 1- :‘”Zr+‘l-le+:::$n of the corresponding DNS is pre
2: Ygry pety Sn sented as well
St 3 ul tb'"lz B+m Sn
4: Kr+°C4+ 7 Sn
o 5: "™Mo+"'sn

The experimental observation of the emission of light nuclei from the contact region
of two heavy nuclei [6] can be considered as an indication of the existence of trinuclear
systems. For example, the *?C emission from the neck can be interpreted as the decay
of a trinuclear system. The potential energies of the trinuclear systems formed of
the excited nucleus 33U are presented in Fig.8. It is seen that the energies of somc
trinuclear systems are smaller than the energy of the corresponding DNS. Therefore,
in the contact region of two massive nuclei the light nucleus formation is possible.
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5. Summary

The analytical expressions have been obtained to calculate the nuclear part of the
uucleus-nucleus potential in the double folding form. The relationship of this po-
tential with proximity potential has been found. The influence of deformation and
orientation of the nuclei on the interaction potential has been investigated. The de-
crease of the interaction barrier with increasing neutron excess in one nucleus has been
demonstrated. Due to the balance in binding energies the excited states of some nuclei
can be imagined as dinuclear or trinuclear systems. The proposed calculation method

of the DNS poteutial energy can be used at any of its mass (charge) asymmetries.
Appendix

Upon calculating the residues at poles, the integrals

Crr = 7sin(pr) df)g(r)dr
0

r dHo-) '
, £ sin(pr dr
(: 3= B
3 u/ r {1 +exp({r - Ro)/by)?
can be represented by the following swus:
) exp(—Roy/bos) o~ oxp{—=mphp(2n + 1))
(Gg =1 — 2by;
N T"""{ BorlT + expl= R bV~ *'%% 25 Ty + (rboa)?(2n + 17

[ 2Ry, (Rop cos(pHoz) + mhya(2n + 1) sin(pRog))

TR, + (mbyp (20 + 1)

+ (wboap(2n + 1) + 1) cos(plioz) — pHoz sin(pRoz)] }

- 1 _1 o o eXp(=Tpliy, (20 + 1))
G '{ (¥ e R )P~ 28"+ 20 2 B o oo+ 17
by R, 2, - bR?p(2e 4 1) )
) [(_ R + (el an + 1 o ¥ bampCn + D e Yoew + 12

20 xR (2n + 1)
REy + (b )*(2n + 112

x cos(pHy;) — (b{,]pﬁm + + by 7(2n + l)) sin(pRy; )] }
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TpuHNMACTCA NOANNCKA H4 NPEnpruTH, coobumenns O6bveanuenuoro
MHCTHTYTA sAicpHEIX Mccaeaosannit B «Kparxue coobiuennn OUSH».

Ycrasomnena chenyouns CTOMMOCTb TIOANHCKH Ha 12 MecRiles Ha n3ganus
OMSH, sxnouas nepecuinky, N0 OTACALHLIM TEMATHUCCKHM KaTEropusaM:

Hupexc Tematuka Llena noanuckr
Ha Mo

1. DxcnepuMeHTANBHAR PHINKA BUICOKHX IHCPIui 915 p.
2. Teopernueckas HHINKA BRCOKMX SHEPTHiE 2470 p.
3. DxcnepumerTanbHas HEHTPOHRAR PUINKA 365 p.
4. Teopernueckan PHINKE HHIKUX FHEPIHH 735 p.
S. MaTematuka 460 p.
6. AnepHas CNEKTPOCKONHA H PAAKOXHMHS 275 p.
7. OH3HKA TAXEIMX NOHOB 185 p.
8. Kpnoresnxa 185 p.
9. Vcxopurean 460 p.
10. AsToMaTu3ALNS OBPAGOTKN SXCOEPAMEHTANRHMX AGHHBIX 560 p.
11. BMUNCANTEABHAS MATCMATHER H TEXHMKA 560 p.
12. XnmMus 90 p.
13. Texnnxa ¢mInUEcKoro IXCHEPHMNEHTA 720 p.

14. Hecneposanus TeepAMX TEA N XUAKOCTEH SRCPHBINN MCTONUMH 460 p.
15. Oxcnepunenransuas duanxa sAEpHLMX peakumii

fIPM HH3KMX JHEPIUNX 460 p.
16. Hoanmerpus x duanxa 3aunTR 90 p.
17. Teopus XOHREHCHPOBAHHOTO COCTONHHA 365 p.

18. Micnonb3osauue pe3yATATOR
B METOROB ByHAAMCHTANMHEX DHIHUECKHX HCCACAOBAHNK

B CMEXHBIX OGNACTSEX HAYKH H TEXHMKN 90 p.
19. Bropusnxa 185 p.
«Kparxue coobircuns OURH» (6 smnycxon) 560 p.

Toannucka Moxer Guite ohopmacHa ¢ M0OGOTO MECHIIA TORA.
Io scem monpocaM oopMacnus NORMNCKN cacayeT obpeiuaTics B Nafa-
reancktuhl orgen OMSIH no aapecy: 141980, r.lly6ua, Mocxoacxok ofnacta
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TlorenunanpHag sHeprus NeoHROH spepHol cCRCTEMM

Ilpepnoxen 3dpexTRRAENI METON BHYNCICHAS HOTCHNNANMHON IJHCDIAN
nsofinoi sxepsofi cucremal. TlonyycHN aHANRTHNCCKNC BHPAXCHES VI Pacyc-
Ta SaepHON MacTH SAPO-SNEPHOIO DOTCHUM21A B Gopse apolinol cBEpTEH.
Hafinena cpa3b 1000 HOTEHIMANA C IOTERUKANOM TANA "proximity”. Wccaeao-
BaHo pangnKEe 1ehopMatHn 1 B3auMHEON OPHCHTANUN SJIED HA NOTCHIINA B33~
umMopekcTaHg. M3 conocTasnennd pacCUNTAHHMX NOTCHINANGHMX Hcpra C
JHepriel CBY3H SAPA CISAYET, YTO BOIOYXREHHME COCTOSHNS HEKOTOPSIX SACP
MOXHO NPEACTaBHTh KAK ABOKHHIC HAH TPONHMNE SACPALE CHCTEME.

Pa6ora sunoauena » JJaGoparopan reopermuccxod dmamxn OUSIH.

MpenpyuT O6BeIHHEHHONS MHCTHTYTA SACPHMX neeaenosni. ybua, 1993

Adamian G.G. etal. E4-93-377
Potential Energy of Dinuclear Systern

The effective calculation method of the dinuclear system potential energy
is proposed. The analytical expressions are obtained to calculate the nuclear
part of the nucleus-nucleus potential in the double folding form. The
relationship of this potential with proximity potential is found. The influence of
deformation and orientation of the nuclei on the interaction potential is
investigated. Due to the balance in binding energies the excited states of some
nuclei can be imagined as dinuclear or trinuclear systems.

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 1993
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