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1. Introduction 

The dinuclear system (DNS) formation in deep inelastic heavy ion collisions is well 

known [1]. The charge and mass distributions of reaction products are predicted 

mainly by the DNS evolution. The relationship between the fusion and quasi-fission 

processes depends on the initial DNS configuration. To describe the DNS dynamics, 

we need the calculation of the DNS potential energy at different values of its charge 

(mass) asymmetry, distance R between the centers of nuclei, nuclei deformations and 

angular momentum J. A small overlap of the nuclei of DNS allows us to write down 

the potential energy as a sam of the binding energies of both nuclei (£1 and Вг) and 
the energy of their interaction. The nucleus-nucleus potential 

U(R) = UN(R) + Ucoul(R) +1/„«( R) (1) 

is a sum of nuclear, Coulomb and centrifugal potentials. Usually, the calculation of 
UN{R) is most difficult in (1). 

Different versions of the potential UN(R) describing the elastic scattering and re­
action cross section in heavy ion reactions can be found in the literature [2]. However, 
they have a limited range of applicability. For instance, the energy density formalism 
[3] gives a too large value of the distance between the barrier position Rt, and the posi­
tion of the potential pocket minimum Rm. This corresponds to a considerable overlap 
of nuclei. The proximity potential [4] is good enough for the description of interaction 
of medium and heavy nuclei. However, for strongly asymmetric DNS its application is 
not valid. In this case the proximity potential leads to a very deep potential pocket and 
contradictory results since the absolute value of the potential minimum is essentially 
larger than the Q—reaction value. 

A detailed analysis [5] of various theoretical schemes testifies great efficiency of the 
folding procedure of nucleon-nucleon interaction with the nucleon densities of colliding 
nuclei to construct Удг(Д). The question is which nucleon-nucleon forces are most 
preferable for the calculations. By using the density independent nucleon-nucleon 
interaction, a very deep nucleus-nucleus potential can be obtained. These potentials 
are used, for example, to describe a-decay. It is assumed that an o-particle is located 
on the first nonoccupied level since the transition to lower leveb are forbidden by the 
Pauli principle. However, the Pauli principle can effectively be taken into account 
by the repulsive core in the potential. In this case the potential has a small depth 
and few bound states in it. In the framework of the microscopical approach the 
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repulsive core appears because of the antisymmetrization effect. The same physical 
results can be obtained by using both the deep potential and the potential with the 
repulsive core. However, to simplify the calculation of the DNS potential energy, the 
second one should be used, especially in the case of interaction of massive nuclei. An 
investigation of the ONS evolution necessitates the potential energy calculation for 
various DNS configurations. Nevertheless, the method of calculation of the nucleus-
nucleus potential should be available both for symmetric and for asymmetric systems. 

In view of the planned investigations of the exotic nuclear shapes and nuclear reac­
tions with radioactive beams the calculation of the DNS potential energy for its various 
characteristics is an important problem. It is interesting also to find nuclear systems 
where the states with exotic shapes (cluster type states) can appear at relatively low 
excitation energies. Light nuclei emission from the contact region of two heavy nuclei 
[6] can be an indication of the existence of trinuclear systems. Moreover, the energy of 
some symmetric DNS seems to be close to the energy of the corresponding compound 
nucleus. In this case the nucleus can transform into the DNS configuration at a low 
excitation energy. 

In this paper we shall obtain the expressions which are convenient for the calcu­
lation of the double folding nucleus-nucleus potential [7]. The interaction of spherical 
and deformed nuclei will be considered. The relationship between the proposed po­
tential Uf/(R) and proximity potential will be find out. The results obtained will be 
applied to the calculation of the potential energy of real DNS. 

2. Nucleus-nucleus potential 

2.1 NUCLEAR INTERACTION 

The repulsive core in the double folding potential 

UN№) = / ft(*i )PJ (R - г » ) Л и - r»)A4*» (2) 

is obtained naturally when one uses density-dependent nucleon-nucleon forces [8]: 

Лг.-г,) = C b ( f i , ^ + ft.(l-«^))«(r»-^). 
Fin** = ( / « , « + /м,«'ПТ»)+»п,«х+9{яда:»1тО»1<г». (3) 

Here <r,- and т, are' spin and isospin matrices, respectively. The value of Co and the 
dimensionless parameters / , / ' , g and g' are known from the description of a large set 
of experimental data within the theory of finite Fermi systems [8]. The interaction (3) 
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is similar to the density-dependent Skyrme one [9]. At a small overlap of nuclei and 
retaining their individuality during the interaction [10] the nucleon density of DNS 
can be written in the sudden approximation 

Mr) = Pi(*) + Pi(*h (4) 

where />,(r) (i = 1,2) are the nucleon densities of interacting nuclei. If one neglects 
the spin dependence in (3), then (2) can be rewritten as 

UN(R) = C o { F ' n ^ f e l ( / ^ ( r W r - R ) d r 

+ /p i (r )^(r-R)dr) + F « y f t ( r ) f t ( r - R ) * l , (5) 

F*M- = /<».« + Яп.«х(ЛГ.-2,)/Л,-(ЛГ2-г2)/Л„ 

where JV,, 2,- and A, are neutron, proton and mass numbers, respectively. When one 
considers the interaction of nuclei with mass numbers Ai > 16, the nuclear density 
can be taken either in the Saxon-Woods dependence 

Pi{t) = l + « P « r - * « , • , ) ) / • « ) (6) 

or in its symmetric form 

Р,(Г> со&{1Щ, rf)/a«) + c«b.(r/a«)' * ' 
Near the nuclear surface the dependences (6) and (?) are с1озе to each other. The 
contact region of two nuclei is the one giving a main contribution to the integrals 
of (5). A simpler Fourier transform of function (7) facilitates the calculation of the 
integrals in (5). In the expressions (6) and (7) ft and ao, denote the radius and 
diffuseness of tth nucleus, respectively, />oo = 0.17 fm~3. For light spherical nuclei the 
more realistic functional dependence of pi{r) on r is the following 

Л{г) = Л(72/т)3/ ,ехр(-72гг), (8) 

where 7 characterises the width of the nucleon distribution in the nucleus [11-13]. The 
value of 7 can be obtained by rrininiizing the nuclear binding energy in the density 
functional. 

Without restricting the general nature of further calculations let us consider for 
simplicity only the quadrupok deformed, axial symmetric nuclei 

« - J M i + AiM^yO). (») 
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where Roi = roA/ and angles (#;,¥>;) are in the body-fixed system. The rotation of 

its axes is described by the Euler angles Я* with respect to the space-fixed system. 
The axis г of the space-fixed system coincides with R (Fig.l). 

Fig . l . Schematic configuration of 
two axially symmetric deformed 
nuclei 

It is known that the expansion of (6) and (7) in the deformation parameter ft 
converges well at small ft. For ft > 0.2 the following modified expansions suit better 
for calculations 

Pi(r) x Pi(r) + £i 

p?(r) = rf(r)+£ Яо. 
d# ( r ) 

ft^oM + ^ ^ ^ A 2 ^ ) 

(Ю) 

where />;(r) and j%{r) differ from # ( r ) and p](r) by the replacement of a0; by bo; 
and 6J,i, respectively. The values of £,, £J, 60; and 6J,; are fixed by fitting the radial 

dependences of pi(r) and рЦг) at в\ = о,. The angle a; corresponds to the nuclear 
surface point nearest to the other nucleus (Fig.l). A small overlap of nuclei allows one 
to neglect the dependence of coefficients in (10) and (11) on в[ 

Let us consider the first integral in (5) 

/ i = / / » ? ( r M r - R ) * = £ ' i * - (12) 
J *=1 

Inserting the Fourier transformations and using the expression 

^ - ^ s i n h f ^ ^ , (13) 

In = -Airpooaoi sinh —± щ - ^ ^ J Pi (p)P7(p)jo(pR)p2dp, (14a) 

we get 

Л2 = -(4ir)2^2№oool RmPi sinh —-ОДНа) 
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*oi 0 О 

= -(4jr)2f2/?M«oi^o2^2sinh — ^ Ы ^ - т ^ — . , fc. I dpph(pR)p\(p) 
°oi о 

—^G i2 - • , / ,2—-{pTrb02cos(pRm)coi\i(irbmp)+pRa2sm(pRoi)+2cos(pB02))\. 
poop2 sinh(wbo2p) J 

(14b) 

/ « = (4»)2б А До,У2о(П.) / dpp2MpR)p2[p) j drr%[pr)-^l 
о о 

= (4W)2e,/9ifloibi,Vio(nI) 

x ^ /ЧРРМРНЫР)[~С.З " 5 ^ 3 0 {" (**. coth(,6i,p) + 5) 

x(PcoS(Pff01) - ^ ^ c o t h ^ + c o s ( p f l 0 1 ) (l - ^ c o t h ^ - p f i o . s i n t p f l o , ) ) ] , 

(14c) 
where 

</2ira0iRoiPeo f*aoi . , D ч . . , > , „ Л Pi(p) = —тх; Г I S~ sin(pHw)coth(jraoiP) - cos(prtoi) 1 
psinh(ira0iP) \ Roi I 

is the Fourier transformation of (7). The results of calculations of Gn and G-ц are 
given in Appendix. The assumption of small overlap of the interacting nuclei leads to 
the simplified calculations of integrals: 

tP 
/15 ^ /?oiflo2€;^Aft>'2o(Qi)yjo(a2)^--j^-/», (14e) 

The main approximation in (14d-14j) is the replacement of spherical functions in the 
integrands by their values at 0J = «,. The expression for lu coincides with the our 
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for 1ц where p\ and p2 are replaced by p\ and рг, respectively. In contrast to 1ц, /{ , ' 
contains p\ instead of p\ and Д, contains p\ instead of рг- Therefore, the calculations 
of In, Hi an<^ MI a r e similar to the calculation of Iu. 

To obtain In, we should calculate the simple integral. If «01/002 is not representable 

as the ratio of two integers, then calculating the residues at poles we get for Я > 

Я01 + Я02: 

г о 3 «01 a 02 • . Hoi d I 

X 
La02 

L f lziT e-^ sinh Щ(%гТ" + (221 + Я) If > + 2lf>) sinh ^ 
! 0 2 , й " «01 I \ U / / 101 

At R < Д01 + Й02 we obtain 

" M 0 A aoi dfloi sinh £ * [a02 ~ i n 

x j e - * * 4 * - * [ ^ ( - Я + 221 + Д „ ) j f » + ( - Я + 221 + 2Я02) i f > + 2Г<3)] 

+ е - " " » У " ' [ f t 2 ( - Я - 221 + j f c ) Г Ю + ( Я + 221 - 2Яо2) 7 f > + 2 7 f >] 

+ e - : : ( i ^ ± f i a i [Яо2 ( Я + ^ 1 + Яо2) ТГ+ ( r t + 221 + 2 Д ю ) T f> + 2Tf>]} 

+ 1 <—• 2 - Г(0> 1 (10) 

Неге the following notations are used: 

Г<°> = T - ! |2Я ((Яо, + Яо2>3 - 3(Яо. + Яо2)Яо,Яо2 + aJ,fioi + о^Яю) 
Ъа01а021 v ' 

- ^ V m + »«) + gT4«oi»02 + *2(йо1 - ^ ) ( « « - «Si) 

- | » а ( « и + «ог) (Л2 + 2Яо,Яо2 + (Ям - Яог)2) 

-ЗЯиЯог (Я2 + (Яо. - Яог)2) - (ЗЯ2 + (Ям - Яог)2) (Яо1 - Яо2)2 

+ 1 ( ( Я + Яо1-Яо2)4 + ( Я - Я о 1 + Яо2)4)] (17) 

and 

j \0) _ ra°J 
' sin(Tnaoj/aoi)' 
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Ti2) = ^T, ~i—rcos(jrna0j/a0i). 

T(3) _ 7г3«о> 1 + cosa(Tna0j/aoi) 
2 sin3(im<W«o.) ' U J 

where t, j = 1,2 and t ф j . The sums in (15) and (16) converge quickly except for the 
immediate neighbourhood of Д = ДЩ + йог- In this case the numerical integration in 
(14a) is needed. 

At a0i = a02 = a the expression (15) transforms into 

i* з a7 . , До, d 1 ^ 1 _-fi 

"{[*+?(*+^5Н(**Э(¥+^)] 
• , " # 0 1 . , "Й02 . n о < 2 2 . D 2 t u ™^01 • l. П ^ М 

x sinh sinh \- 2Roi{r a + «5,)cosh sinh 
a a a a 

+ 2fio2(TV + i & ) s i n h ^ c o s h ^ l , (19) 

a a J 

and (16) transforms into 

it 3 a2 RQI d 1 f^, i f _4«n+*n-*> n , „ „ „ > 
/ „ ^ o o - ^ s m h — — - ^ g - j e - Я(-Д,ДоьЯог) 

where 

D(R, Доь Й02) = A3 - (Д01 + «о»)2 (ЗД + 2(До1 + Дог)) 

+ ! • ( * _ < * +ад. + ** + * ) 

+ 6 ( д + До, + йог + ^ ) f Д01Д02 - ^ y - J • 

The sums in (15) and (19) coincide with the corresponding sums in [14] if 
sinh(До,тг/ао() is replaced by 0.5exp(Abin/aoi)- In (16) and (20) the terms, which 
are proportioanal to ехр( -п(Д + Ям + Дог)/"»), were neglected. 

The integrals in (14b) and (14c) can be calculated in the same manner as in (14a). 
By using the expressions (14d-14j) the contribution of terms /ц. (& = 4,...,9) to h 
can be obtained. The integral 

h = jpi{M(r-R)dr (21) 
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in (5) results from (12) by replacing index 1 by 2 and vice versa. The calculation of 
the integral 

/3 = / /Mr) />2(r-R)dr (22) 

reduces to the calculation of integrals which differ from (12) by the replacement of p\, 
p\ and (\ by pi, pi and &, respectively. Thus, the presented expressions allow us to 
calculate UN(R) if the nucleon density is chosen in the form (6) or (7). 

2.2 INTERACTION OF LIGHT AND HEAVY NUCLEI AND TWO LIGHT NUCLEI 

As it was noted before, for light nuclei the nucleon density is taken in the form (8). 
In the further consideration of asymmetric DNS we shall suppose that a light nucleus 
has a spherical shape (j9i = 0). Therefore, to obtain Upi{R), the integrals lu, 1\г and 
/ и should be calculated. 

At & = 0 we get 

* / HJ
0 Poo 

X (Ъ„-Рп)Шг)втЬ{21гЕг) + ^С?-\ e-^<'3+fl3>sinh(47
2fi7-) j 

+ pooFasmH2-f2Rr) \rdr. (23) 

For 02 ф 0 the integral / ц is calculated as in (23). The integrals in (12) can be reduced 
to the first order integrals 

1,2 = 4 * 4 6 0 , 4 » ( £ ) ИоШ,) Jc-W***JIlZl^tfra)£jL**er, (24) 

x 
0 
/«-^'v^w^g^*. (25) 

Here /L+I/J(*) is the modified Bessel function, C^JQ is the Clebsh-Gordan coefficient. 

By evident replacements in (24) and (25) the expressions for /22, h*, /з» and lz\ can 
be easiely obtained. 
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Interaction of two light nuclei is described by the simple analytical expression 
for / , 

'•-'ЧШ?Г »*&*-• (-*&*)• -' 
Similar expressions are obtained for /2 and /3- Note that the results of this subsection 
are useful when instead of (8) we take the dependence 

•1 Л 2 \ ' , / 2 

'"(Г, = Ти) (1 +'2^'-2) е хР(->?'-2) 

-т(?Г(-«га)"--^ 
suggested for '"О [11]. 

2.3 COULOMB AND CENTRIFUGAL POTENTIALS 

The Coulomb potential for two deformed nuclei 

,• „„,(щ = (%2i J *£М^>, / М г г = -^1 j e-^(p)Pi(-P)dP. (27) 
can be calculated analytically by neglecting the diffuseness of the charge distributions 
p\ and р:г. In this case the Fourier transforms p;(p) have a simple form. For Л > 
Лох + Мм the same expression can be obtained as in [15]. Since the expression for 
t"co«/(W) 'iK cumbersome f»f W < Л01 + Ho>. we do not write it here. Note also tin-
possibility to take into account only terms of the first order in Д in the expansion of 

pi lie]. 
If the sticking condition is valid, the DNS rotational energy can be written as 

where J is the total angular momentum of the system, j , are the moments of inertia 
of each nucleus. The values of j , are known for axial and quadrupole deformed nuclei 
considered in this paper. 

3. Relationship of double folding potential with proximity potential 

Using (13) we can approximately rewrite (5) for the spherical nuclei a.s 

UN(R)*tCMFin - KA i> - « 0 1 ^ - а™Щ-) + F"\//'ilrlftlr - R)./r. (2MI 
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Let us consider the case a0i = aoi = «. Then, from (19) and (29), for R > Rot + Да-
we get the approximate expression: 

UsW ^ 2 ^ 2 о С о « 2 ^ | Е е - [ 2 f f t ,
n 7 f " ( l + nS) - 2(Fin - F„)«] 

- 2 ( F m 7 F ' T ) ( l4-nf + »^2) 2Fir. - F„ fig / и \ ' Д 
+ 67lOIfio2Vfio/' hx 
x (6 + 6n6 + 3n262 + n3*3 - 2 T V * - 2 * V ) 

-2lFi"~3
F"hfi + 6nS + ЫЧг + n3S3 - 2*2n36)]\. (30) 

In (30) the terms of order exp(-rafioi/a) have been neglected, 6 = (R — Roi — fioj)/« 
and До = Roi + Ro2- Let us denote the expression in braces by 

ZA011102 "0 0/101*412 v i to / 

where Фо, Oj and Ф2 are the first, second and third sums in (30), respectively. At 
Fi„ = Fex = 1 these sums coincide with the corresponding sums obtained in [17] where 
the single folding potential has been calculated. The functions Фо, Ф1 and Ф] are the 
same for any pair of interacting nuclei if we suppose Fxn,tx — /m.ex* For example, in 
[17] the following expression for the universal function Фо 

•*|-£*-Цг*. 
n=l " 

has been obtained which differs from our result by the factor after the exponential. 
Thus, the double folding potential can be expressed in the form of the proximity 

potential but with another universal function. The sign in (30) depends on the sign of 
Ф(8). In Pig.2 the function Фо(8) is compared with the universal function of the prox­
imity potential [4]. For 8 < 8min = 0.15 the function Фо(*) increases with decreasing 
8. This leads to formation of the repulsive core in UN(R). By using (20) and (29) 
the universal functions can be obtained for 8 < 0. Their expressions are cumbersome 
and are nor given here. The function Фо(*) is an approximately linear function of 8 
at large negative 8. The universal function of the proximity potential has the same 
kind of behavior. The comparison of the universal functions of the double folding am.' 
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proximity potentials (Fig.2) demonstrates a smaller depth of the first. However, the 
difference of these potentials is not essential when R > Rj,. 

The case of small deformations of nuclei makes it necessary to change geometrical 
factors in (30) by using the following substitution 

До,-»До.(1 + Дгм(а0) . 

It is assumed that the universal functions depend on the minimum distance S between 
the surfaces of nuclei [18]. 

«O* / Fig.2. Universal functions Ф0(£) for 

• в ? - 1 - 0 : / proximity potential (dashed line) and 
' double folding potential proposed by 

—1.5 : / - u s (solid line) 
t : 

__2 Q^ i . . . . . . . . . 1 

"0.0 1.0 2.0 3.0 4.0 
6 

4. Results of calculations 

By using the expressions obtained above the nucleus-nucleus potentials for the entrance 
channels of few reactions have been calculated (Fig.3). A spherical nuclear shape 
has been assumed in these calculations. The set of parameters C0 = 300 MeV fm3, 
fin = 0.09, / „ = -2.59, /fn = 0.42 and f'a = 0.54 has been used [8]. A good 
description of the position (Rb) and height (£*) of the entrance potential barrier [19,20] 

can be obtained by a small variation of the parameters r0 = (1.10 ~ 1.15) fm and ao = 

(0.50 -r- 0.55) fm in (6). The dependences U(R) on ft for few reactions are presented 

in Fig.3 at different values of J. In the case of massive systems the potential pocket in 

tf(ft) either has a small depth or is absent because of the strong Coulomb repulsion. 

However, due to the nucleon exchange between the interacting nuclei the potential 

pocket becomes deeper [21]. Therefore, to evaluate the stability of the massive ONS, 

this effect should be taken into account. 
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-го.о, 
R. fm R. fm 

J t . . . •. . 

R, fm 
3 is 

700.0 

nniiii|iim»wiiiiwiMnT*»WTtTW|wwwmnwiwn> 

R, fm 

Fig.3 . Dependence of nucleus-nucleus potentials on R and J for various combinations 
of nuclei 
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To calculate the interaction both between the light and heavy nuclei and between 
the two light nuclei, the formulae of subsection 2.2 have been used. We have chosen 
7 = 0.671 fm -1 for the o-particle. It corresponds to the minimization of the total o> 
particle energy in the density functional [12]. The values of 7 for other light nuclei 
have been obtained by fitting empirical values of Еь and Яь [19,20]. One should note 
the strong dependence of the potential pocket depth on 7. 

The comparison oiU(R) for the systems *°Ar+197Au and 4He+233Am (Fig.3) shows 
the increase in the potential pocket depth with increasing asymmetry of the DNS. The 
same behavior is observed for other forms of the potentials. 

Fig.4. Dependence of nucleus-nucleus 
potentials on R for the reac­
tions "°Ca+M8Cm and "8Ca+M 8Cm at 
J = 0 

'"—9 11 13 15 17 
R. fm 

To demonstrate the influence of neutron excess on the potential U(R), the calcu­
lations for the reactions ',uCa-r2',8Cin and J 8Ca+M 8Cm have been done (Fig.4). It is 
seen that the value of Еь is smaller for the reaction with 4&Сл. The entrance potential 
barrier can decrease with increasing neutron excess in the colliding nuclei due to the 
soft dipole mode [22,23]. This mode corresponds to a dipole oscillation of the excess 
neutrons with respect to the nucleus core. The excitation energy of the soft mode can 
be estimated in the following way [23] 

1/2 
SO/A1'3 MeV. 

where Nc is the neutron number of the core. Knowing hupT, it is possible to estimate 
the expectation value of the square of the neutron excess displacement with respect 
to the core A2. Assuming that the total nucleon density is constant, one can obtain 
the value of the change Vc of the entrance barrier due to the soft dipole mode. For 
the reaction HCa+M , ,Sm we have obtained v S w 0.46 fm and V> = 4.8 MeV. In our 

ли.и 

240.0 

220.0 

200.0 

180.0 

1**1111 | 4 I « I * I * I I | * I M I I | ( * | I * ( I. 

• t e n л '* * * • * * ' . . . . « . . . . • 

Z(N - Nc) 
N(Z + Nc) 
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calculation the unchangeable f v( ' i ) has been used. From the above arguments the 
great enhancement of sub-barrier fusion is expected at this value of Vc. 

It is known that the exit potential barrier differs from the entrance one [24,25] due 
to the change of deformation of the nuclei during their interaction. The calculated 
U(R) for the system 4He+233Am is presented in Fig.5. Due to the deformation of a 
heavy nucleus (/3 = 0.45) the decrease of E<, is about 15% at ilt = П2 = 0. The 
same decrease of the emission barrier of the o-particle in the reaction 40Ar+ l97Au is 
observed [24,25] in comparison with the fusion barrier of nuclei 4He and 233Am. It 
should be noted that the influence of deformation on the potential form is small. The 
width and depth of the potential pocket are not changed essentially. 

50.0 i i i imml immi i i i im i i i i i i i i i i i i im i i iH iM 

«He+^Am 
*-° , 
#-0.45: 

40.0 : 

.30.0 -

20.0 

10.0 

> 
60.0 

'40.0 

20.0 

МШИ НЦ1ШНП|НИ|Н||ЦН11НН|Н||НН 

циннии! 10 12 
R, fm 

j : 
60 

. . . . . . 1 - I . . . . . . . . ^ 
14 

Fig.5. Dependence of nucleus-nucleus 
J : potential on Я for the system *He+233Am 
0 i 

at J = 0 and J = 60. Calculated results 
for spherical and deformed heavy nucleus 
are presented by dashed and solid lines, 
respectively 

IB 

The dependence of U{ ft) on various orientations of nuclei is presented in Fig.6 for 
the system 238U+23*U, ft = & = 0.26. As one can see, for the touching nuclei the 
nose to nose configuration is energy preferable. 
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Fig.6. Dependence of nucleus-nucleus 
potential on R and orientations of nu­
clei for the system 238U+238U, A = 
f>2 = 0.26, at. 7 = 0. Calculated re­
sults for Ui = 0 and il2 = т , fit = 
jr/4 and Sl2 = 3ir/4, Hi = ff/2 and 
й2 = т /2 are presented by solid line, 
short dashed line and long dashed line, 
respectively 

10 12 1* 16 18 20 22 
R, fm 

The dependences of the DNS potential energy 

V(R,Z,J) = U(R,Z, J) + B, + B2- (B12 + ETOt(J)) (32) 

on the charge of one nucleus and J are presented in Fig.7 for the systems 58№+и№—> 
116Ba and 76As+76As->152Dy. The value of R for each Z corresponds to the position 
of the potential pocket minimum. The mass numbers of nuclei have been chosen by 
minimization of (32). for convenience, we have normalized (32) to the energy of a 
rotating compound nucleus {Bu + ET<,t{J)). The binding energies Bu B2 and Bi2 

have been taken from [26,27]. 

t Fig.7. Dependence of the DNS potential energy on charge Z of one nucleus and J 
for the systems " N i + ^ N i and теА8+Т6А8 
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At high values of J the energy of the symmetric configuration seems to be close 
to the energy of a compound nucleus. The semiaxes ratio of the equivalent ellipsoid 
is approximately equal to 2 : 1. This ratio characterizes the superdeformed states of 
the nuclei. Therefore, the relationship between the superdeformed nuclei and sym­
metrical DNS can be assumed. The symmetrical DNS transforms probably into a 
superdeformed mononucleus with increasing neck between the DNS nuclei. 

If we consider neutron deficient nuclei far from stability which have relatively small 
binding energies, then some of their excited states can be imagined as formed by 
two strongly bound interacting fragments. Constituent fragments are strongly bound 
because, being lighter, they have such an N/Z-тгЛю that corresponds to large binding 
energies. Due to the balance in binding energies these cluster-type states can appear 
at relatively low excitation energies. The investigation of the relationship between th<-
DNS configurations and exotic nuclear shapes is a separate interesting problem. 
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Fig.S. Potential energies of some 
trinuclear systems formed of the ex­
cited nucleus 23SU. Potential energy 
of the corresponding DNS is pre­
sented as well 

The experimental observation of the emission of light nuclei from the contact region 
of two heavy nuclei [6] can be considered as an indication of the existence of trinuclear 
systems. For example, the , 2C emission from the neck can be interpreted as the decay 
of a trinuclear system. The potential energies of the trinuclear systems formed of 
the excited nucleus 235U are presented in Fig.8. It is seen that the energies of some 
trinuclear systems are smaller than the energy of the corresponding DNS. Therefore, 
in the contact region of two massive nuclei the light nucleus formation is possible. 
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5. S u m m a r y 

The analytical expressions have been obtained to calculate the nuclear part of the 
nucleus-nucleus potential in the double folding form. The relationship of this po­
tential with proximity potential has been found. The influence of deformation and 
orientation of the nuclei on the interaction potential has been investigated. The de­
crease of the interaction barrier with increasing neutron excess in one nucleus has been 
demonstrated. Due to the balance in binding energies the excited states of some nuclei 
can be imagined as dinuclear or trinuclear systems. The proposed calculation method 
of the DNS potential energy can be used Ht any of its mass (charge) asymmetries. 

Appendix 

Upon calculating the residues at poles, the integrals 

r. f sin() sin(pr) dp2(>) 
dRm 

sin(/w) dr 

dr. 

r . „ _ y — — — 
-exp((r-/?„,)/<'!>!)'2 

call be represented by the following sums: 

,, _ f exp(-/f02//)|i2) y , exp(-;r/A,2(2n + 1)) 

9 D 
x - m . , Г ,o,., , i yi (л«иr«s(p/*02) + T M 2 » + 1)sin(p«D2)) 

«ог + и м (-" +1) 
+ (TUo27'(2ii + 1)+ ljcos(;>/?02) -;<flo2sin(j>fio2) \. 

Г - J _ J _ _ ' , „ ! „ » 4.91/ V* e x p ( - ^ ^ , ( 2 n - H ) ) . 

G l 3 " 1 (i + expt-ib./ib,))' " 2 s 6 ' 4 ' 0 + 2bo1 £ Л8, + W t a , + ip 

* H-flg.+^J^ + l)» - *» + Ь ° '* Р ( 2 " + ' > + UgI+(,«b.)*(2n + l)*j 
X *' - (^A + ^'Slm^'iF + ̂ (2" + ")sillW'fi-
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