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1 Introduction 
One of the most important unresolved problems in general relativity is the problem 
of singularities. According to the results of Penrose and Hawking (1], the space-time 
singularities are typical for a classical theory of gravitation. Under rather general 
assumptions about the properties of the matter they occur in the Universe and inside 
black holes. The curvature of space-time increases without limit near a singularity. 
In such circumstances the classical theory is not applicable and, in particular, we 
cannot believe in its predictions concerning the complete global structure of space-
time. 

On the other hand, it is commonly believed that a successful quantization of 
gravity will provide us with modifications to the theory which are necessary to avoid 
the prediction of geodesically incomplete space-time manifolds [2,3]. Quantum cor­
rections may completely change the gravitational equations and the corresponding 
space-time geometry at the Planck scale. The main problem on this way is the 
non-renormalizability of the Einstein gravity since the straightforward exploiting of 
the standard perturbation methods leads to inconsistent quantum theory. However, 
quantum gravity can be treated semi-classically [4] and the obtained results are sen­
sible in some regimes when part of gravitational degrees of freedom in the leading 
order can be considered as classical [5], while the other part is described by exactly 
solvable quantum theory. 

In this paper, we are trying to take into account the influence of quantum cor­
rections on the behaviour of the Schwarzschild solution. This solution is probably 
the most important one in general relativity. It describes the space-time outside 
the gravitating body of mass M and allows maximal Kruskal extension which has 
a singularity at the radial parameter r = 0. 

Our strategy is the following. We are interested in spherically symmetric solution 
of gravitational field equations and its deformation due to quantum excitations of 
the metric and the matter fields. Therefore, it is naturaly to assume that the general 
element g^ of the space of all metrics ( over which we have to integrate in functional 
integral) in the neighbourhood of the classical configuration is represented as a sum 
of a spherically-symmetric part g^, and a non-spherically symmetric perturbation 
h„u: ' 

9^ = 9%h + lhw. (1.1) 

We do not assume the spherically symmetric part g'Jl to be small and will quantize 
it exactly. Instead a non-spherically symmetric deviation h^ is assumed to be small 
and we will take it into account perturbatively under quantization. Spherically sym­
metric excitations of the metric do not contain propagating modes while the modes 
of кци do propagate. So in the first order, eq.( l . l ) is a separation on propagating 
and non propagating modes. Bearing in mind the non-renormalizability of quantum 
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gravity with the Einstein-Hilbert action 

• V \a*A = - ^ / * * V е ? я < i -2) 

one can expect that it is related to the contribution of the propagating /i-modes 
(gravitons) to the Feynman diagrams. Thus, quantum theory blows up already in 
the first non-trivial order in h. 

Inserting (1.1) into the Einstein-Hilbert action (1.2) we get in the second order 
in h : 

Sertoli = VIC''] + I Wh. (1.3) 

where D is the second order differential operator determined with respect to the 
metric g^„ . (Actually, the /i-modes can be expanded with respect to the basis of 
spherical harmonics and be represented as an infinite set of two-dimensional fields 
(functions of only time and radial coordinates ( t , r ) ). The operator D is then the 
corresponding two-dimensional second order operator.) 

To the leading order (which we only will consider here) the non-spherical ex­
citations h^ can be considered as classical and consequently we can assume that 
h^ = 0 in (1.3). So far, as non-spherical excitations h are concerned, we are in the 
classical regime. In this case, the 4D theoiy of gravity with the Einstein-Hilbert 
action (1.2) reduces to quantum theory of only spherical excitations of the metric 
with the action Sgr[gs,]H ] describing effective exactly solvable two-dimensional the­
ory of the 2D dilaton gravity. In the leading order, the effective theory describes the 
non-propagating spherically symmetric modes and is correctly tractable under the 
quantization (in the sense of generalized renormalizability). It is possible to compute 
the higher order corrections due to the presence of propagating gravitons, although 
at some point one is bound to encounter the problem of non-renormalizability of 
quantum gravity. The still unknown correct theory of quantum gravity is likely to 
avoid this problem but we expect that the modifications (which are not correctly 
calculable at the present moment) will not drastically alter the leading order result. 

The 2D dilaton gravity has widely been investigated recently [6-1-1]. The review 
with detailed references can be found in [T]. The -11) dimensionally reduced models 
are discussed in [8,9]. 

2 Effective two-dimensional theory 
The classical dynamics of a gravitational field interacting with the matter is deter­
mined by the standard Einstein-Hilbert action 

.V= / <tlxJ^)(-T^—R^ + £„,„,), (2 .1) 
J v 1(>7ГК 
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where ft'4' is the scalar curvature determined by a four-dimensional metric iy„'„ 
and /,,„„( is the l.agrangiau of matter Holds. The gravitational constant к has the 
dimensionality of length squared [I*]. 

The metric g,,J and the matter fields are assumed to be consistent with the 
condition of spherical symmetry. Let us consider in detail the gravitational part of 
the action (2.1). An arbitrary spherically symmetric metric can be written in (In­
form 

<b2 = sot f(r)dy ,rf; 'J - r2(:)(de2 + sin2 Mv-2). (2/2) 

where we assume that four-dimensional space-time is covered by the coordinates 
(:°. c'.fl.y;). Note that дл0 in (2.2) plays the role of a metric on the 21) space-time 
covered by the coordinates ( r ° , r ' ) and r2(z) is a function on this two-dimensional 
space. (We will use letters ц.и = 0. 1,2.3. 1 for curved indices in four dimensions, 
while the corresponding indices in two dimensions will be denoted by c\..i = 0. 1). 

In a usual way we can choose the coordinates ( r + . ; ~ ) in which the first term in 
(2.2) takes the conforttially flat form 

rfA = r<,(-"+""~lrf"_-+fir- - г\: + ,;- )((Ш2 + sin'flnV2)- (2-3) 

In the case of the Schwarzscliild metric, ( : + , r~ ) are the Kruskal coordinates defining 
the maximal extension of the black hole space-time and "r" is indeed the radius 
measured from the singularity located at the point r = 0. 

The non-zero Ricci tensor components for the metric (2.3) are the following: 

/f + _ = i)+(La + ()+<)- In r2 + -i)+ In r*U- In r\ 

Heo = - 1 - 2<-"0+0-r2. 
Яфф - и'ш2вН(ц). 
K±± = #± '» г2 + 0± In r2lh In r2 - i)±rrO± In r2. (2.1) 

and the scalar curvature Л ' 4 ' — lf t+_r~" —т"/9в l s : 

ft('" = .ie-"d+()-(i - 2< -"<)+ In r20- In r2 + 4 + -̂ T' ~"0+0-r2 (2.Г)) 

Note that the first term in (2.5) coincides with the scalar curvature ft'2' of the 
two-dimensional metric g+_ = <"'" , : ': /r '2 ' = U'"i)+i).a. Analogously, the 
whole expression (2..5) can be written in the covariant form with respect to I he 
two-dimensional metric <ts2 — t)t,jdz"d:'' 

ft1'1 = .'r<21 - ^(Vr)2 + % + ^-Or2. CJ.li) 

where D = V2 = yl'',Y„Y,i-
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Since the determinant of the metric (2.:{) is f/1' = - i<*"r [ sin2 в , the gravila 
tional action 

takes the form: 
о и 

(2.7) 

(2.S) 

where we have omitted the integral of Or2 which is the total derivative and does 
not affect the equations of motion. The action (2.8) determines the dynamics of 
spherically symmetric excitations of the ID gravitational field. On the other hand. 
(2.8) describes the effective two-dimensional scalar-tensor theory of gravity. It is 
worth noting that this theory is indeed of the 2D dilaton gravity type. Il is easy lo 
see this introducing the "dilaton" field ф = In(^-). Then eq.(2.8) takes form of the 
dilaton gravity [6-7]: 

Sgr = - i / r f 2 j [ e* ( / ( - i (V<*) 2 ) +1'(ф)}, (2.9) 

where the "dilaton" potential is U($) = jj. This observation is important for us 
since it allows one to use all the methods previously developed for the 2D dilaton 
gravity [6-7,12-14]. Note that usually one considers the following dilaton-gravity 
action 

S5 l r = -[- [ <l2zS4ir*[R - (Хф)2 + A], (2.10) 

which is inspired by string models. The essential difference between (2.9) and (2.10) 
lies >n the quantum region. The string-inspired action (2.10) is shown to be finite, 
while the action (2.9) is renormalizable in the generalized sense: quantum correc­
tions change the form of the potential 11(ф). Having this in mind, let us consider 
instead of (2.8) the generalized action with an arbitrary "dilaton" potential V(r): 

Sgr = AjftJZfitRW - 2(Vrf + IV[T)\, (2.11) 

where we have introduced the dimensionless variable r —> -y-. Varying (2.11) with 
respect to the 2D metric gul, and r leads to the equations of motion 

2rV„VMr = ga0[-V{r) + 2rDr + (Vr)'2], 

2aT + TR + -U'(r) = 0. (2.12) 
к 
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The first equation in (2.12) means the existence of the two-dimensional Killing 
vector [10-12] £0 = SaJ0pr ( V „ ^ + V /3£a = 0). Thus, we can choose the field г as 
one of the coordinates (which is space-like) and use the Schwarzschild gauge where 
the metric takes the form: 

ds2 - rjdt2 - g-*ndr2, (2.13) 

where J = p(r) . For the metric (2.13) we get Or = —S-, (Vr) 2 = —J. Consequently, 
one has the following solution of equations (2.12): 

г 

ff(r)=-— + - f U(p)dp, (2.14) 
Г Г J 

where M = const. If U(r) = 1, then y(r) = 1 — * ^ and we obtain the Schwarzschild 
metric. It is not surprising since the Schwarzschild metric is the unique spherically 
symmetric solution of Einstein equations in empty space. The constant M coincides 
with the ADM mass calculable at space-like infinity. It is worth noting that for 
U = 1 eqs.(2.12) are the Einstein equations in empty space 

«м, = С - \glVRw = о (2.i5) 

considered on the spherical metric (2.2-3). Hence, the reduction to the effective 2D 
theory (2.8) is self-consistent and we obtain again the Einstein equations. 

To complete our consideration we present here the expressions for the effective 
two-dimensional and four-dimensional scalar curvature valid for the metric (2.2), 
(2.13-14): 

Г 

Rm = _ 9 » = JJ± + ^Lj V(p]dp -l-2v +
 L- (2. i6) 

r J к г J кг' КГ 

ЙН> = JL ( 1 _ 1/(г)) _ |L (2.17) 

Note that for U = 1 we get Я ( 4 ) = О everywhere in the external region of gravitating 
body, as it follows from eqs.(2.15). In the next sections, we will show that taking 
into account quantum spherically symmetric excitations leads to the deformation of 
the form of the potential U(r). According to (2.17), it manifests itself in non-zero 
value of Я ' 4 ' outside the gravitating body. The Einstein tensor GM„(2.15) for the 
metric (2.2) can also be written covariantly with respect to the 2D metric gap: 

2 1 2 (Vr) 2 

Ga0 = - V a V / 3 r - да0(-2 + - O r + ^ - ) , a,0 = 0 ,1 , 

Gee = j(RW + ~Or), 

G^ = sin2 9Gee. (2.18) 
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Eqs.(2.12) look like the quantum-corrected Einstein equations 

G^ = T*J,14 CMS» 

where 

Til* = -~r9 rl/(4=), и 2к ^V/K 

T<£> = sin2 0Tee (2.20) 

is the effective energy-momentum tensor which is induced due to quantum spheri­
cally symmetric excitations. 

3 Quantization of spherically-symmetric 
excitations 
Consider now quantum theory of spherically symmetric excitations of the metric 
described by the two-dimensional effective theory with the action (2.8): 

S9r = -~] <Pxy/=g[r2Rm ~ Wr? + 'i\. (3.1) 

where r is diinensionless. Note that the dimensional gravitational constan'. к from 
the combination ^Я'4^ in (2.1) has moved to the A-term in the 2D action (3.1). 
It reflects the fact that the 2D effective theory (3.1) has a better renormalizable 
property than the initial 4D-action (2.1). As it has been noted in Sect.2, the action 
(3.1) takes the form of the 2D dilaton gravity which is widely investigated in recent 
years in connection with the interest in two-dimensional black holes [6-7]. In par­
ticular, the theory (3.1) was shown to be generally renormalizable in the sense that 
the renormalized action takes the same form as the original action (3.1) with some 
new potential U{r): 

SgT = - i j d2zsf=~g[r2Rm - 2 (Vr) J + ^ l ' ( r ) ' , . (3.2) 

In the conformal gauge gag - ё*°уар the action (3.2) takes the form 

Sgr = / <Рг^~1\-±7да"д0х1>двф + 2да0дофдро -фй- 1-и(ф)ег"}, (3.3) 
j Zip лк 

where we denoted ф = V and ft = ft'2'[g]. 
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Lot us start with neglecting a possible anomalous term in the c|uanluni version 
of the action (3.3). Of course, it is just an approximation, lull its advantage is that 
the results obtained have a very simple analytic Гони and. moreover, possess I lie 
same interesting properties as in a more general case. 

The divergencies now can he calculated by the background-field method [12]. 
It is useful to interpret (3.3) as the I) = 2 a-model (Note that our definition of 
curvature differs in sign from that of the paper [12].): 

•V =' / #:^[г,<!<Л* )!Г'<K.X'0.1-\J ~ ^ИФ{.\) + Y'(.V)]. 

.V = U'-,<r);4> - 2c ; T = - — F ( i V " ; 

Since Ihe metric (Ix] is flat and the dilaton Ф is a linear function, the unique 
nontrivial divergency corresponds to the «'normalization of the laohyon i. The 
coefficients of Wevl anomalv corresponding to the tachvon coupling take I lie form 
[12]: 

,)' = - r . ' ^ V . V / / ' + ((;,JU,4>i)jT - 27) = Л1 + S.i' (3.5) 

For (3.1) one gets 

Ai3r = 0. Jr = _ - i f
2 " ( I f ' - 2с>,.Г) (3.<>) 

• I K <•' 

Duo to the factorization of the tachyon 7 (3.1) one obtains from (3.(>) the ,i- function 
for the dilaton potential f ; (c ) : 

.il = ( - / ' -20J-). (3.7) 
(.' 

The fixed point of (zero of the .i1 -function) corresponds to the potential 

f'U") = cs/i' = cr. (3.X) 

In this case, the theory is finite [12] with the potential corresponding to the string-
inspired dilaton gravity (2.10). A weaker renorinalization condition is satisfied if 
(j,V -2d^,V) is proportional to the potential itself, i.e., in the case of a Yukawa-like 
potential 

Г(,) = (,-ь!,: (3.!)) 

Then, the divergency can be absorbed into a renormali/aliou off. Inserting po­
tentials (3.8) or (3.0) into ("2.1-1) we obtain a metric corresponding to the l'\" lixi'd 
point. However, there exists a problem of reaching the lixed point since I he classi­
cal ("bare") potential (!{r) = 1 can bo out of the attract ion region of I lie Г V fixed 
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point. Therefore we have to consider the renormalization group equation for the 
potential {/: 

d,V = l)u = \ u - 2дФ1'. (3.10) 
Ф 

where t = In -£-, p. being a scale parameter. 
One should add the "initial" condition to eq.(3.10). We will assume thai at 

ц = ^ 0 [t = 0) the potential ( / (v , ( ) coincides with the bare potential 

f,'(V,f = 0 ) = l . (3.11) 

It is easy to find a general solution of eq.(3.10): 

lM>,t)= yfiHf№-2t), (3.12) 

where / ( . . . ) is still an arbitrary function to be chosen from the initial condition. 
Note that in our case eq.(3.10) is considered in the region {t > O.v > 0} being 

the transport equation with the characteristic line ф - 2f - 0. Therefore, the 
solution U at the point (ф,1) below this line ( ф > 2() is obtained by transporting 
the initial condition, in our case it is U{y,t = 0) = 1, along the characteristic. 
Hence, for ф > 'it we get from (3.11-12) that /(V') = - щ a n d consequently 

On the other hand, above the line ф — 2t { t.e. for ф < 2t ) the boundary 
condition и(ф,1)\ф=а = u(() is "transported". We do not have this kind of a 
boundary condition from our problem. However, as one can see from the form of 
the general solution (3.12), the value of l'(i/>,<) for ф = 0 cannot be different from 
zero. In other words, there is the unique possible boundary condition 

i/(V>,<)Uu = 0 (3.14) 

consistent with eq.(3.10). Thus, the solution of (3.10) in the region {V' > 0,( > 0} 
takes the following form: 

Щф,1)={ ф'п -.r.,^J САЛЬ) 
0 if ф < 2t 

<*^Щ i f ^ > 2 t 

Note that the function (3.15) has a discontinuity along the characteristic line ф = it. 
Remembering that ф = jjjj we obtain 

f 0 if 0 < г < 4V/K«, 
U(r,t)=\ T i f r ; 4 ^ (316) 

As we expected, the fixed point (3.8) (or (3.9)) is not reached in the limit * — 
+ oc. However, the t-dependence of the solution (3.16) can be absorbed into the 
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redefinition of the gravitational constant к: к" — к1. Then, (3.16) can be written 
in the form: 

0 if 0 < г < 4v/«", 
Г 

(Г2--16* ' ) 1 / 2 
tf(r,K')=< : i f , . ; 4 ^ (3.17) 

We will omit * later on. 
Let us now return to eq.(2.14) connecting the metric of the spherically symmetric 

solution with the potential U(r). We get that the quantum spherically symmetric 
gravitational fluctuations lead to the following deformation of the Schwarzschild 
metric: 

s(r) = - ^ + V _„»)•/*, (3.18) 
г r 

where г > a — 4</к. 
Analyzing the metric (3.18) we discover that the singularity of the Schwarzschild 

solution at r = 0 is now shifted to the finite radius r = a (in four-dimensional picture 
it means that singularity now is "spread" over a two-dimensional sphere of radius 
г = a). One can see this when calculating the 4D scalar curvature (2.17) 

Я«> = 1 [ 2 ! 2 ( 1 - - 7 = L = ) + *«(1 - x 2 r 3 / J ] . (3.19) 
a' Vl - x2 

where x = f. In the limit x — 1 we have Я ' 4 ' — -f oo. On the other hand, for large 
г ( x —' 0) we obtain 

Д ( 4 , С - ) ~ ^ ( - ) 4 . (3.20) 

One can also get from (3.18) the asymptotic expression for the metric g{r) for 
large т > > a: 

Ш a2 

0 ( r ) * l - j . (3.21) 
r IT' 

Eq.(3.21) looks like the metric of a charged body with the mass M and the charge 
Q2 = a 2 / 2 but with opposite sign in front of the charge's term. It is interesting 
that the potential U in (2.14), (3.18) does not lead to an additional contribution 
to the mass M,which is due to the fact that the f/-term in (2.14), (3.18) has the 
asymptote ~ \ for large r . 

It is worth noting that as follows from the generai expression (2.17) (and (3.19)) 
the scalar curvature Д'4 ' (г) does not depend on the mass of a gravitating body, it is 
rather universal and is determined by the parameters of the gravitational field itself 
(via the gravitational constant). Later on, the minimal radius a will be supposed 
to be equal to the Planck radius vpi by assuming that possible factors ~ 10 are 
non-essential. 

We see from (3.18) that the Schwarzschild horizon at гд = 2M is also shifted 
r/j = \/AM2 + a2 so that the asymptotically flat metric (3.18) describes the space-
time with the same causal structure as the Schwarzshild one. At the same time, 
the Schwarzshild singularity at r = 0 manifests itself both in the metric and in the 
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curvature (Я ' 4 ' ~ S(r)) while the deformed metric (3.18) is regular at г = a and 
only the scalar curvature Я' 4 ' (г) is still singular. 

Formally, there exists an extension of the metric (3.18) behind the singularity 
at г = a. To see this, let us change the variable: г = a cosh x. Then, the space-lime 
for x > 0 has the metric (3.18) while for I < 0 the metric takes the same form 
(3.18) but with sign ( - ) in front of the second term. In terms of the variable r it 
simply means that eqs.(3.17)-(3.18) are extended to the other branch of the square 
root 'unction. So we obtain that the resulting metric is a two-valued function of the 
radius r: 

ff(±) = _?M±V_ e« )«/» (:,..й) 
г r 

At the point т = a, both functions </'+ '( r) and g ' - ' ( r ) (but not their derivatives) 
are glued continuously. The scalar curvature on the (-)-sheet takes the form 

Я<4> = l [ 2 i 2 ( l + - 7 = ^ = ) - x*{l - **)-**], (3.23) 

where x = | , In the limit x —> 1 we have Я,_. — -сю. The (-)-sheel is also 
asymptotically flat but for large r R,\{r) has a different type of asymptote than 
for the ( + )-sheet (3.20): 

*{!!,(') * 4 j - C3.-2-I) 
Note that for positive M the function <7(_)(r) is negative everywhere. So the whole 
(-)-sheet is behind the horizon (r = rj,) from the point of view of an observer 
staying on the ( + )-sheet. At this stage such a picture of complete space-time seems 
to be formal since no observer can penetrate through the singularity at r - a and 
appear in the ( —)-sheet. However, we will see in the next section that taking into 
account the conformal anomaly we obtain the space-time with the same structure 
but with the smooth behaviour at т = a. The extended space-time then occurs to 
be regular everywhere and geodesically complete. 

4 Solution with the anomaly 
Let us consider now the deformation of the potential U(T) due to the fluctuation!, 
of the ghost and matter fields. Taking into account only the spherically symmetric 
excitations we obtain that these fields contribute to the quantum effective action via 
the Weyl anomaly from the gravitational integration measure and that, of matter 
fields. 

In two-dimensional dilaton gravity there is a well known ambiguity [13] in choos­
ing the 2D metric to construct the Faddec-v-Popov ghost determinant. One may use 
any metric of the form:</a = rag, where r = exp | is dilaton and a is an arbitrary 
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constant. However, in our rase the measure of integration over the 2П gravitational 
fields (r,gt) is induced by integration over Ihe 11) metric y,,J (in assumption of 
spherical symmetry) and consc<|iienlly should bo determined with respect u> the 
resialed metric gali = rigl,,t. so no ambiguity arises. 

Hence, after gauge fixing r/,,,< = '2"</„,<- 'he action will he supplied with the 
usual logarithm of the Kaddoev-Popov ghost determinant [13]: 

where /fj is the '2D scalar curvature determined by the metric gr,,j. 
Considering the spherically symmetric configurations of matter fields we liml 

that, they are described by some effective '21) action which in general takes the form: 
£'„„, = C^r'ik. where к runs over positive and negative integers (for example, the 
к = 1 term appears for 4D scalar fields). We will consider here only the simples! 
case of decoupled dilaton r when £( 0 | = X l ^ i ^ / ' M ^ " / ' ) ' s ( ' l c a r , i ° n f°i' ' l | 1 ' 2D 
ronformal fields. The integration measure for the matter fields / ' is determined 
with respect to non-rescaled metric <JUII. 

Thus we come to the following quantum effective action: 

S = S,,r + S,.r + \S,„ 

s = -i/^D^' 
Using the identity Ну = ^гОэ In r2 + ;y/i, ;, the action (-1.2) can be rewritten in the 
form 

S = Sgrav- - J « а а ; ' я э + - J(Hg\»r- L_lL)N/r^,-\-. (i-'f) 

where A = л ' ~ 2 4 В = -^*-
In the ronformal gauge ry„,j = (2r,y„.< we obtain from ( l.ii) 

S = j d'z^Tj[~{\ - — )(VV)'2 + 2(1 - - ) ( r < T ) ( V f ) T ~ ( V ^ ) J 

J 2ф Н' If 2 

--l~!(Aa + 2t/' - т m И ~ T-' '(V')c2"] + SrP{g] + .V.V„ [g]. ( 1 . 1 ) 
2 2 I K 

where ф = §; and Я is the scalar curvature corresponding to the metric </,,.,. The 
action (•1.1) again takes the form of the 2D rr-model (U.G) where 

Л" = ((/\<т);Ф(Л') = 2v+ Лет - - h i t ' : ' / '= - — Г( r > -'": 

'J V 2( I - £ ) A J 
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The metric G>, is fiat and its determinant is 

*,G-=-4<l-£,( l - ! i±*! , . ,...0) 
А-ф Аф 

Note that A + В = ^ > 0 and del G (4.6) is zero if ф = f and 0 = ^ ± ^ . At 
these points the kinetic term in (4.4) is singular and if А ф 0 changes its sign. 

For the tachyon /3-function we get 

Д/Эт = 0, (F = -G '^V.VjT (4.7) 

Analyzing this equation we consider two different cases. 

4.1 A=0 
We begin with the consideration of the case when the matter fields do not con­

tribute to the effective action (4.3-4), i.e. A = 0. One can see that the target space 
metric then takes the form 

B_ 
Аф' *»Le = 0 - ; ^ ) * ' B = o . <4-s» 

where ds2
B=0 = ^^ф + АНфйа is the target metric of the a-model (3.4). Due to the 

conformal transformation of the 2D Laplacian, we get from (4.7) that 

/J7 = 7 Г ^ / З в = 0 ' ( 4 ' 9 ) 

where /3g=0 is the beta function (3.6). 
Thus, we obtain the renormalization group equation for the potential 11(ф) 

d,U = — Ц - Д ^ - 20фи]. (4.10) 

То solve this equation, let us introduce the function F ( ^ ) such that 

dF = {\ --%-)йф. (4.11) 
Аф 

Choosing the integration constant so that F(V> = * ) = 0 we obtain 

F(tf, = 0 _ ! - £ , „ * £ . (4.12) 
4 4 В 

As one can see, the second derivative F"(0) (4.12) has a discontinuity at the point 
Ф = 1 

Eq.(4.10) is the transport equation with the characteristic F(t/>) - 24 = 0. Ini­
tially, the function Щф,1) is defined in the region {ф > 0,t > 0}. However, as 
one can see from the form of the characteristic the line ф = В/А is a singular one 
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since the coefficient in front of dtU in (4.10) is zero. Therefore, eq.(4.10) must be 
considered separately in the regions 0 < ф < B/4 and ф > B/4. It is important 
that the function F ( ^ ) (4.12) has single-valued inverse function F _ 1 ( i ) denned for 
x > 0. The value of 11(ф,1) for F ( ^ ) - 2/ > 0 is obtained by transporting the 
initial condition at t = 0 along the characteristic. On the other hand, the value 
of и(ф,Ь) for F ( ^ ) - 2t < 0, is obtained by transporting the boundary condition: 
^U=B/4 = /*(')• Considering eq.(4.10) in the regions 0 < ф < В/4, ф > B/4 sepa­
rately, we may choose different boundary conditions /i |(t) , / j2(0- Actually, we have 
no concrete choice for /*(<)• Therefore, for simplicity we will assume that /x(t) = 0. 
The general solution of (4.10) is 

UW,t) = у/фНПФ) - 2t). (4.13) 

From the initial condition 
tf(V.t = 0 ) = l (4.14) 

we get the equation on the function / in the region where F(t/>) - 1i > 0 

/ ( F f » ) = t f ~ * (4-15) 

Thus, one obtains that f(x) = (?" - 1 (s r ) ) - J , where F~l(x) is the function inverse to 
(4.12) single-valued in the regions 0 < ф > B/4 and ф > B/4. Note that F~l(x) 
is a continuous monotonic function but its derivative is singular at x = 0. Thus for 
F ( ^ ) - 2t > 0 we have the following solution of (4.10) with the initial condition 
(4.14): 

lb 2 

(F-MF(V-) - 2«])5 
On the other hand, for Р(ф) — It < 0 the form of the function / ( . . ) is defined 

by the boundary condition: \/B/4f(—2t) = /j.(t). Since we have chosen fi{t) = 0, 
/ ( . . ) = 0 in this region. Thus, the complete solution of eq.(4.10) reads 

f 0 if F(V) - 2i < 0, 
Щф,1)=\ у* . . „ . . , (4.16) 

I F W H i F if F(V>) - 2* > 0 
'Remembering now that ф = g^ we express the solution (4.16) in terms of the 

variables (r, t). Note at first that 
- 2 F& = hF'^ 

r2 

F'(r2) = r2 - Ь2-Ь2 In ^ , (4.17) 

where 62 = IBK. From (4.17) we have that [ F * ] - 1 8 K = 8KF~1 and consequently 
(4.16) takes the form 

f 0 if F'(r2) < 16K«, 
U(r,t)={ r i f F ' r 2 >16«( ( 4 1 8 ) 
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As one can easily see the (-dependence of the solution (4.18) again can be ab 
sorbed into the redefinition of the constants к" = к(, В" = ~ . with the function 
F' being unchanged. Equation F"(r2) - \6nt — 0 has two roots: 0 < J|„, < b and 
r2m > l>. In terms of new variables the solution (4.18) looks as follows: 

( (f.-l[f.(^_16„])l/2 if 0 < Г < Г , т , 
0 if r l m < r < r 2 m , (4.19) 

(F-4F(r2)-iex])"2 if т> r 2 m . 
The potential (4.19) tends to (3.19) when 6 - ^ 0 . 

Let r > r 2 m . The potential U(r) (4.19) is a continuous function in this region. 
Near the point г = r2 m it takes the form 

Thus, at r = r2 m it has a finite value: l ' ( r 2 m ) = ! f̂L- However, the derivative of 
the potential is singular: dTU(r) —> - o o . 

г 

The metric function g = - 2 M 4. 1 J l](p)dp in the vicinity of г = r2 m can bo 

written as follows: 

and consequently, it is more regular near the point г = rm;„ than (3.18) considered 
in Section 3. Indeed, we see from (4.21) that g{r) and g'{r) are regular in r = г2„, 
though the second derivative is still singular. It means that the behaviour of the 
geodesies is regular near this point (since only the first derivatives of the metric 
enter into equations for geodesies) but the 4D curvature is singular: Л ' 4 ' —» +00 
if т —> r 2 m . For large г > > r2 m the potential (4,19) asymptotically coincides with 
(3.17): 

obtained in the previous section. Hence, we have the same asymptote (3.20), (3.21) 
for the metric g(r) and the curvature Д'4 '(J1) for large r > > rim. Formally, there 
exists an extension of the metric beyond the point r = »'2m. Indeed, we may again 
consider the variable r = r 2 m coshx . Then, we come to the same picture as in 
Section 3. with two sheets sewed on the hypersurface r = r2 m . The only difference 
from Section 3. is that the singularity at the minimal radius r = r2 m is more mild 
now. 

The potential (4.19) determines also a non-trivial metric defined in the compact 
region 0 < т < r-[m. One can see that this metric describes the space-time which 
has singularities (of curvature) at the points r — 0 and r = r\m. The curvature 
near r = 0 has the form: Я'4 ' (г) a; -4(1 - с - Б ) , while the behaviour of the metric 
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near г = rim is similar to that near r = r i m . This space-time has no asymptotically 
flat region and is not connected with the space-time defined for r > rj,„. So it is 
not observable for any observer staying at r > r2m. The physical meaning of such 
a space-time is not clear for us. 

Thus, the general picture in 1 lie case when the Faddeev-Popov ghosts are taken 
into account (A = 0,B ф 0) mainly repeats the picture considered in the previous 
section. We may also conclude that the influence of the ghosts is in smoothering of 
the singularity at the minimal radius rm ,„ . 

4.2 А фй 
The expression for f3T is covariant with respect to the target metric G,j. To 

find /?T we use the fact that G, ; is flat and consequently it can be reduced to the 
standard diagonal form by means of the coordinate transformation in the target 
space. Following [14], the target metric (-1.5) 

dslrg = 7 ( 1 - 77 № ' 2 + •>(!- 77 )dvdc + Ada2 (4.23) 

by introducing the new target "'coordinates" (u.\ \ ) 

, I Ф В 
w 2 = !«•; \ = - < T + - V - — ln4i/' (4.24) 

2 A 1.4. 

can be reduced to the form 

ds2
arg = 4Ad\2 - ~[u>2 - B)[Jl - A - B)dJ (4.25) 

Note again that В > 0, В + А > 0 for any N. 
Let A + В > В. We see that the secc:ul term in (4.25) is positive if л lies in 

the intervals /j = (0 ,B) or /3 = {A + B,+oo) and it changes the sign if ^ lies in 
I2 = (B,A+B). 

Let us consider the new variable il 

•-№ ±(У2 - В)(У2 -А-В). (4.26) 

where one must take sign ( + ) for the intervals / 1 , /3 and ( - ) for the interval I}. 
In the new coordinates (\ ,S)), the metric (4.25) is diagonal 

d4lrg=\Ad\2-(±±№2. (1.27) 

Then, we get for the tachyon T in terms of the new variables 

T= ~—1Нф)е2" = - — 1'(и!)с-^^(^ 
•\к 4к 

= -~0(Q)c^ (I.2S) 
4 к 
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For 13 we obtain 

if = -[~d2J - {±Л)1)1П (1.29) 

Inserting (-4.28) into (4.29) we obtain the j-fiiiicliou for the potential Г 

if = {±Л)дЪС - -J' (4.:$0) 
/1 

where one must take sign ( + ) for the intervals / ь ' з and ( - ) for I^. 
As before, we consider now the renormalization group equation 

dtv = (±)Adiu - ^v, (4.3D 
A 

where ( = /n-^-. Assuming that for t = 0 the potential U(u, t) coincides with the 
"bare" one: U(w,t = 0) = 1, we get that eq.(4.31) should be supplied with the 
initial condition 

f'|l=o = 4>W s f . - ^ M l l ) ) ^ (4.32) 

where ui(il) is the inverse function to (4.26). 
We see that U satisfies the differential equations of different type in various 

intervals. Let us assume that A > 0 (N > 24). Then (4.31) is the standard heat 
equation being considered in the intervals / ] , /3 , while it is the heat equation "with 
decreasing time" in 1^. The problem is that the "decreasing time" heat equation is 
known to be non-correct. Solving it formally by means of the Fourier transform in 
the interval /2 we get: 

tf(n,D = <-4 ' /"Ve te*<T>J 'gin^n, (4.33) 

where we assumed that in /2 the variable ft changes in the interval ( - Л , 0 ) ; СЦ. = 
(ф(И),sin jfe) are the Fourier coefficients of the initial condition (4.32). In order 
the sum (4.33) to be convergent for any finite t, the coefficients a t must decrease 
faster than the exponent. It is not obviously the case for the initial condition of the 
type (4.32). So the solution of (4.31) in the interval /2 does not exist at least within 
the quadratically integrable functions (probably (4.31) can be solved in the class of 
distributions). 

If A < 0 (N < 24) eq.(4.31) is the standard heat equation only in the finite 
interval I2 = [A + B,B), while it is again of the "decreasing time" type in semi-
infinite intervals / ] , /3 with the same problems concerning the solution as above (the 
formal solution takes the same form as (4.33) changing the sum £ t ^У t n e | n l e 6 r a ' 
+00 
f dk). We have no definite idea about the possible physical interpretation of the 
0 

solution valid only in the interval - Л < il < 0 or equivalently 2к(А + В) < г2 < 
2кВ. So we will consider only the case of positive A. 
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Let A > 0 and consider eq.(4.31) in the interval /3. We may choose the integra­
tion constant in /3 to arrange that fl(A+ B) = 0. Then, Sl(ui) determined by (4.26) 
varies in the interval (0,+00) 

о l /Гг 5ХГ2 A 5ч ЛН-2Д, sfJ^B + Уи>*-А-В 
n = jV(w 2 -В) (ш 2 - A - B) - — I n - = (4.34) 

Ч /В(Л+ В), 2B(A + B)-(A + 2B)ui2 + 2y/B(A + В)у/{шг - B)("2 - A - B) _ ,n _ _ 

Thus, the function U is defined in the region {t > 0,U > 0}. Hence we should 
have an appropriate boundary condition at il = 0. In fact, the results (the behaviour 
of g(r) and RS*\r) and possibility of extension on (-)-sheet) are not changed if we 
take an arbitrary condition: U\Q-O = n(t). However, for simplicity, we choose the 
zero boundary condition: 

U\n=o = 0 (4.35) 
For the chosen initial and boundary conditions eq.(4.31) has the solution: 

4, +00 

U(il,t) = %=1~^ J [e-^#- - e-^MOd?, (4.36) 
0 

where f and w(£) are related by 

C= f ^y/№-B)(y*-A-B). (4.37) 

We are interested in the potential U(u,t) = e л ш л U{il,t), where ш and fi are 
related by (4.26). Note that the ^-dependence of the solution (4.36) can be again 
absorbed into the redefinition of the constants А,В,к. Indeed, let us consider 
the "renormalized" constants A' - j,B' = ^,к* = at. Note that ui2 = £; = 
tu2(n'), П(А,В,к) = ЩА',В',к'). We assume that А*,В*,к* coincide with 
their "observable"values (A* = ^f1 , B' = ^ ) . Then, in terms of the new 
constants we obtain the potential U(ui) 

+00 

0 

where a»2 = 5^ and we have omitted *. The potential U(r) for different (A,B) is 
plotted in Fig.l. 
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We interpret the 4D metric. (2.14) 

9 ( r ) = - У 1 + 1 / V(p)dp (1.39) 
r r J 

r»ntn 

where r m i n = \/2n(A + B), with the potential U(r) in the form (4.38) as the 
Schwarzschild metric deformed due to the quantum spherically symmetric exci­
tations of the ghosts and matter fields. The role of quantum fluctuations of the 
field / is only in vacuum polarization around the gravitating body which lead.s (о 
the right hand side of the Einstein equations (2.19) in the form (2.20). A different 
situation would happen when the collapse of the /-field impulse is considered [')-"]. 
Then, we would have to take into account the back-reaction of the Hawking radia­
tion that needs the static solutions of equations obtained by varying the quantum 
action (4.3). We do not consider it here. 

Analyzing the metric (4.39) we note that here the minimal distance ?•„,,„ = 
•J2K(A + B) again appears. The expression (4.39) is valid only for r > ?,„,„. The 
essential difference of the metric (4.39) with the potential (4.38) from thai of (3.19) 
or (4.21) is that it is more regular near the point r = 7m,„. To see this, note that 
the solution of the heat equation U(il) (4.30) in the vicinity of the point r = /•„,,„ 
takes the form U{U)•= cfi (0 < fi < < 1). where с > 0 is an irrelevant constant. 
Then, we have for U(u): 

U{u) = c e ^ w " ^ f i ( w ) , (4.40) 

where w2 = ^ . From (4.40) and (4.34) we obtain for г я; ;•„,,„ that 

Thus, the metric function g(r) (4.39) near ;• = r m l „ can be approximately written 
in the form 

p ( r ) * 1 - ^ 1 + £ ( , - * - г » , , , ) 4 / * . • (4,11) 
Г 7" 

where С is some constant. So we obtain that p(r) and its derivatives g' and <•/" 
are regular at г = r m m and only the third derivative diverges <j'"(rm,n) = +°c-
Consequently, the 4D scalar curvature (2.17) takes finite value at г = r m l n though 
its derivative diverges й ' ' 4 ' ( г ш „ ) = —ос. This non-analyticity implies a rather 
mild singularity which does not affect the behaviour of the geodesies. The latter is 
regular near r = тт{п that implies an analytic extension of the space-time beyond 
the hypersurface r = ;•,„;„ (in the opposite case we would obtain the manifold with 
the boundary at 7' = »-,„,-„ that seems to be unsatisfactory). As we have discussed 
above, it cannot be the extension to the small radius r < 7-mm since we have no 
solution of our equations in this region. To construct such an extension, we note 
that the variable 0 was introduced in such a way that its differential squared (dUl)' 
gives the second term in (4.25). It is clear that for fixed ui both SI (4.26) and - J i 
satisfy this condition. We use this fact to consider Щь>) as a two-fold function in 
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the interval /3. Then, we can continue the above obtained expression and valid for 
U > 0 to the negative values of fi. 

We see from (4.30) that U[tt) continued onto the interval ( - • X J . + O C ) is an odd 
function: f /(-fl) = - ( ' ( П ) . As a result, for the fixed г the metric function y[r) 
takes two values 

r 

,<±>(r) = Z^L ± 1 J V(p)dp. (4 .42) 

where V(p) is given by (4.38). The corresponding expression for the ID scalar 
curvature is 

«{+, = A l 1 * ^ ' - ) ) ? — • l-4"41*' 
l*> кг' кг 

Thus, we obtain the same picture as considered in Section 3. The metric (4.42) 
describes the 4D space-time with two sheets (с /* ' is the metric on (±)-sheet) which 
arc glued on the hypersurface of constant radial coordinate r = r m , „ . The functions 
fl'+'(r)i 9 '~ ' ( г ) and their first and second derivatives are regular and sewed contin­
uously at т = rmin and only the third derivatives diverge g '*'(>•„„„) = ±oc. As a 
result, we sec that one sheet is the extension of the other (One can see this trans­
parently by using the variable x: r = rm l„cosh x. Then. Q(- . r) = - П ( х ) and the 
(-)-sheet corresponds to r < 0. Metric is extended continuously into ibis region.): 
the geodesies of one sheet are not ended at ;• = rml„ but continuously extended 
to the other sheet. One can see from (4.38) that U(r) > 0 and hence (/'"'(' ') < 0 
while <7'+'(r) has zero at the single point r^ which is a solution of the equation 
2Л/ = / U(p)dp. To see the behavior of (4.42) at large distances (r > > r„„„) it 

rm,„ 
is useful to note that the potential U(UJ) (1.38) for u!i >> .1 + И asymptotically 
coincides with (4.19), (3.19): 

| , t f l ~ ( r » - i e K ) ' / » ( ' ы , ) 

and consequently, the metric </(±)C) (•'• 12) behaves for large r >> r,„,„ as follows: 

г г 

Both sheets are asymptotically flat. However, the flatness is reached in a different 
way that one can see from the scalar curvature (1.13) at large distances: 

This coincides with what we have obtained in Section 3. (3.20). (3.21). The plot 
of Я | , Л г ) is shown in Kig.2. We see that the space-lime has a horizon located on 
the (-t-)-sheet at r — r>, > г ш ш and the whole (-)-sheel is behind this hori/011 from 
the point of view of an observer staying at i- > r/, on ( +(-sheet. The topology of 

19 



3 1 1 6 J Г ф 

Fil. 1. The shape of the "dilaton" potential V(r,A,B) for: a). A = 0.1. В = 1: 
b). A = 0.3, В = 1; с). А = 1, li = 1. 

Fig. 2. The shape of the 4D scalar curvature й(4)(г) induced by quantum 
corrections for A = 0.1, В = 1. 
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Fig 3 The ( = const slice of the extended Schwarzschild space-time deformed by 
quantum corrections. It consists of two asymptotically flat (±)-sheets glued on the 
hypersurface of constant radial parametei r = rmin. The event horizon .s located 
on the hypersurface r = rh of the (-f)-sheet. 

Fig.4. The Penrose diagram of the space-time deformed by quantum corrections 
for А, В > 0. The asymptotically flat (-f)-region has the same causal properties as 
the classical Schwarzschild solution. It is analytically extended beyond the hyper-
su.face r = r m l n to the other asymptotically flat (-)-region, so that the complete 
space-time is free from singularity. 
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( = const slice of the space-time is shown in Hg3. The Penrose diagram of the 
space-time can be seen in Fig.l. 

It is worth noting that the resulting space-time docs not much differ from that 
of the black hole with the internal de Sitter space instead of singularity. Such space-
times have bee- earlier considered in [15] whore it has been shown thai such a pic I lire 
may occur under the condition that limiting curvature exists and the Schwarzscliilil 
singularity does not arise. In case of the two-dimensional black holes such solutions 
were considered in a number of papers [16]. 

If now w lies in the interval I\ = (0 , / i ) (or equivalently the radius r lies in 
{O.V'2KB)), the function Sl(u) (4.20) lakes the form 

N / B 

J У 
П М = / - V ( B - 9 2 ) ( / l + 0 - i/2), (1.17) 

where we have chosen the integration constant so that П( /i) = 0. I'or 0 < *j < \/Tl 
we get that fi(w) > 0 and il(Q) = +oc. The solution of eq.(4.31) (with sign ( + )) 
takes the form (4.36). For the potential t '(w) we get the expression (4.3N) whore 
now Q(u>) (and u(£)) is given by (4.47). Proceed analogously, wo also can consider 
here the (±)-sheets with the metric g±(r), respectively: 

S
( ± » 

Г0 

r)= - ~ ^ - ( V(p)d,K (4.1.S) 

where r0 = V2KB. The curvature is given by (4.43). The space-time is regular 
at г = го and both sheets are sewed at r = ?o continuously in the same manner 
as above. However, we again obtain the singularity at r = 0 since the II) scalar 
curvature in the limit r — 0 tends to 

Thus, for A > 0 the general picture is similar to that we have obtained I'or 
A = 0: the solution of eq.(4.32) describes two non-connected space-times. The 
first one , located at r > rm ;„ , is free from the singularities and is asymptotically 
flat, while the second, located in the region 0 < т < r0, is singular at r = 0. 
However, only the first space-time has an obvious physical meaning and realizes our 
preliminary assumption that quantum corrections might lead to drastic deformation 
of the Schwarzschild solution and avoid space-time singularity. 

5 Conclusion 
We have studied the problem of deformation of the Schwarzscliild solution duo In 
quantum corrections in the approximation when only spherically symmetric excita­
tions are taken into account. 
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От- uf our predictions concerns tlip behavior of (lie inptric function r/( r) and the 
corrpsponding curvature / ( ^ ' ( ' l outside tlie gravitating body with I lie mass M at 
distances much larger than the Planck scale. ! • > > « = Iy/к: 

2 M I n . , 1 « i . / и 2 a , 
g(r)*l - ( - ) ' - ( _ ) • • ; / ; ( ' ) ( , . ) - ( _ ) ' . (5.1) 

r 2 r S r rl r 
It is worth noting that this expression is rather universal and does not depend on 
whether gravitational ghosts and matter contributions are included in the consid­
eration or not. One can see from (5.1) that the space-time outside the gravitating 
body is no more Ricci flat as it follows from the classical Kinstein equations, though 
the scalar curvature / i ' ' ' (r) rapidly tends to zero and heroines too negligible to he 
observed in present gravitational experiments. 

The other important point, is the behavior of the space-time near the Schwarzschild 
singularity. We have shown that quantum corrections lead to the shift of she singu­
larity at г = 0 to the finite distance /•„,,„ ~ rpi and make it smoother. The scalar 
curvature /?'''(;•) takes the finite value at г = /•„,,„. so the space-time looks regularly 
near this minimal radius and allows the analytic extension beyond it. The complete 
space-time is free from singularities and consists of two asymptotically flat sheets 
glued on hypersurface of constant radial parameter /' = r„,,„. so that one sliee; is 
behind the horizon with respect to an observer staying on the other sheet. This is 
the result of the deformation of the Kruskal extension of the classical Schwarzschild 
metric due to quantum corrections. We see that these corrections indeed make the 
singular classical space-time more regular as it was originally assumed. 

The method developed can be applied to the study of the other known classically 
singular solutions of general relativity: the Reissner-Nordstrom and cosmological 
ones. This work is in progress. 

The next problem of interest is how the corrections found may change the grav­
itational collapse. It is known that the collapse in the classical Kinstein gravity 
ended by formation of the singularity. Probably our results mean that the real 
singularity is not formed and at the end of gravitational collapse oi • obtains the 
regular space-time. However, at the present stage we can not make any definite 
conclusion since the Hawking radiation and its bark-reaction were not taken into 
account. The previous study of 21) black holes tells us that the space-time points 
such as г = r m m at which the I) = 2 /r-inodel becomes degenerate (see eq.(!.(>)) 
are the possible places for new singularities to be formed [17]. This problem needs 
further investigation. 
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Казаков Д.И., Солодухин С.Н. Е2-93-371 
О квантовой деформации решения Швардшильда 

Мы рассматриваем деформацию решения Швардшильда общей относи­
тельности вследствие учета сферически-симметричных квантовых флук­
туации метрики и полей материи. В этом случае четырехмерное действие 
Эйнштейна редуцируется к эффективной двумерной дилатонной гравита­
ции. Мы нашли, что сингулярность Швардшильда при г = 0 сдвигается на 
конечный радиус rmin - rPL, где скаляр кривизны оказывается конечным. 
Полное пространство-время оказывается регулярным и состоит из двух 
асимптотически плоских листов,склеенных на гиперповерхности постоян­
ного радиуса. 

Работа выполнена в Лаборатории теоретической физики ОИЯИ. 

Препринт Объединенного института ядерных исследований. Дубна. 199Э 

Kazakov D.I., Solodukhin S.N. E2-93-371 
On Quantum Deformation of the Schwarzschild Solution 

We consider the deformation of the Schwarzschild solution in general 
relativity due to spherically symmetric quantum fluctuations of the metric and 
the matter fields. In this case, the 4D theory of gravity with Einstein action 
reduces to the effective two-dimensional dilaton gravity. We have found that the 
Schwarzschild singularity at r = 0 is shifted to the finite radius rmin ~ rPL where 
the scalar curvature is finite, so that the space-time looks regular and consists 
of two asymptotically flat sheets glued at the hypersurface of constant radius. 

The investigation has been performed at the Laboratory of Theoretical 
Physics, JINR. 

t Preprint of the Joint Institute for Nuclear Research. Dubna, 1993 
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