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COLLAGE II: A numerical code for radionuclide
migration through a fractured geosphere

in aqueous and colloidal phases.

Intera Information Technologies Ltd.

Summary

In previous work, the COLLAGE code was developed to model the impact
of mobile and immobile colloidal material upon the dispersal and migration
of a radionuclide species within a saturated planer fracture surrounded by
porous media. The adsorption of radionuclides to colloid surfaces was
treated as instantaneous and reversible.

In this report we present a new version of the code. COLLAGE II. Here
the adsorption of radionuclides to the colloidal material is treated via first
order kinetics. The flow and geometry of the fracture remain as in the
previous model.

The major effect of colloids upon the radionuclide species is to adsorb them
within the fracture space and thus exclude them from the surrounding
porous medium. Thus the matrix diffusion process, a strongly retarding
effect, is exchanged fcr a colloid capture/release process by which adsorbed
nuclides are also retarded. The effects of having a colloid-radionuclide
kinetic interaction include the phenomena of double pulse breakthrough
(the pseudo colloid population followed by the solute plume) in cases where
the desorption process is slow and the pseudo colloids are highly mobile.

Some example calculations are given and some verification examples are
discussed.

Finally a complete listing of the code is presented as an appendix, includ-
ing the subroutines allowing for the numerical inversion of the Laplace
transformed solution via Talbot's method.



The Conceptual Model

We consider the transport of a single radionuclide species through satu-
rated fractured rock in the presence of both mobile and immobile colloid
species. Specifically v/e shall model a single planar fracture surrounded
by a saturated porous rock mass. Within the fracture the nuclides are
present in a solute phase as well as being adsorbed to both mobile and
immobile colloid material. The nuclides may also gain access to the rock
matrix porespace. via diffusion, where they may also become sorbed.

This is summarised schematically in figure 1.

radionuclides
adsorbed to

mobile colloids
within the fracture

radionuclides
in solution within

the fracture

radionuclides
in solution within
the pore space

radionuclides
adsorbed to

immobile colloids
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Figure 1: The partition of the radionuclide population, and ex-
change between the classes.

In earlier work. COLLAGE modeled the adsorption and desorption of nu-
ciides to colloid surfaces as an instantaneous reversible reaction. In this
report, COLLAGE II will be used to solve radionuclide migration prob-
lems whilst treating such adsorption and desorption of nuclides dynami-
cally. Thus within the fracture there are three phases to be considered,
with exchange of nuclides subject to rate constants. In some cases total
breakthrough behaviour becomes double peaked: a phenomena previously
precluded by the instantaneous modelling assumptions.

The ambient colloid distribution within the fracture space will be assumed
to be in dynamic equilibrium. Thus there is a constant exchange of ma-
terial between the mobile and immobile forms.



The Mathematical Model

The model equations solved by the COLLAGE II code represent nuclide
dispersal within a thin planar fracture surrounded by porous, saturated,
rock matrix. As in previous studies [1] with implicit planar symmetry and
cross fracture averaging, this results in a simplified problem in two spatial
dimensions: the x coordinate varying along the axis of the fracture, in
the direction of fluid flow, and the z coordinate defining locations within
the rock matrix, increasing from zero at the fracture. Following [lj. the
equations for the radionuclide concentration in solution (a-), sorbed on
mobile colloids (v) and sorbed on immobile colloids (p) are given by:
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where si(co, w) and S2(d0, w) are the rates per unit fluid volume at which
nuclides in solution become sorbed to free and immobile colloids; <h(u) and
<72(p) are the rates of desorption from free and immobile colloids; q(p, v.d0)
denotes the rates at which nuclides are exchanged between immobile and
free colloids as a consequence of instantaneous colloidal capture or release.

In this analysis the density of free and immobile colloids is assumed fixed in
dynamic equilibrium at values of Co and do. Other parameters are defined
in Table 1.

The concentration of nuclides in solution within the porespace is given by

RWt = DWZZ - R\W (4)

where R is the retardation within the rock.

If it assumed that the processes of capture and release of the colloid species
are rapidly equilibrated relative to the timescales associated with nuclide
transport, then the nuclide concentration on immobile colloids is given by

0 o

p = —v = 'jv
Co

(o)

which defines 3 as the ratio of nuclides sorbed to immobile colloidal mate-
rial, to nuclide sorbed to mobile colloidal material (per unit fluid volume).



Table 1

D Dispersion coefficient of solute

D" Dispersion coefficient of free colloids

u Average groundwater flow rate

u" Average free colloid flow rate

o Porosity of rock

D Molecular diffusion coefficient of the solute within the
rock matrix

b Half fracture width

A Radioactive decay rate

R Retardation of the nuclide in the porous rock

a\ year"1 Rate of sorption/desorption to mobile colloids

#2 year"1 Rate of sorption/desorption to immobile colloids

3 Number of immobile colloids/number of mobile colloids

ki Partition coefficient for free colloid-bound radionuclides

k2 Partition coefficient for immobile colloid-bound radionu-
clides

77 Fraction of injection inventory in solute phase

L Length modeled

n Downstream boundary condition (zero concentration) lo-
cated at x = nL.



The adsorption and desorption of nuciides by colioids is assumed to be
kinetic here, whereas in [2] it was assumed instantaneous. The relevant
terms in (1) and (2) will be taken to be first order, and are given by

= Q1U

Here the constants a, represent the kinetic disassociation rates, and the
constants ktat represent the adsorption rates. These constants (the fc,
and the at) implicitly depend upon the ambient densities of the colloid
species, and their sorbative properties [1]. Clearly the larger values that
are assumed for the a t, the faster the sorption processes are equilibrated.

Thus if the adsorption and desorption of the nuciides by colloids were ever
in equilibrium, then v = k^w, and p = k2w would hold (as is assumed in
[1), equation (16)).

Substituting (5) and (6) into (1), (2) and (3) gives tbe equations to be
solved:

=. . d > D . . . .
xvt = Dwxx — uwx -f—— yyz\z-o —

o

- u'vx -
- ( Q J + 3a2)v + (a^ki + a2k2)w (S)

The boundary conditions to be imposed in solving these equations are of
zero concentration a distance nL downstream; and of unit pulse injection
at i = 0, r = 0, with a fraction t] being in the dissolved phase, (1 — JJ)
being on mobile colloids.

Thus

u;(i,0) = u(i,O) = 0, 0 < i < n £ (9)

w{nL,t) = v{nL,t) = 0, t>0 (10)

-i)< ' S O (12)

The concentration in the porous rock has boundary condition:

W(x,z,t) -* O a s r - o o (13)
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W{x,Q.t) = a-(x.f) (14)

»*(i,sr0) = 0. (15)

It is required to find the outfiux at z = L:

rrL, (16>
(17)

Note that if n = 1 the downstream boundary condition is imposed where
the flux is calculated. If additionally ai = a2 » 1. so that sorption
becomes effectively instantaneous, then the model described in [2J is re-
covered (their equation (1) being (7) +

Collage II solves the above model using a method based upon Laplace
Transforms. The details of this solution are given in Appendix A.

Model calculations

The model developed in the previous section has beea coded for a 486-
based PC using the Salford FTN77 compiler. A listing of the code is
given in Appendix B. Using this code a series of example runs have been
undertaken which show possible effects of considering dynamic sorption
to and desorption from colloids. All the examples given in this section are
based on the same basic model, which is now described. Parameters are
selected for illustrative purposes only.

Transport of a unit injection of a non-decaying tracer is considered in a
fracture 1000m long, with half-width 1 cm. The ground water velocity is
1 m/yr, whilst the free colloids move with an average speed of 1.32 m/yr.
Their respective dispersivities {D, D') are 50 and 140 m2/s. The rock
matrix is porous, with porosity (<j>) 1E-2, diffusivity (D) 7.875E-4 and
retardation (R) 675.1. The downstream boundary condition was taken to
be zero concentration at x=1000m, and the output used was the flux at
this location.

Figure 2.1 shows the flux in the case of k\ — 50 and ^ = 0 (large numbers
of mobile colloids and no immobile colloids) for a range of values of the
rate of transfer (at) of the tracer between the colloid bound and the solute
phases. ax is measured in units of inverse time, thus large values of ax

correspond to rapid transfer. From the ^raph it can be seen that for
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transfer rates greater than 0.1 yr"1 (times shorter than 10 years), the
results given are independent of the reaction rate, since almost all {%%)
nuclide transport is via mobile pseudocolioid form. As the value of a is
further decreased so changes appear, since the nuclide-colloid interactions
can obtain equilibrium. For a=lE-3. the peak concentration decreases by
20% whilst the concentrations at times greater than 10.000 years increases
by more than a factor of 2. The changes are clearest for the curve Q =
IE — 6 This rate is so slow that by the time of the peak in the other
cases (560 years) only a small fraction of the tracer has become bound
to the colloids, most still being in the solute form (much being bound
within the rock matrix). Thus a two-peak distribution is produced, the
first peak being at the time of the pseudocolioid breakthrough, the later at
the solute breakthrough time (as shown by the 'No Colloids" breakthrough
curve). This graph highlights not only the effect of colloids on the flux
of radionuclides, but also the effect of the rate of trarsfer of radionuclides
between colloids and solute.

Figure 2.2, for the case of JtÄ = 1 and k2 — 0 (less mobile colloids, though
still no immobile colloids), shows an even greater sensitivity to a, the
transfer rate. Due to the reduced number of colloids, the breakthrough
time for iow a (rapid transfer) is now not until about 10.000 years. At
shorter times, slight difference can be seen between all the curves, showing
that even a transfer rate of 1 year"1 can produce different flux to that pre-
dicted, if the transfer is assumed to be instantaneous. The most striking
component of this figure, however, is that the highest flux is predicted for
a transfer rate of a=lE-3 (equivalent to 1000 years). In this case a signif-
icant amount of tracer transfers to the colloids but does not then transfer
back to solution significantly. For slower transfer rates (a = 1E-6) the
initial peak is reduced, compared to that in figure 2.1.
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Figure 2.3 shows the split between pseudocolloids and solute transf +"or
two of the cases shown in figure 2.1. For the case of a= l it can be seen
that the transfer by colloids always dominates that by solute. This is
not surprising as the transfer rate is relatively fast and the colloid have
a much greater capacity than the water. For the case of Q=1E-6 (very
stow transfer rate), then before significant solute breakthrough transport
by colloids dominates, while after this time transfer by solute, which is
the main component of transport, dominates.

Initial tests, including both mobile and immobile colloid phases, showed
that the presence of immobile colloids results in a reduced flux at the early
peak (at 560 years).

In figure 2.4 we show the results for a =lE-6 and 1E-3, assuming ki = k2 =
50, for comparison with figure 2.2. The effect of two different transfer rates
(an ^ a2) was that behaviour was generally determined by the faster rate
(the transfer of colloids between the mobile and immobile phases having
been assumed to be very rapid, in the derivation of equation (5)).



Kl=50; K2=0; alphal = 1
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Effect of varying alpha 1 and alpha 2 on the total flux, K 1 = 1; K2=l; Deia=l
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Code verification.

Various checks have been undertaken to verify that the program COL-
LAGE II. is an accurate coding of the mathematical model described here.

Initial tests were undertaken to confirm that the results in the case of
instantaneous sorption agree with those from COLLAGE, presented in
[2], by setting ax and 0:2 to be very large. These tests showed very good
agreement for the peak value and time, with values within 0.1% and at
the same timestep, respectively. Away from the peak slight differences did
occur, particularly at e*.rly times.

The main testing of COLLAGE II was by comparing its predictions with
those of a code which models the transfer of radionuch'des through porous,
fractured rock with first order kinematic sorption processes included. COL-
LAGE II was used with no mobile colloids and an appropriate level of
immobile colloids, thus allowing the basic equations for the two models
to be equivalent. Tests in this case again showed very close agreement,
with the values of peaks being reproduced to within 0.1% and the times
predicted being at the same timestep.

In combination, these two sets of results verified the major components of
COLLAGE II: the separate modelling of tracer transport by colloids from
that by solute transport; and the modelling of kinematic transfer of tracer
between the solute and colloidal phases.
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A Solution of the equations.

The model described in Section 2 is solved by the method used in previous
studies [1, 2. 3] - that of Laplace Transforms, defined by

u{s) = r u{t)e-stdt.
Jo

For the nuclide in the rock matrix, (4) and (13) are solved directly, tc

w s,x exp j -]j D j

and thus

Wz\z=0 - -w(s,x)y———.

The main equations, (7) and (8), become,

n - - - «M , , *D IR(S + V , t , , L UDwxx - uwx - w{\ + $ + —\ + (a-iki + a2k2))
b V u

^ —(oi "4* POL2\V

D'vxx — u"vx — v|( l + /3)(A + s) + (di + 0ct2)>

with boundary conditions

w(nL,s) = v{nL,s) = 0

To solve these equations they are written in a simplified form:

aiwxx + biwx + C\w = d\V

Q-iVxx + b2vx V c2v = d2w

w(nL,s) = v{nL,$) = 0
r, . , dw-, -rj r dv'i - ( 1 -»?)
6iu; + ai - 62u + a 2 a „ - o ,

L Qx'x=o 26 l oxlx:=o 26
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give

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)



(The definitions of a,. b{,Ci and dt is apparent by comparing with equations
(20) through (24).)

Next v is eliminated from (25) and (27), by using (26), giving

a1a2w"" 4- (ai&2 + bi

(biC2 + b2cx)w

with boundary conditions:

w(nL,s) = 0

6162

= 0 (28)

a1a2w
m(0, s)

,s) = 0

»w(0,5) + {a2c1 '(0,5)

26
(29)

Setting

t = i

in (28) gives a fourth order polynomial which can be solved by the routine
ZROOTS given in [4]. This uses deflation to calculate all four roots.

Once the roots ri,r2, r$ and r4 are found, the 4,'s are calculated from the
boundary conditions, which yield a matrix equation:

/ 1

where

1

X2

Z2e~T7nL

1
A3

1
A4

0

0

26

Ji

(30)

] + bin +

Yt =

Z, = ? + (a2öi 626i)r, + cxb2.

(31)

The matrix equation (30) is solved by Gaussian Elimination using the
routine GAUSS given in [4j, to yield the /1,'s. These are then used to

14



calculate the Laplace Transform of the Output:

fw = 2&[uur-0y^]r=z. (from (16))
4

L = 2
(32)

/„ is calculated in an analogous manner, beginning by eliminating it; from
equations (25) and (27).

The final solution step is to invert the Laplace Transforms using the Talbot
method (as described in [1. 2, 3]).

15



B Code Listing

c ****************************************************************
c *
c PROGRAM QA INFORMATION *
c *
c PROGRAM : COLLAGE 2 *
c VERSION : 2.0.3.5 *
c CREATED : NOVEMBER 1992 *
c LAST EDIT : February 1993 *
c AUTHORS : N S Cooper and P G Grindrod *
c Based on: COLLAGE *
c *
c Compilation : FTN77 C0LLAGE2 /LINK77 /DCLVAR /CHECK /DREAL *
c *
c DESCRIPTION: *
c Collage models a one dimensional geosphere breakthrough *
c problem for radicnuclides in groundvater containing natural *
c colloids. The breakthrough is calculated as a function of time *
c by solving for Laplace transforms of the concentration *
c and inverting this using Talbot's method. *
c *
c Version 2 includes kinematic sorption/desorption to/from *
c moving and stationary colloids. *
c *

PROGRAM C0LL2

C Real Variables
REAL A, Al, A2, ALPl, ALP2, Bl, B2, BETA1, DROCK, DSTAR, DT,

1 DTIL, FINT, FRAC, FV, FW, L, LAMBDA, PHI, PI, Q, R,
2 RK1, RK2, RLAM, THETA, TIME, TSTART, TEND, USTAR, UTI

C Integer Variables
INTEGER I,IC0UNT,IR, K, N, NL, NCURVE

C Complex arrays
COMPLEX C0EFF(4), ROOT(4), R00Tl(4), TERM(5)

C Complex Variables
COMPLEX Cl, C2, Dl, D2, FHATW, FHATV, S, MATRIX (4,4),

1 SO, SPRIME, TEMP, X(4), Y(4), Z(4)
C Character Variables

CHARACTER*30 NAMIT,NAMTWO,FDATE
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CHARACTER*80 TITLE
C Intrinsic functions

INTRINSIC ATAN, CABS, CEXP, CMPLX, CSQRT, EXP, REAL, TAN
C External functions

EXTERNAL GAUSSJ, ZROOTS

CALL DCLQCK(TSTART)
PI = ATAN (1.0) * 4.

c
c prompt user for i/o file names, and open files
c

WRITEC6,*)' ENTER INPUT FILE NAME '
READ(5,'(A30)')NAMIT
WRITE(6,*)' ENTER OUTPUT FILE NAME '
READ(5,'(A30)')NAKTW0
OPEN(UNIT=11,FILE=NAMIT,STATUS='OLD')
OPEN(UNIT=12,FILE=NAMTWO,STATUS*'UNKNOWN')
WRITE (12,988)NAMIT,NAMTWO

988 FORMAT (/20X,' COLLAGE version 2.0.3.5',/
1 20X,' =======================',//,
2 10X,' INPUT FILE : ',A20,/
3 10X,' OUTPUT FILE : ',A20/)

WRITE (12,989)FDATEO
989 FORMATUOX,' PROGRAM RUN ON \A30,//)

c
c announce, read and echo input Data
c

READ (11,990)TITLE
WRITE (12.99DTITLE

990 FORMAT (A80)
991 FORMAT (1X.A80/)

c mean solute and colloid advection velocities
READ(11,*)UTIL,USTAR
WRITE(12,*)' UTIL, USTAR =',UTIL,USTAR

c
c solute and colloid dispersion coefficients
c for representative fracture

READ(11,*)DTIL,DSTAR
WRITE(12,*)' DTIL, DSTAR =',DTIL,DSTAR

c
c coefficient of outflow into rock matrix

READ(11,*)PHI
C ETA NO LONGER USED, replaced by PHI

WRITEU2,*)' PHI =',PHI

17



c
c decay rate (epsilon in report)

READ(11,*)RLAM
WRITE(12,*)' DECAY RATE =',RLAM

c
c retardation factor

READ(ll,*)R
WRITE(12,*)' RETARDATION FACTOR, R =\R

c
c solute diffusivity within rock matrix

READ(ll,*)DROCK
WRITE(12,*)' SOLUTE DIFFUSIVITY IN ROCK, DROCK =',DR0CK

C
C Fracture details

READ(U,*)L,A,NL
WRITE(12,*)' FRACTURE LENGTH',L,' Width', A
WRITEU2,*)' BOUNDARY AT \ N L , ' L'

c
c Talbot i n v e r s i o n parameters

READ(11,*)N,q,LAMBDA
WRITE(12,*)' TALBOT: N,Q,LAMBDA =',N,Q,LAMBDA

c
c number of values of kl

READ(11,*)NCUHVE
IF (NCURVE.NE.l)THEN

PRINT *,' **WARNING ** VALUE OF NCURVE NOT 1'
PRINT *,' **WARNING ** ONLY FIRST VALUE OF Kl USED'

ENDIF
C HRITEC12,*)' NUMBER OF VALUES OF Kl',NCURVE
c
c value of kl

READ(11,*)RK1
WRITEC12,*)' Kl =',RK1

c
c value of k2

READ(11,*)RK2
WRITE(12,*)' K2 =',RK2

c
c kinematic sortion/desorption rates

READ (11,*)ALP1,ALP2
WRITE (12,*)' SORPTION RATES, ALPHA1, ALPHA2 ',ALP1,ALP2

c
c equilibrium ratio beta = p/v

READ (ll,*)BETAl
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WRITE (12,*)' EQUILIBRIUM RATIO, BETA1, ' .BETA1

c INJECTION FRACTION IN SOLUTION
READ (11,*)FRAC
WRITE (12,*)' INJECTION FRACTION IN SOLUTE',FRAC

c
c SET HEADER FOR OUTPUT OF RESULTS
c

PRINT 86
WRITE (12,86)

86 FORMAT (//,7X,'TIME',6X,'SOLUTE',11X,'COLLOID',8X,'TOTAL',
1 4X,'INTEGRATE FLUX'/)

C SET INTEGRATED FLUX TO ZERO AT T = 100 YEARS
FINT = 0

c
c scan timescale
c

DO 100 1=0,48

TIME = 10**(2+1/8.)

c
c solve for concentration at distance NL*L and given time
c by Talbot inversion of Laplace transform
c

DO 80 K=O,N-1

C Calculate the coefficients for the two simultaneaous
c second order differential equations
c al,bl,cl and dl for w eqn
c a2,b2,c2 and d2 for v eqn

Al = DTIL
A2 = DSTAR
Bl = -UTIL
B2 = -USTAR

C calculate Talbot variables Theta, SO and dS/dTheta
IF (K.Eq.O) THEN
THETA = 0
SO = 1
SPRIME= Q * .5
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ELSE
THETA = K * PI / N
SO = THETA/TAN (THETA) + Q*CMPLX(0.,1.)*THETA
SPRIME= (Q + CMPLX(0.,l-)*( THETA +

1 ( ((THETA/TAN(THETA))-l.)/TAN(THETA))))*0.5
ENDIF

C next apply Talbot factoring (lambda)
S = 6. * SO / TIME

C and calculate remaining coefficient
Cl = -(RLAM + S + (PHI*DROCK/A) * CSQRT(R*(S+RLAM)/DROCK)+

1 (ALP1*RK1 +ALP2*RK2))
C2 = -((1+BETA1)*(RLAM+S) + (ALP1 +BETA1*ALP2))

c print *,' Cl =',C1
Dl = - ALP1 - BETA1*ALP2
D2 = - ALP1*RK1 - ALP2 *RK2

C Calculate the coefficients of the fourth order
C characteristic equation

TERM(5) = A1*A2
TERM(4) = A1*B2 + B1*A2
TERM(3) = A1*C2 + Bl*B2 + C1*A2
TERM(2) = B1*C2 + C1*B2
TERM(l) = C1*C2 - D1*D2

C Find the roots of the characteristic equation, using the method
C given in Numerical Recipes
C CALL ZROOTS(TERM,4,R0QT1,.FALSE.)

CALL ZROOTS(TERM,4,RO0T1,.TRUE.)

DO 30 IR = 1,4
ROOT(IR) = ROOTl(S-IR)

C Calculate the boundary condition matrix, to invert for coefficients
X(IR) » Cl + ROOT(IR) * (Bl + ROOT(IR) * Al)

IF (CABS(X(IR)).LT.l.E-10)X(IR)=0.0
Y(IR) = Bl + ROOT(IR) * Al
Z(IR) = C1*B2 + ROOT(IR) • ((C1*A2 + B1*B2)

1 + ROOT(IR) * ((B1*A2 + A1*B2)
2 + ROOT(IR) * A1*A2 ))

C Set MATRIX for Gauss-Jordan solution
MATRIX(l.IR) = 1
MATRIX(2,IR) = X(IR)
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C Fix to avoid numerical overflow
TEMP = ROOT(IR)
IF (REAL(ROOKIR)*NL*L)-LT.-600) THEN

TEMP = CMPLX(-600./(NL*L),AIKAG(R00T(IR)))
I F (K.EQ.O)PRINT * , ' O v e r f l o w a v o i d e d f o r W, I = ' , !

ENDIF
MATRIX(3,IR) = Y(IR) • CEXP(-TEMP * NL * L)
MATRIX(4,IR) = Z(IR) * CEXP(-TEMP * NL • L)

C and right hand side
COEFF(IR) = CMPLX(O.,O.)
C0EFF(3) = -.5*FRAC/A
C0EFF(4) = -D1*(1.-FRAC)*.5/A

30 CONTINUE

C Call Numerical Recipies GAUSSJ to solve simultaneous equations
CALL GAUSSJ (MATRIX, 4,4, COEFF, 1,1)

C Calculate the Laplace Transforms of the result required
C (NB required result is flux at x=L.)

FHATW = 0

DO 40 IR =1,4

FHATW = FHATW + COEFF(IR) * (UTIL - DTIL *ROOT(IR))
1 * CEXP(-ROOT(IR)*(NL-1)*L)

40 CONTINUE
FHATW = 2. * A * FHATW

DO 50 IR = 1,4

ROOT(IR) = R00TK5-IR)

C Calculate the boundary condition matrix, to invert for coefficients
X(IR) = C2 + RQOT(IR) * (B2 + ROOT(IR) * A2)

IF (CABS(X(IR)).LT.l.E-10)X(IR)=0.0
Y(IR) = B2 • ROOT(IR) * A2
Z(IR) » C2*B1 + ROOT(IR) * ((C2*A1 + B2*Bl)

1 + ROQT(IR) * ((B2*A1 + A2*B1)
2 + ROOT(IR) * A2*A1 ))

C Set MATRIX for Gauss-Jordan solution
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NATRIX(l,IR) = 1
MATRIX(2,IR) = X(IR)

C Fix to avoid numerical overflow
TEMP = ROQT(IR)
IF (REAL(ROQT(IR)*NL*L).LT.-600) THEN

TEMP = CMPLX(-600./(NL*L),AIMAG(R00T(IR)))
IF (K.EQ.O)PRINT *,' Overflow avoided for V, I = ',I

ENDIF
MATRIX(3,IR) = Y(IR) * CEXP(-TEMP * NL * L)
MATRIX(4,IR) = Z(IR) * CEXP(-TEMP * NL * L)

C and right hand side
COEFF(IR) = CMPLX(O.,O.)
C0EFF(3) = -(1-FRAC)*.5/A
CQEFF(4) = -D2*FRAC«.5/A

50 CONTINUE

C Call Numerical Recipies GAUSSJ to solve simultaneous equations
CALL GAUSSJ(MATRIX,4,4.COEFF,1,1)

C Calculate the Laplace Transforms of the result required
C (NB required result is flux at x=L.)

FHATV = 0

DO 60 IR =1,4
FHATV = FHATV + COEFF(IR) • (USTAR - DSTAR *R00T(IR))

1 * CEXP(-ROOT(IR)*(NL-1)*L)
60 CONTINUE

FHATV = 2. * A * FHATV

C now do Talbot inversion of Laplace Transforms, FHATW and FHATV

IF (K.EQ.O) THEN
C Used factor of 1/2 for N=0, and give SPRIME explictly.

FW = .5*LAMBDA * EXP(LAMBDA)*REAL(FHATW)*Q/(N*TIME)
FV » .5*LAMBDA * EXP(LAMBDA)*REAL(FHATV)*q/(N*TIME)

ELSE
FW * FW+2.*LAMBDA * REAL(CEXP(LAMBDA*SO)*SPRIME*FHATW)/N/TIME
FV * FV+2.»LAMBDA * REAL(CEXP(LAMBDA*SO)*SPRIME*FHATV)/N/TIME
ENDIF

80 CONTINUE



C CALCULATE THE TIME INTEGRATED FLUX.
C VALUE OF 0.3335 = 1 - 10.**(l/8)
C VALUE OF 2.3335 = 1 + 10.**(l/8)

FINT = FINT +CFW+FV) * TIME * 0.3335 * 2.3335 *.5 /I.3335

c store results by time and kl value
c

PRINT 89,TIME,FW,FV,FW+FV,FINT
WRITE (12,89)TIME,FW,FV,FW+FV,FINT

89 FORMAT (2X, 1PE10.3, 4E16.6)
100 CONTINUE

CALL DCLOCK(TEND)
PRINT 890.TEND-TSTART
WRITE (12,890)TEND-TSTART

890 F0RMAT(/,10X,' CPU TIME USED = '.FlO.l,' SECONDS')

STOP
END

SUBROUTINE ZROOTS(A,M,ROOTS,POLISH)
C REAL PARAMETERS

REAL EPS
C INTEGER PARAMETERS

INTEGER MAXM
PARAMETER (EPS=l.E-6,MAXM=101)

C INTEGER VARIABLES
INTEGER I, J, M, JJ

C EXTERNAL FUNCTIONS
EXTERNAL LAGUER

C INTRINSIC FUNCTIONS
INTRINSIC ABS, CMPLX, AIMAG, REAL

COMPLEX A(*),ROOTS(M),AO(MAXM),X,B,C
LOGICAL POLISH
DO 11 J=1,M+1
AD(J)=A(J)

11 CONTINUE
DO 13 J-M.1,-1
X«CMPLX(O.,O.)
CALL LAGUER(AD,J,X,EPS,.FALSE.)
IF(ABS(AIMAG(X)).LE.2.*EPS**2*ABS(REAL(X))) X=CMPLX(REAL(X),0.
ROOTS(J)»X
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B=AD(J+1)
DO 12 JJ=J,1,-1

C=AD(JJ)
AD(JJ)=B
B=X*B+C

12 CONTINUE
13 CONTINUE

IF (POLISH) THEN
DO 14 J=1,M

CALL LAGUER(A,M,ROOTS(J),EPS,.TRUE.)
14 CONTINUE

END IF
DO 16 J=2,M
X=ROOTS(J)
DO 15 I=J-1,1,-1

IF(REAL(ROOTS(I)).LE.REAL(X))GO TO 10
ROOTS(I+1)=ROOTS(I)

15 CONTINUE
1=0

10 ROOTS(I+1)=X
16 CONTINUE

RETURN
END

SUBROUTINE LAGUER(A,M,X,EPS,POLISH)
C REAL PARAMETERS

REAL EPSS
C COMPLEX PARAMETERS

COMPLEX ZERO
C INTEGER PARAMETERS

INTEGER MAXIT

PARAMETER (ZERO=(O.,0.),EPSS=6.E-8,MAXIT=100)
C COMPLEX VARIABLES

COMPLEX A(*),X,DX,Xl,B,D,F,G,H,Sq,GP,GM,G2
C REAL VARIABLES

REAL DXOLD, ABX, CDX, EPS, ERR
C INTEGER VARIABLES

INTEGER M, ITER, J
C LOGICAL VARIABLES

LOGICAL POLISH
C INTRINSIC FUNCTIONS

INTRINSIC CABS, CSQRT
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DXOLD=CABS(X)
DO 12 ITER=1,MAXIT
B=A(M+1)
ERR=CABS(B)
D=ZER0
F=ZER0
ABX=CABS(X)
DO 11 J=M,1,-1
F=X*F+D
D=X*D+B
B=X*B+A(J)
ERR=CABS(B)+ABX*ERR

11 CONTINUE
ERR=EPSS*ERR
IF(CABS(B).LE.ERR) THEN
DX*ZERO
RETURN

ELSE
G=D/B
G2=G*G
H=G2-2.*F/B
SQ*CSQRT((M-1)*(M*H-G2))
GP=G+SQ
GM=G-SQ
IF(CABS(GP).LT.CABS(GM)) GP=GM
DX=M/GP

ENDIF
X1=X-DX
IF(X.EQ.X1)RETURN
X=X1
CDX=CABS(DX)
IFCITER.GT.6.AND.CDX.GE.DXOLD)RETURN
DXOLD=CDX
IF(.NOT.POLISH)THEN
IF(CABS(DX).LE.EPS*CABS(X))RETURN

ENDIF
12 CONTINUE

PAUSE 'too many iterations'
RETURN
END

SUBROUTINE GAUSSJ(A,N,NP,B,M,MP)
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INTEGER NMAX
PARAMETER (NMAX=50)
DIMENSION A(NP,NP) ,B(NP,MP) .IPIV(NMAX) ,INDXR(NMAX) .INDXC(NMAX)
COMPLEX A,B,DUM,PIVINV,BIG
INTEGER I,IPIV,INDXRJNDXC,J,H,NP,M,MP,K,IRDW,ICQL,L,LL
INTRINSIC CABS

DO 11 J=1,N
IPIV(J)=O

11 CONTINUE
DO 22 1=1 ,N
BIG=O.
DO 13 >1,N

IF(IPIV(J).NE.1)THEN
DO 12 K=1,N

IF (IPIV(K).EQ.O) THEN
IF (CABS(A(J,K)).GE.CABS(BIG))THEN
BIG=CABS(A(J,K))
IROW=J
ICOL=K

ENDIF
ELSE IF (IPIV(K).GT.l) THEN

PAUSE 'Singular matrix'
ENDIF

12 CONTINUE
ENDIF

13 CONTINUE
IPIV(ICOL)=IPIV(ICOL)+1
IF (IROW.NE.ICOL) THEN
DO 14 L-l.N

DUM=A(IROW,L)
A(IROW,L)=A(ICOL,L)
A(ICOL,L)=DUM

14 CONTINUE
DO 15 L-l.M

DUM=B(IROW,L)
B(IROW,L)=B(ICOL,L)
B(ICOL,L)«DUM

15 CONTINUE
ENDIF
INDXR(I)»IROW
INDXC(I)=ICOL
IF (A(ICOL,ICOL).EQ.O.) PAUSE 'Singular matrix.'
PIVIBV-1./ACICOL.ICOL)
A(ICOL,ICOL)=1.
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DO 16 L=1,N
A(ICOL,L)=A(ICOL,L)*PIVINV

16 CONTINUE
DO 17 L=1,M
B(ICOL,L)=B(ICOL,L)*PIVINV

17 CONTINUE
DO 21 LL=1,N
IF(LL.NE.ICOL)THEN
DUM=A(LL,ICQL)
A(LL,ICOL)=O.
DO 18 L=1,N
A(LL,L)=A(LL,L)-A(ICOL,L)*DUM

18 CONTINUE
DO 19 L-l.M
B(LL,L)=B(LL,L)-B(ICOL,L)*DUM

19 CONTINUE
ENDIF

21 CONTINUE
22 CONTINUE

DO 24 L=N,1,-1
IF(INDXR(L).NE.INDXC(L))THEN
DO 23 K=1,N
DUM=A(K,INDXR(D)
A(K,INDXR(L))=A(K,INDXC(L))
A(K,INDXC(L))=DUM

2 3 CONTINUE
ENDIF

2 4 CONTINUE
RETURN
END
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